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Periodically forced pumps

LetT >0, g:R® =R andlet e:R — R be nonconstant and T -periodic.
Then the equation

x" =g(x,x’,e(t))

generates a T -periodically forced pump if it has a T -periodic solution x
such that

9(%,0,8) #0

(i.e. the mean value X of x is notan equilibrium of x” = g(x,x’,€).




1 tank - 1 pipe model

G. Propst : Pumping effects in models of periodically forced flow configurations.
Physica D 217 (2006), 193-201.

. density of the liquid (constant)

P ..
p(t) ... periodic pressure

g . acceleration of gravity

ro ... friction coefficient

¢ ... junction coefficient

Ap /AT ... cross sections of pipe/tank
Vo ... constant total volume of liquid
w = —¢’ ... velocity in the pipe

Momentum balance with Poiseuille’s law and Bernoulli's equation
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First observations

This leads to singular periodic problem:

(1) u”+au’:%(e(t)—b(u’)z)—c, u(0) = u(T), u’(0) =u’(T),
_To (148 _9% _9Vo_p(t)
T>0, a_pzo,b_(l+2)23/2,0<0_ A <1, e(t)= A
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Multiplying the equation by u and integrating over [0, T] gives

(1) has a positive solutiononly if €>0 (i.e. p<pgz>).
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THEOREM 1
(1) has a positive solution only if >0 (i.e. p<pg AT)

|
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THEOREM 2
If (1) has a positive solution, then its generates a T -periodically forced

pump.
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Existence of a periodic solution

(1) u’+au’ = % (e(t)—b(u)?) —c, u(0)=u(T), u’(0)=u’(T),

Theorem 3
ASSUME:

@a>0 b>1 <c¢>0,

@ e is continuous and T-periodic on R, e, > 0,
2 2 2

o (b+1)c - (1) a

de, T) vt 2

THEN: (1) has a positive solution.




Existence of a periodic solution

(1) u’+au’ = = (e(t)—b(u)?) —c, u(0)=u(T), u’(0)=u'(T),

Theorem 3
ASSUME:

|

@a>0 b>1 <c¢>0,
@ e is continuous and T-periodic on R, e, > 0,
o (b +1)c? (1)2 a?

de, T) vt 2

THEN: (1) has a positive solution.

Definition

A T-periodic function oy € C2[0,T] is a for

|

u” +au’ +f(t,u)y=0 u(0)=u(T), u’(0)=u’(T),
if
ol (t) +aoy(t) +f(t,o1(t)) >0 for t € [0,T],

while an is defined analogously, but with reversed inequality.
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Sketch of the proof

STEP 1:

(1) u’+au’ = % (e(t)—b(u)*) —c, u(0)=u(T), u’(0)=u’(T),
x=ur p=pH = (D)~

(2) X" +ax'(t) +st)x? —r(t)x* =0, x(0)=x(T), x’(0) =x'(T),
where

Proposition

u: [0, T]—R is a positive solution of (1) iff x=u'/# is a positive solution of (2).
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STEP 1:
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(2) X" +ax'(t) +st)x? —r(t)x* =0, x(0)=x(T), x’(0) =x'(T),

where

Proposition
u: [0, T]—R is a positive solution of (1) iff x=u'/# is a positive solution of (2).

We have:
r. >0,s,>0 O<a<p<l.



(2) x" +ax'(t)+f(t,x) =0, x(0)=x(T),x'(0)=x"(T), where f(t,x)=s(t)x? —r(t)x?.
STEP 2: We have

f(t,x) <0 for t€[0,T] and 0 < x < Xp = (r./s*)/ (=) |

f(t,x) >0 for t€[0,T] and X > X3 = (r*/s,)Y/ B

Thus, there are constant lower and upper functions o, and o, of (2) such that
0< oy <Xg<X1<o07.
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STEP 3: We put \g= and show that there is Jp € (0,0,) such that

A(x—68) —f(t,x) >0 for t€[0,T], §€(0,50), A>Xo and X €[, c0).
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(2) x"+ax/(t)+f(t,x) =0, x(0)=x(T), x"(0)=x"(T), where f(t,x)=s(t)x? —r(t)x?.

STEP 2: We have
f(t,x) <0 for t€[0,T] and 0 < X < Xg = (r./s*)/(F=a) |
f(t,x) >0 for te[0,T] and X > xg = (r*/s,)/B=2)

Thus, there are constant lower and upper functions o, and o, of (2) such that
0< oy <Xg<Xg<o07.

STEP 3: We put Ao = and show that there is dg € (0,0,) such that

A(x—8) —f(t,x) >0 for t€[0,T], §€(0,00), A>Xg and x €[4, c0).

and

SN

STEP 4: Choose § € (0,dg), define \* = (%)2 +

= f(t,0) + A* (x = 9) for x <4,
f(t =
(t:%) {f(nx) for x >§

and consider auxiliary problem

(3) X" +ax’(t)+f(t,x) =0, x(0) = x(T), x'(0) = x'(T),



(3) X" +ax'(t)+f(t,x) =0, x(0)=x(T), x'(0) =x'(T)

Lemma (Bonheure & De Coster, 2003)

ASSUME:
°f: [0,T] x R — R is continuous,
@ o1 and o, are lower and upper functions of (3),
@ 0, <oy on [0,T],
@ there is p continuous on [0, T] such that
limsup ?(t,x) <p(t) and limsup ( :X) < Z

™
X——00 X—00 T

uniformly in t € [0, T].

