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Periodically forced pumps

Definition
Let T > 0, g : R3 → R and let e : R → R be nonconstant and T -periodic.
Then the equation

x ′′ = g(x , x ′, e(t))

generates a T -periodically forced pump if it has a T -periodic solution x
such that

g(x̄ , 0, ē) 6= 0

(i.e. the mean value x̄ of x is not an equilibrium of x ′′ = g(x , x ′, ē).



1 tank - 1 pipe model

G. Propst : Pumping effects in models of periodically forced flow configurations.
Physica D 217 (2006), 193–201.

ρ . . . density of the liquid (constant)
p(t) . . . periodic pressure
g . . . acceleration of gravity
r0 . . . friction coefficient
ζ . . . junction coefficient
AP/AT . . . cross sections of pipe/tank
V0 . . . constant total volume of liquid
w = −` ′ . . . velocity in the pipe

AP `(t) + AT h(t) ≡ V0 =⇒ h(t) ≡
1

AT

�
V0−AP `(t)

�
.

Momentum balance with Poiseuille’s law and Bernoulli’s equation

=⇒

` ` ′′ + a ` ` ′ + b (` ′)2 + c ` = e(t),

where
T > 0, a =

r0

ρ
> 0, b =

�
1 +

ζ

2

�
≥ 3/2,

e(t) =
g V0

AT
−

p(t)

ρ
is T − periodic, 0 < c =

g Ap

AT
< 1.
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First observations

This leads to singular periodic problem:

(1) u′′+a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

T > 0, a =
r 0

ρ
≥0, b =

(
1 +

ζ

2

)
≥3/2, 0 < c =

g Ap

AT
< 1, e(t) =

g V0

AT
−p(t)

ρ
.

Multiplying the equation by u and integrating over [0, T ] gives

THEOREM 1

(1) has a positive solution only if e≥0 (i.e. p≤ ρ g V0
AT

) .

THEOREM 2
If (1) has a positive solution, then its generates a T -periodically forced
pump.
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Existence of a periodic solution

(1) u′′+a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

Theorem 3
ASSUME:

a ≥ 0, b > 1, c > 0,

e is continuous and T-periodic on R, e∗ > 0,

(b + 1) c2

4 e∗
<

( π

T

)2
+

a2

4
.

THEN: (1) has a positive solution.

Definition
A T -periodic function σ1 ∈ C2[0, T ] is a lower function for

u′′ + a u ′ + f (t , u) = 0 u(0) = u(T ), u ′(0) = u ′(T ) ,

if

σ′′1 (t) + a σ′1(t) + f (t , σ1(t)) ≥ 0 for t ∈ [0, T ],

while an upper function is defined analogously, but with reversed inequality.
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Sketch of the proof

STEP 1:

(1) u′′ + a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

x = u1/µ, µ = 1
b + 1 =⇒ (1) 

(2) x ′′ + a x ′(t) + s(t) xβ − r(t) xα = 0 , x(0) = x(T ), x ′(0) = x ′(T ) ,

where

r(t) =
e(t)
µ

, s(t) =
c
µ

, α = 1−2 µ, β = 1−µ.

Proposition

u : [0, T ]→R is a positive solution of (1) iff x=u1/µ is a positive solution of (2).

We have:
r∗ > 0, s∗ > 0, 0 < α < β < 1 .
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(2) x ′′ + a x ′(t)+ f (t , x) = 0 , x(0)= x(T ), x ′(0)= x ′(T ), where f (t , x)= s(t) xβ − r(t) xβ .

STEP 2: We have

f (t , x) < 0 for t ∈ [0, T ] and 0 < x < x0 = (r∗/s∗)1/(β−α) ,

f (t , x) > 0 for t ∈ [0, T ] and x > x1 = (r∗/s∗)
1/(β−α) .

Thus, there are constant lower and upper functions σ1 and σ2 of (2) such that
0 < σ2 < x0 < x1 < σ1.

STEP 3: We put λ0 =
(b + 1) c2

4 e∗
and show that there is δ0 ∈ (0, σ2) such that

λ (x−δ)− f (t , x) ≥ 0 for t ∈ [0, T ], δ ∈ (0, δ0), λ≥λ0 and x ∈ [δ,∞).

