On the pumping effect in a pipe/tank flow configuration with friction

Milan Tvrdý
jointly with José Angel Cid and Georg Propst
Institute of Mathematics
Academy of Sciences of the Czech Republic

Malá Morávka, March 2014

Definition

Let $T>0, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and let $e: \mathbb{R} \rightarrow \mathbb{R}$ be nonconstant and T-periodic. Then the equation

$$
x^{\prime \prime}=g\left(x, x^{\prime}, e(t)\right)
$$

generates a T-periodically forced pump if it has a T-periodic solution x such that

$$
g(\bar{x}, 0, \bar{e}) \neq 0
$$

(i.e. the mean value \bar{x} of x is not an equilibrium of $\quad x^{\prime \prime}=g\left(x, x^{\prime}, \bar{e}\right)$.

1 tank - 1 pipe model

G. Propst: Pumping effects in models of periodically forced flow configurations.

Physica D 217 (2006), 193-201.

$$
A_{P} \ell(t)+A_{T} h(t) \equiv V_{0} \quad \Longrightarrow \quad h(t) \equiv \frac{1}{A_{T}}\left(V_{0}-A_{P} \ell(t)\right) .
$$

Momentum balance with Poiseuille's law and Bernoulli's equation

G. Propst: Pumping effects in models of periodically forced flow configurations.

Physica D 217 (2006), 193-201.

ρ	\ldots density of the liquid (constant)
$p(t)$	\ldots periodic pressure
g	\ldots acceleration of gravity
r_{0}	\ldots friction coefficient
ζ	\ldots junction coefficient
A_{P} / A_{T}	\ldots cross sections of pipe/tank
V_{0}	\ldots constant total volume of liquid
$w=-\ell^{\prime}$	\ldots velocity in the pipe

$$
A_{P} \ell(t)+A_{T} h(t) \equiv V_{0} \quad \Longrightarrow \quad h(t) \equiv \frac{1}{A_{T}}\left(V_{0}-A_{P} \ell(t)\right)
$$

Momentum balance with Poiseuille's law and Bernoulli's equation \Longrightarrow

$$
\ell \ell^{\prime \prime}+a \ell \ell^{\prime}+b\left(\ell^{\prime}\right)^{2}+c \ell=e(t)
$$

where

$$
\begin{aligned}
& T>0, \quad a=\frac{r_{0}}{\rho}>0, \quad b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2 \\
& e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho} \text { is } T \text {-periodic, } \quad 0<c=\frac{g A_{p}}{A_{T}}<1 .
\end{aligned}
$$

First observations

This leads to singular periodic problem:
(1) $u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,
$T>0, a=\frac{r_{0}}{\rho} \geq 0, b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2,0<c=\frac{g A_{p}}{A_{T}}<1, e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho}$.

First observations

This leads to singular periodic problem:
(1) $u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,
$T>0, a=\frac{r_{0}}{\rho} \geq 0, b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2, \quad 0<c=\frac{g A_{p}}{A_{T}}<1, e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho}$.

Multiplying the equation by u and integrating over $[0, T]$ gives

THEOREM 1

(1) has a positive solution only if $\bar{e} \geq 0$ (i.e. $\left.\bar{p} \leq \rho g \frac{V_{0}}{A_{T}}\right)$.

First observations

This leads to singular periodic problem:
(1) $u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,
$T>0, a=\frac{r_{0}}{\rho} \geq 0, b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2, \quad 0<c=\frac{g A_{p}}{A_{T}}<1, e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho}$.

Multiplying the equation by u and integrating over $[0, T]$ gives

THEOREM 1

(1) has a positive solution only if $\bar{e} \geq 0$ (i.e. $\left.\bar{p} \leq \rho g \frac{V_{0}}{A_{T}}\right)$.

THEOREM 2

If (1) has a positive solution, then its generates a T-periodically forced pump.

Existence of a periodic solution

(1) $\quad u^{\prime \prime}+$
Theorem 3

Assume:

- $a \geq 0, \quad b>1, \quad c>0$,
- e is continuous and T-periodic on $\mathbb{R}, e_{*}>0$,
- $\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$.

THEN: (1) has a positive solution.

Existence of a periodic solution

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

Theorem 3

Assume:

- $a \geq 0, \quad b>1, \quad c>0$,
- e is continuous and T-periodic on $\mathbb{R}, e_{*}>0$,
- $\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$.