λ x − f (t , x) ≥ x1−2µ (λ x2µ − s∗ xµ + r∗)
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STEP 4: Choose δ ∈ (0, δ0), define λ∗ =
�

π
T

�2
+ a2

4 and

ef (t , x) =

(
f (t , δ) + λ∗ (x − δ) for x < δ ,

f (t , x) for x ≥ δ

and consider auxiliary problem

(3) x ′′ + a x ′(t)+ef (t , x) = 0 , x(0) = x(T ), x ′(0) = x ′(T ) ,



(3) x ′′+ a x ′(t)+ f̃ (t , x) = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Lemma (Bonheure & De Coster, 2003)

ASSUME:

f̃ : [0, T ]×R→R is continuous,

σ1 and σ2 are lower and upper functions of (3),

σ2 < σ1 on [0, T ],

there is p continuous on [0, T ] such that

lim sup
x→−∞

f̃ (t , x) ≤ p(t) and lim sup
x→∞

f̃ (t , x)

x
≤ π2

T 2 uniformly in t ∈ [0, T ].

THEN: problem (3) has a solution x such that

σ2(t1)≤ x(t1) ≤ σ1(t1) for some t1 ∈ [0, T ].
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has a solution x such that σ2(t1)≤ x(t1) ≤ σ1(t1) for some t1 ∈ [0, T ].

STEP 5: We show that x ≥ δ for any solution x of (3).

Put u = x − δ. Then

u′′(t) + a u′(t) + λ∗ u(t) = h(t) for t ∈ [0, T ], u(0) = u(T ), u′(0) = u′(T ),

where
h(t) := λ∗ (x(t)− δ)− f̃ (t , x(t))≥0 on [0, T ]

due to STEP 3 and due to our assumption λ∗=
( π

T

)2
+

a2

4
>λ0 =

(b+1) c2

4 e∗
.

Lemma (Omari & Trombetta, 1992)

ASSUME: a, λ∈R, 0 <λ≤
( π

T

)2
+

a2

4
, h : [0, T ]→R is continuous.

THEN: u′′+ a u′+λ u = h(t), u(0) = u(T ), u′(T ) = u′(T )

=⇒ u≥0 for all h≥0 on [0, T ].

Hence, u≥0 on [0, T ], i.e. x ≥ δ on [0, T ]. �
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(2) x ′′+a x ′(t)+f (t , x) = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Theorem 3
ASSUME:

f (t , x)= s(t) xβ − r(t) xα,

r , s are continuous and positive on [0, T ], 0 <α < β < 1,

THEN: (2) has a positive solution whenever

a2 is large enough or T is small enough.

Recall that for

(1) u′′+a u ′ =
1

u

�
e(t)− b (u′)2�− c , u(0) = u(T ), u ′(0) = u ′(T )

the sufficient condition reads as follows
(b + 1) c2

4 e∗
<
� π

T

�2
+

a2

4
.

To get a similar explicit bound also for (2), we need a good upper estimate for the roots of the
algebraic equation

λ x1−α− s∗ β xβ−α + r∗ α = 0 .
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Application of Krasnoselskii compresion/expansion theorem

(4) x ′′+a x ′+m2 x = 0, x(0)−x(T ), x ′(0) = x ′(T ) ,

where a≥ 0 and 0 < m2 <
� π

T

�2
+
�a

2

�2
.

Then (4) is non-resonant and possesses Green’s function Gm(t , s) such that

Gm(t , s) > 0 for all t , s∈ [0, T ],Z T

0
Gm(t , s) d s =

1

m2
,

there exists cm ∈ (0, 1) such that Gm(s, s)≥ cm G(t , s) for all t , s ∈ [0, T ].

Put P = {x ∈C[0, T ] : x(t)≥ 0 on [0, T ] and x(t)≥ cm ‖x‖ on [0, T ]}.

Krasnoselskii Fixed Point Theorem
Let P be a cone in X , Ω1 and Ω2 be bounded open sets in X such that 0∈Ω1 and Ω1⊂Ω2.
Let F : P ∩ (Ω2 \Ω1)→P be a completely continuous operator such that one of the following
conditions holds:

‖F x‖≥‖x‖ for x ∈P ∩ ∂Ω1 and ‖F x‖≤‖x‖ for x ∈P ∩ ∂Ω2,

‖F x‖≤‖x‖ for x ∈P ∩ ∂Ω1 and ‖F x‖≥‖x‖ for x ∈P ∩ ∂Ω2.

Then F has a fixed point in the set P ∩ (Ω2 \Ω1).