THEN: (1) has a positive solution.

Definition

A T-periodic function $\sigma_{1} \in C^{2}[0, T]$ is a lower function for

$$
u^{\prime \prime}+a u^{\prime}+f(t, u)=0 \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
$$

if

$$
\sigma_{1}^{\prime \prime}(t)+a \sigma_{1}^{\prime}(t)+f\left(t, \sigma_{1}(t)\right) \geq 0 \quad \text { for } t \in[0, T]
$$

while an upper function is defined analogously, but with reversed inequality.

Sketch of the proof

STEP 1:

(1) $u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,
$x=u^{1 / \mu}, \mu=\frac{1}{b+1} \Longrightarrow$
(1) \rightsquigarrow
(2) $\quad x^{\prime \prime}+a x^{\prime}(t)+s(t) x^{\beta}-r(t) x^{\alpha}=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$,
where

$$
r(t)=\frac{e(t)}{\mu}, \quad s(t)=\frac{c}{\mu}, \alpha=1-2 \mu, \beta=1-\mu .
$$

Proposition

$u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of (2).

Sketch of the proof

STEP 1:

(1) $u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,
$x=u^{1 / \mu}, \mu=\frac{1}{b+1} \Longrightarrow$
(1) \rightsquigarrow
(2) $\quad x^{\prime \prime}+a x^{\prime}(t)+s(t) x^{\beta}-r(t) x^{\alpha}=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$,
where

$$
r(t)=\frac{e(t)}{\mu}, \quad s(t)=\frac{c}{\mu}, \alpha=1-2 \mu, \beta=1-\mu .
$$

Proposition

$u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of (2).
We have:

$$
r_{*}>0, s_{*}>0, \quad 0<\alpha<\beta<1
$$

(2) $x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$, where $f(t, x)=s(t) x^{\beta}-r(t) x^{\beta}$.

STEP 2: We have

$$
\begin{aligned}
& f(t, x)<0 \text { for } t \in[0, T] \text { and } 0<x<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)} \\
& f(t, x)>0 \text { for } t \in[0, T] \text { and } \quad x>x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}
\end{aligned}
$$

Thus, there are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}<x_{1}<\sigma_{1} .
$$

(2) $x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$, where $f(t, x)=s(t) x^{\beta}-r(t) x^{\beta}$.

STEP 2: We have

$$
\begin{aligned}
& f(t, x)<0 \text { for } t \in[0, T] \text { and } 0<x<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)} \\
& f(t, x)>0 \text { for } t \in[0, T] \text { and } \quad x>x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}
\end{aligned}
$$

Thus, there are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}<x_{1}<\sigma_{1}
$$

STEP 3: We put $\lambda_{0}=\frac{(b+1) c^{2}}{4 e_{*}}$ and show that there is $\delta_{0} \in\left(0, \sigma_{2}\right)$ such that

$$
\lambda(x-\delta)-f(t, x) \geq 0 \text { for } t \in[0, T], \delta \in\left(0, \delta_{0}\right), \lambda \geq \lambda_{0} \quad \text { and } \quad x \in[\delta, \infty)
$$

(2) $x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$, where $f(t, x)=s(t) x^{\beta}-r(t) x^{\beta}$.

STEP 2: We have

$$
\begin{aligned}
& f(t, x)<0 \text { for } t \in[0, T] \text { and } 0<x<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)} \\
& f(t, x)>0 \text { for } t \in[0, T] \text { and } \quad x>x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}
\end{aligned}
$$

Thus, there are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}<x_{1}<\sigma_{1}
$$

STEP 3: We put $\lambda_{0}=\frac{(b+1) c^{2}}{4 e_{*}}$ and show that there is $\delta_{0} \in\left(0, \sigma_{2}\right)$ such that

$$
\lambda(x-\delta)-f(t, x) \geq 0 \text { for } t \in[0, T], \delta \in\left(0, \delta_{0}\right), \lambda \geq \lambda_{0} \quad \text { and } \quad x \in[\delta, \infty)
$$

$$
\lambda x-f(t, x) \geq x^{1-2 \mu}\left(\lambda x^{2 \mu}-s^{*} x^{\mu}+r_{*}\right)
$$

(2) $x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$, where $f(t, x)=s(t) x^{\beta}-r(t) x^{\beta}$.