Application of Krasnoselskii compresion/expansion theorem
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(2) x ′′+a x ′+s(t) xβ− r(t) xα = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Theorem 4
ASSUME: a≥ 0, r , s ∈ C[0, T ], 0 < α < β < 1,

there exists m > 0, with m2 <
�

π
T

�2
+
� a

2

�2
, such that

r(t) xα − s(t) xβ + m2 x ≥ 0 for t ∈ [0, T ], x ≥ 0,

r∗ > 0 and s∗ > 0.

THEN: (2) has a positive solution.
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r∗ > 0 and s∗ > 0.

THEN: (2) has a positive solution.



Application of Krasnoselskii compresion/expansion theorem

(2) x ′′+a x ′+s(t) xβ− r(t) xα = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Corollary 1
ASSUME: a≥ 0, r , s ∈ C[0, T ], 0 < α < β < 1.

r∗ > 0 and s∗ > 0,

s∗ < min{
� π

T

�2
+
�a

2

�2
, r∗}.

THEN: (2) has a positive solution.

(1) u′′+a u ′ =
1

u

�
e(t)− b (u′)2�− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

Corollary 2=Theorem 3
ASSUME:

a ≥ 0, b > 1, c > 0,

e is continuous and T-periodic on R, e∗ > 0,

(b + 1) c2

4 e∗
<
� π

T

�2
+

a2

4
.

THEN: (1) has a positive solution.



Asymptotic stability

(2) x ′′+a x ′(t)+f (t , x) = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Lemma (Omari & Njoku, 2003)

ASSUME: a > 0,

σ1 is a strict lower function, σ2 is a strict upper function of (2) and

σ2 <σ1 on [0, T ].

∂

∂ x
f (t , x)≤

( π

T

)2
+

a2

4
for t ∈ [0, T ], x ∈ [σ2(t), σ1(t)],

there is a continuous γ : [0, T ]→ [0,∞) such that γ̄ > 0 and

∂

∂ x
f (t , x)≥ γ(t) for t ∈ [0, T ], x ∈ [σ2(t), σ1(t)].

Then (2) has at least one asymptotically stable T -periodic solution x
fulfilling

σ2 ≤ x ≤ σ1 on [0, T ] .



(2) x ′′+a x ′(t)+f (t , x) = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Theorem 5
ASSUME: a > 0, f (t , x)= s(t) xβ − r(t) xα,

r , s are continuous and positive on [0, T ], 0 <α < β< 1,

β s∗
(

s∗

r∗

)(1−β)/(β−α)

−α r∗
(s∗

r∗

)(1−α)/(β−α)

<
( π

T

)2
+

a2

4
,

α

β

r∗

s∗
<

r∗
s∗

.

THEN: (2) has at least one asymptotically stable positive solution.

(1) u′′+a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T )

Corollary
(1) has at least one asymptotically stable positive solution if

c2 (b (e∗)2− (b−1) (e∗)2)

e∗ (e∗)2 <
( π

T

)2
+

a2

4
and (b−1) e∗< b e∗.



(2) x ′′+a x ′(t)+f (t , x) = 0 , x(0) = x(T ), x ′(0) = x ′(T )

Theorem 5
ASSUME: a > 0, f (t , x)= s(t) xβ − r(t) xα,

r , s are continuous and positive on [0, T ], 0 <α < β< 1,

β s∗
(

s∗

r∗

)(1−β)/(β−α)

−α r∗
(s∗

r∗

)(1−α)/(β−α)

<
( π

T

)2
+

a2

4
,

α

β

r∗

s∗
<

r∗
s∗

.

THEN: (2) has at least one asymptotically stable positive solution.

(1) u′′+a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T )

Corollary
(1) has at least one asymptotically stable positive solution if

c2 (b (e∗)2− (b−1) (e∗)2)

e∗ (e∗)2 <
( π

T

)2
+

a2

4
and (b−1) e∗< b e∗.



Concluding remarks

ē > 0 (i.e. p̄ < g ρ
V0

AT
) is the necessary condition for the existence

of a positive T -periodic solution.

e∗> 0 (i.e. p∗< g ρ
V0

AT
) is needed in the sufficient condition for the

existence of a positive T -periodic solution.

By Theorem 3,

(b+1) c2

4 e∗
<

( π

T

)2
+

a2

4
=⇒ existence of a positive T -periodic solution.

By Theorem 5,

c2 (b (e∗)2− (b−1) (e∗)2)

e∗ (e∗)2 <
( π

T

)2
+

a2

4
and (b−1) e∗< b e∗

=⇒ existence of a positive and asymptotically
stable T -periodic solution.
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ē > 0 (i.e. p̄ < g ρ
V0

AT
) is the necessary condition for the existence

of a positive T -periodic solution.

e∗> 0 (i.e. p∗< g ρ
V0

AT
) is needed in the sufficient condition for the

existence of a positive T -periodic solution.

By Theorem 3,

(b+1) c2

4 e∗
<

( π

T

)2
+

a2

4
=⇒ existence of a positive T -periodic solution.

By Theorem 5,

c2 (b (e∗)2− (b−1) (e∗)2)

e∗ (e∗)2 <
( π

T

)2
+

a2

4
and (b−1) e∗< b e∗

=⇒ existence of a positive and asymptotically
stable T -periodic solution.



Concluding remarks

ē > 0 (i.e. p̄ < g ρ
V0

AT
) is the necessary condition for the existence

of a positive T -periodic solution.

e∗> 0 (i.e. p∗< g ρ
V0

AT
) is needed in the sufficient condition for the

existence of a positive T -periodic solution.

If b = 2, c = 1/2, then by Theorem 3,(( π

T

)2
+

a2

4

) (
p∗−g ρ

V0

AT

)
>

3
16

=⇒ existence

and by Theorem 5,

2 (e∗)2− (e∗)2 < 4
(( π

T

)2
+

a2

4

)
and

e∗

e∗
<

b
b−1

= 2

=⇒ existence and asymptotic
stability .



References

J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank
flow configuration with friction. Physica D 273-274 (2014), 28-33.

G. Liebau : Über ein ventilloses Pumpprinzip. Naturwissenschaften 41
(1954), 327.

G. Propst : Pumping effects in models of periodically forced flow
configurations. Physica D 217 (2006), 193–201.

D. Bonheure and C. De Coster . Forced singular oscillators and the
method of lower and upper solutions, Topological Methods in Nonlinear
Analysis 22 (2003), 297–317.

F.I. Njoku & P. Omari . Stability properties of periodic solutions of a
Duffing equation in the presence of lower and upper solutions. Appl.
Math. Comput. 135 (2003), 471–490.

P. Omari & M. Trombetta . Remarks on the lower and upper solutions
method for the second and third-order periodic boundary value
problems. Appl. Math. Comput. 50 (1992), 1–21.



References

J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank
flow configuration with friction. Physica D 273-274 (2014), 28-33.

G. Liebau : Über ein ventilloses Pumpprinzip. Naturwissenschaften 41
(1954), 327.

G. Propst : Pumping effects in models of periodically forced flow
configurations. Physica D 217 (2006), 193–201.

D. Bonheure and C. De Coster . Forced singular oscillators and the
method of lower and upper solutions, Topological Methods in Nonlinear
Analysis 22 (2003), 297–317.

F.I. Njoku & P. Omari . Stability properties of periodic solutions of a
Duffing equation in the presence of lower and upper solutions. Appl.
Math. Comput. 135 (2003), 471–490.

P. Omari & M. Trombetta . Remarks on the lower and upper solutions
method for the second and third-order periodic boundary value
problems. Appl. Math. Comput. 50 (1992), 1–21.



References

J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank
flow configuration with friction. Physica D 273-274 (2014), 28-33.

G. Liebau : Über ein ventilloses Pumpprinzip. Naturwissenschaften 41
(1954), 327.

G. Propst : Pumping effects in models of periodically forced flow
configurations. Physica D 217 (2006), 193–201.

D. Bonheure and C. De Coster . Forced singular oscillators and the
method of lower and upper solutions, Topological Methods in Nonlinear
Analysis 22 (2003), 297–317.

F.I. Njoku & P. Omari . Stability properties of periodic solutions of a
Duffing equation in the presence of lower and upper solutions. Appl.
Math. Comput. 135 (2003), 471–490.

P. Omari & M. Trombetta . Remarks on the lower and upper solutions
method for the second and third-order periodic boundary value
problems. Appl. Math. Comput. 50 (1992), 1–21.



JOAN MIRÓ. The man with a pipe. 1925.



GUSTAVE COURBAT. The man with a pipe. 1849.



JAMES MCNEILL WHISTLER. The man with a pipe. 1859.



PAUL CÉZANNE. The man with a pipe. 1892.



PABLO PICASSO. The man with a pipe. 1915.



JOAN MIRÓ. The man with a pipe. 1928.



ROYALTY FREE STOCK PHOTO. The man with a pipe. 1954.


	1. Periodically forced pumps
	3. First observations
	4. Existence of a periodic solution
	5. Asymptotic stability
	6. Concluding remarks
	References