STEP 2: We have

$$
\begin{aligned}
& f(t, x)<0 \text { for } t \in[0, T] \text { and } 0<x<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)}, \\
& f(t, x)>0 \text { for } t \in[0, T] \text { and } \quad x>x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}
\end{aligned}
$$

Thus, there are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}<x_{1}<\sigma_{1} .
$$

STEP 3: We put $\lambda_{0}=\frac{(b+1) c^{2}}{4 e_{*}}$ and show that there is $\delta_{0} \in\left(0, \sigma_{2}\right)$ such that

$$
\lambda(x-\delta)-f(t, x) \geq 0 \text { for } t \in[0, T], \delta \in\left(0, \delta_{0}\right), \lambda \geq \lambda_{0} \quad \text { and } \quad x \in[\delta, \infty)
$$

STEP 4: Choose $\delta \in\left(0, \delta_{0}\right)$, define $\lambda^{*}=\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$ and

$$
\tilde{f}(t, x)=\left\{\begin{array}{lr}
f(t, \delta)+\lambda^{*}(x-\delta) & \text { for } x<\delta \\
f(t, x) & \text { for } x \geq \delta
\end{array}\right.
$$

and consider auxiliary problem

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+\tilde{f}(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+\widetilde{f}(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{3}
\end{equation*}
$$

Lemma (Bonheure \& De Coster, 2003)

ASSUME:

- $\tilde{f}:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous,
- σ_{1} and σ_{2} are lower and upper functions of (3),
- $\sigma_{2}<\sigma_{1}$ on $[0, T]$,
- there is p continuous on $[0, T]$ such that
$\limsup _{x \rightarrow-\infty} \tilde{f}(t, x) \leq p(t)$ and $\limsup _{x \rightarrow \infty} \frac{\tilde{f}(t, x)}{x} \leq \frac{\pi^{2}}{T^{2}}$ uniformly in $t \in[0, T]$.
THEN: problem (3) has a solution x such that

$$
\sigma_{2}\left(t_{1}\right) \leq x\left(t_{1}\right) \leq \sigma_{1}\left(t_{1}\right) \text { for some } t_{1} \in[0, T] .
$$

(3) $\quad x^{\prime \prime}+a x^{\prime}(t)+\tilde{f}(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$
has a solution x such that $\sigma_{2}\left(t_{1}\right) \leq x\left(t_{1}\right) \leq \sigma_{1}\left(t_{1}\right)$ for some $t_{1} \in[0, T]$.
STEP 5: We show that $x \geq \delta$ for any solution x of (3).
(3) $\quad x^{\prime \prime}+a x^{\prime}(t)+\tilde{f}(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$
has a solution x such that $\sigma_{2}\left(t_{1}\right) \leq x\left(t_{1}\right) \leq \sigma_{1}\left(t_{1}\right)$ for some $t_{1} \in[0, T]$.
STEP 5: We show that $x \geq \delta$ for any solution x of (3).
Put $u=x-\delta$. Then

$$
u^{\prime \prime}(t)+a u^{\prime}(t)+\lambda^{*} u(t)=h(t) \text { for } t \in[0, T], u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
$$

where

$$
h(t):=\lambda^{*}(x(t)-\delta)-\tilde{f}(t, x(t)) \geq 0 \text { on }[0, T]
$$

due to STEP 3 and due to our assumption $\lambda^{*}=\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}>\lambda_{0}=\frac{(b+1) c^{2}}{4 e_{*}}$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+\tilde{f}(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{3}
\end{equation*}
$$

has a solution x such that $\sigma_{2}\left(t_{1}\right) \leq x\left(t_{1}\right) \leq \sigma_{1}\left(t_{1}\right)$ for some $t_{1} \in[0, T]$.
STEP 5: We show that $x \geq \delta$ for any solution x of (3).
Put $u=x-\delta$. Then

$$
u^{\prime \prime}(t)+a u^{\prime}(t)+\lambda^{*} u(t)=h(t) \text { for } t \in[0, T], u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
$$

where

$$
h(t):=\lambda^{*}(x(t)-\delta)-\tilde{f}(t, x(t)) \geq 0 \text { on }[0, T]
$$

due to STEP 3 and due to our assumption $\lambda^{*}=\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}>\lambda_{0}=\frac{(b+1) c^{2}}{4 e_{*}}$.

Lemma (Omari \& Trombetta, 1992)

ASSUME: $a, \lambda \in \mathbb{R}, 0<\lambda \leq\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}, h:[0, T] \rightarrow \mathbb{R}$ is continuous.
THEN: $\quad u^{\prime \prime}+a u^{\prime}+\lambda u=h(t), \quad u(0)=u(T), u^{\prime}(T)=u^{\prime}(T)$
$\Longrightarrow \quad u \geq 0$ for all $h \geq 0$ on $[0, T]$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+\tilde{f}(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{3}
\end{equation*}
$$

has a solution x such that $\sigma_{2}\left(t_{1}\right) \leq x\left(t_{1}\right) \leq \sigma_{1}\left(t_{1}\right)$ for some $t_{1} \in[0, T]$.
STEP 5: We show that $x \geq \delta$ for any solution x of (3).
Put $u=x-\delta$. Then

$$
u^{\prime \prime}(t)+a u^{\prime}(t)+\lambda^{*} u(t)=h(t) \text { for } t \in[0, T], u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
$$

where

$$
h(t):=\lambda^{*}(x(t)-\delta)-\tilde{f}(t, x(t)) \geq 0 \text { on }[0, T]
$$

due to STEP 3 and due to our assumption $\lambda^{*}=\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}>\lambda_{0}=\frac{(b+1) c^{2}}{4 e_{*}}$.

Lemma (Omari \& Trombetta, 1992)

ASSUME: $a, \lambda \in \mathbb{R}, 0<\lambda \leq\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}, h:[0, T] \rightarrow \mathbb{R}$ is continuous.
THEN: $\quad u^{\prime \prime}+a u^{\prime}+\lambda u=h(t), \quad u(0)=u(T), u^{\prime}(T)=u^{\prime}(T)$
$\Longrightarrow \quad u \geq 0$ for all $h \geq 0$ on $[0, T]$.
Hence, $u \geq 0$ on $[0, T]$, i.e. $x \geq \delta$ on $[0, T]$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0 \tag{2}
\end{equation*}
$$

$$
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

Theorem 3

Assume:

- $f(t, x)=s(t) x^{\beta}-r(t) x^{\alpha}$,
- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,

THEN: (2) has a positive solution whenever
a^{2} is large enough or T is small enough.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \tag{2}
\end{equation*}
$$

$$
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

Theorem 3

Assume:

- $f(t, x)=s(t) x^{\beta}-r(t) x^{\alpha}$,
- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,

THEN: (2) has a positive solution whenever a^{2} is large enough or T is small enough.

Recall that for

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

the sufficient condition reads as follows

$$
\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}
$$

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \tag{2}
\end{equation*}
$$

$$
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

Theorem 3

Assume:

- $f(t, x)=s(t) x^{\beta}-r(t) x^{\alpha}$,
- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,

THEN: (2) has a positive solution whenever a^{2} is large enough or T is small enough.

Recall that for

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

the sufficient condition reads as follows

$$
\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} .
$$

To get a similar explicit bound also for (2), we need a good upper estimate for the roots of the algebraic equation

$$
\lambda x^{1-\alpha}-s^{*} \beta x^{\beta-\alpha}+r_{*} \alpha=0 .
$$

Application of Krasnoselskii compresion/expansion theorem

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, \quad x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \tag{4}
\end{equation*}
$$

where

$$
a \geq 0 \quad \text { and } \quad 0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2} .
$$

Then (4) is non-resonant and possesses Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- $\int_{0}^{T} G_{m}(t, s) d s=\frac{1}{m^{2}}$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G(t, s)$ for all $t, s \in[0, T]$.

Put $P=\left\{x \in C[0, T]: x(t) \geq 0\right.$ on $[0, T]$ and $x(t) \geq c_{m}\|x\|$ on $\left.[0, T]\right\}$.

Krasnoselskii Fixed Point Theorem

Let P be a cone in X, Ω_{1} and Ω_{2} be bounded open sets in X such that $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. Let $F: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ be a completely continuous operator such that one of the following conditions holds:

- $\|F x\| \geq\|x\|$ for $x \in P \cap \partial \Omega_{1}$ and $\|F x\| \leq\|x\|$ for $x \in P \cap \partial \Omega_{2}$,
- $\|F x\| \leq\|x\|$ for $x \in P \cap \partial \Omega_{1}$ and $\|F x\| \geq\|x\|$ for $x \in P \cap \partial \Omega_{2}$.

Then F has a fixed point in the set $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

Application of Krasnoselskii compresion/expansion theorem

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, \quad x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \tag{4}
\end{equation*}
$$

where $\quad a \geq 0$ and $0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}$.
Then (4) is non-resonant and possesses Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- $\int_{0}^{T} G_{m}(t, s) d s=\frac{1}{m^{2}}$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G(t, s)$ for all $t, s \in[0, T]$.

Put $P=\left\{x \in C[0, T]: x(t) \geq 0\right.$ on $[0, T]$ and $x(t) \geq c_{m}\|x\|$ on $\left.[0, T]\right\}$.

Application of Krasnoselskii compresion/expansion theorem

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, \quad x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \tag{4}
\end{equation*}
$$

where

$$
a \geq 0 \quad \text { and } 0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2} .
$$

Then (4) is non-resonant and possesses Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- $\int_{0}^{T} G_{m}(t, s) d s=\frac{1}{m^{2}}$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G(t, s)$ for all $t, s \in[0, T]$.

Put $P=\left\{x \in C[0, T]: x(t) \geq 0\right.$ on $[0, T]$ and $x(t) \geq c_{m}\|x\|$ on $\left.[0, T]\right\}$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+s(t) x^{\beta}-r(t) x^{\alpha}=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{2}
\end{equation*}
$$

Theorem 4

Assume: $a \geq 0, r, s \in C[0, T], 0<\alpha<\beta<1$,

- there exists $m>0$, with $m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}$, such that

$$
r(t) x^{\alpha}-s(t) x^{\beta}+m^{2} x \geq 0 \quad \text { for } t \in[0, T], x \geq 0
$$

- $r_{*}>0$ and $s_{*}>0$.

THEN: (2) has a positive solution.

Application of Krasnoselskii compresion/expansion theorem

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+s(t) x^{\beta}-r(t) x^{\alpha}=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{2}
\end{equation*}
$$

Corollary 1

ASSUME: $a \geq 0, r, s \in C[0, T], 0<\alpha<\beta<1$.

- $r_{*}>0$ and $s_{*}>0$,
- $s^{*}<\min \left\{\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}, r_{*}\right\}$.

THEN: (2) has a positive solution.

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

Corollary 2=Theorem 3

ASSUME:

- $a \geq 0, \quad b>1, \quad c>0$,
- e is continuous and T-periodic on $\mathbb{R}, e_{*}>0$,
- $\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$.

THEN: (1) has a positive solution.

Asymptotic stability

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{2}
\end{equation*}
$$

Lemma (Omari \& Njoku, 2003)
ASSUME: $\quad a>0$,

- σ_{1} is a strict lower function, σ_{2} is a strict upper function of (2) and $\sigma_{2}<\sigma_{1}$ on $[0, T]$.
- $\frac{\partial}{\partial x} f(t, x) \leq\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} \quad$ for $t \in[0, T], x \in\left[\sigma_{2}(t), \sigma_{1}(t)\right]$,
- there is a continuous $\gamma:[0, T] \rightarrow[0, \infty)$ such that $\bar{\gamma}>0$ and

$$
\frac{\partial}{\partial x} f(t, x) \geq \gamma(t) \quad \text { for } t \in[0, T], x \in\left[\sigma_{2}(t), \sigma_{1}(t)\right]
$$

Then (2) has at least one asymptotically stable T-periodic solution x fulfilling

$$
\sigma_{2} \leq x \leq \sigma_{1} \quad \text { on }[0, T]
$$

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0 \tag{2}
\end{equation*}
$$

$$
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

Theorem 5

ASSUME: $a>0, f(t, x)=s(t) x^{\beta}-r(t) x^{\alpha}$,

- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,
- $\beta s^{*}\left(\frac{s^{*}}{r_{*}}\right)^{(1-\beta) /(\beta-\alpha)}-\alpha r_{*}\left(\frac{s_{*}}{r^{*}}\right)^{(1-\alpha) /(\beta-\alpha)}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$,
- $\frac{\alpha}{\beta} \frac{r^{*}}{s_{*}}<\frac{r_{*}}{s^{*}}$.

THEN: (2) has at least one asymptotically stable positive solution.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)+f(t, x)=0 \tag{2}
\end{equation*}
$$

$$
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

Theorem 5

ASSUME: $a>0, f(t, x)=s(t) x^{\beta}-r(t) x^{\alpha}$,

- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,
- $\beta s^{*}\left(\frac{s^{*}}{r_{*}}\right)^{(1-\beta) /(\beta-\alpha)}-\alpha r_{*}\left(\frac{s_{*}}{r^{*}}\right)^{(1-\alpha) /(\beta-\alpha)}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$,
- $\frac{\alpha}{\beta} \frac{r^{*}}{s_{*}}<\frac{r_{*}}{s^{*}}$.

THEN: (2) has at least one asymptotically stable positive solution.

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

Corollary

(1) has at least one asymptotically stable positive solution if

$$
\frac{c^{2}\left(b\left(e^{*}\right)^{2}-(b-1)\left(e_{*}\right)^{2}\right)}{e_{*}\left(e^{*}\right)^{2}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} \quad \text { and } \quad(b-1) e^{*}<b e_{*} .
$$

Concluding remarks

- $\bar{e}>0$ (i.e. $\bar{p}<g \rho \frac{V_{0}}{A_{T}}$) is the necessary condition for the existence of a positive T-periodic solution.
$e_{*}>0$ (i.e. $p^{*}<g \rho \frac{V_{0}}{A_{T}}$) is needed in the sufficient condition for the existence of a positive T-periodic solution.

Concluding remarks

- $\bar{e}>0$ (i.e. $\bar{p}<g \rho \frac{V_{0}}{A_{T}}$) is the necessary condition for the existence of a positive T-periodic solution.
$e_{*}>0$ (i.e. $p^{*}<g \rho \frac{V_{0}}{A_{T}}$) is needed in the sufficient condition for the existence of a positive T-periodic solution.
- By Theorem 3,

$$
\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} \Longrightarrow \text { existence of a positive } T \text {-periodic solution. }
$$

By Theorem 5,

$$
\begin{aligned}
& \frac{c^{2}\left(b\left(e^{*}\right)^{2}-(b-1)\left(e_{*}\right)^{2}\right)}{e_{*}\left(e^{*}\right)^{2}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} \quad \text { and } \quad(b-1) e^{*}<b e_{*} \\
& \Longrightarrow \text { existence of a positive and asymptotically } \\
& \text { stable } T \text {-periodic solution. }
\end{aligned}
$$

Concluding remarks

- $\bar{e}>0$ (i.e. $\bar{p}<g \rho \frac{V_{0}}{A_{T}}$) is the necessary condition for the existence of a positive T-periodic solution.
$e_{*}>0$ (i.e. $p^{*}<g \rho \frac{V_{0}}{A_{T}}$) is needed in the sufficient condition for the existence of a positive T-periodic solution.
- If $b=2, c=1 / 2$, then by Theorem 3,
$\left(\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}\right)\left(p^{*}-g \rho \frac{V_{0}}{A_{T}}\right)>\frac{3}{16} \Longrightarrow$ existence
and by Theorem 5,
$2\left(e^{*}\right)^{2}-\left(e_{*}\right)^{2}<4\left(\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}\right)$ and $\quad \frac{e^{*}}{e_{*}}<\frac{b}{b-1}=2$
\Longrightarrow existence and asymptotic stability.
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.
- G. Liebau: Über ein ventilloses Pumpprinzip. Naturwissenschaften 41 (1954), 327.
- G. Propst: Pumping effects in models of periodically forced flow configurations. Physica D 217 (2006), 193-201.
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.
- G. Liebau: Über ein ventilloses Pumpprinzip. Naturwissenschaften 41 (1954), 327.
- G. Propst: Pumping effects in models of periodically forced flow configurations. Physica D 217 (2006), 193-201.
- D. Bonheure and C. De Coster. Forced singular oscillators and the method of lower and upper solutions, Topological Methods in Nonlinear Analysis 22 (2003), 297-317.
- F.I. Njoku \& P. Omari. Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions. Appl. Math. Comput. 135 (2003), 471-490.
- P. Omari \& M. Trombetta. Remarks on the lower and upper solutions method for the second and third-order periodic boundary value problems. Appl. Math. Comput. 50 (1992), 1-21.

JoAn Miró. The man with a pipe. 1925.

Gustave Courbat. The man with a pipe. 1849.

James McNeill Whistler. The man with a pipe. 1859.

Paul Cézanne. The man with a pipe. 1892.

Pablo Picasso. The man with a pipe. 1915.

Royalty Free Stock Photo. The man with a pipe. 1954.