THEN: problem (3) has a solution x such that

o2(t1) <x(t1) < 01(t1) for some t; € [0, T].




(3) x"+ax'(t)+f(t,x) =0, x(0) =x(T), x'(0) =x"(T)
has a solution x such that o,(t;) <x(t1) < o1(t1) for some t; € [0,T].

STEP 5: We show that x > ¢ for any solution x of (3).



(3) x"+ax'(t)+f(t,x) =0, x(0) =x(T), x'(0) =x"(T)
has a solution x such that o,(t;) <x(t1) < o1(t1) for some t; € [0,T].
STEP 5: We show that x > ¢ for any solution x of (3).
Put u=x—4. Then

u”(t)+au’(t) + A*u(t) = h(t) forte[0,T], u(0)=u(T), u’(0)=u’(T),
where

due to STEP 3 and due to our assumption
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Lemma (omari & Trombetta, 1992)

m\2 a2 . .
ASSUME: a,AeR, 0<A< (_I—_) +Z’ h:[0,T]—R is continuous.
THEN: u’+au’+Au=h(t), u(0)=u(T), u(T)=u'(T)

= u>0 forall h>0 on [0,T].
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Lemma (omari & Trombetta, 1992)

m\2 a2 . .
ASSUME: a,AeR, 0<A< (_I—_) +Z’ h:[0,T]—R is continuous.
THEN: u’+au’+Au=h(t), u(0)=u(T), u(T)=u'(T)

= u>0 forall h>0 on [0,T].

Hence, u>0 on [0,T], i.e. x>4 on[0,T]. O



(2) x"+ax’(t)+f(t,x) =0, x(0) =x(T), x'(0) =x'(T)

Theorem 3
ASSUME:

@ f(t,x)=s(t)x? —r(t)x,
@ r,s are continuous and positive on [0, T[, 0<a< (<1,

THEN: (2) has a positive solution whenever

a® is large enough or T is small enough.




(2) x"+ax’(t)+f(t,x) =0, x(0) =x(T), x'(0) =x'(T)

Theorem 3
ASSUME:

@ f(t,x)=s(t)x? —r(t)x,
@ r,s are continuous and positive on [0, T[, 0<a< (<1,
THEN: (2) has a positive solution whenever

a® is large enough or T is small enough.

Recall that for

(6] u’+au’ == (e(t)—b(u")?) —c, u(0)=u(T), u’(0)=u’(T)

(=N

the sufficient condition reads as follows

(b+1)c? - (;)2 a?

4e, +T'
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Theorem 3
ASSUME:

@ f(t,x)=s(t)x? —r(t)x,
@ r,s are continuous and positive on [0, T[, 0<a< (<1,
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(6] u’+au’ == (e(t)—b(u")?) —c, u(0)=u(T), u’(0)=u’(T)

(=N

- - b+1)c? 2 a?
the sufficient condition reads as follows g < (W)

ze. ) T
To get a similar explicit bound also for (2), we need a good upper estimate for the roots of the
algebraic equation

AxIT —s*BxP- 4y a=0.



Application of Krasnoselskii compresion/expansion theorem

(4) x"+ax'+m?x =0, x(0)—x(T), x'(0) = x'(T)

where a>0 and 0<m?< (%)2+(g)2.

Then (4) is non-resonant and possesses Green's function Gm(t,s) such that
@ Gm(t,s)>0 forall t,se€[0,T],
T 1
° /0 Gm(t,s)ds=—,
@ there exists ¢m €(0,1) such that Gm(s,s) >cm G(t,s) forall t,s € [0,T].

Put P={xeC[0,T]:x(t)>00n[0,T] and x(t)>cm x| on[0,T]}.

Krasnoselskii Fixed Point Theorem

Let P be aconein X, ©Q; and Q, be bounded open sets in X such that 0€Q; and Q C Q.
Let F:P N (22 \ Q1) — P be a completely continuous operator such that one of the following
conditions holds:

@ ||F x| >|x]| for xePNAQ; and ||F x|| < ||x]|| for x € PNy,
@ ||Fx| <|x|| for x ePNAQ, and ||F x|| > ||x]| for x € P NOQy.

Then F has a fixed point in the set P N (22 \ Q1).




Application of Krasnoselskii compresion/expansion theorem

(4) x"+ax’+m?x =0, x(0)—x(T), x'(0) = x'(T)
2 a\ 2
> 2. (L 2.
where a>0 and 0<m < (T) +(2)
Then (4) is non-resonant and possesses Green'’s function Gm(t,s) such that
@ Gn(t,s)>0 forall t,se[0,T],
T 1
o Gm(t,s)ds=—,
[ entsjas=
@ there exists ¢m €(0,1) such that Gm(s,s)>cm G(t,s) forall t,s € [0,T].

Put P={xe€C[0,T]:x(t)>00n[0,T] and x(t)>cm|/x||on[0,T]}.



Application of Krasnoselskii compresion/expansion theorem

(4) x"+ax’+m?x =0, x(0)—x(T), x'(0) = x'(T)
2 (MY (3)?
where a>0 and 0<m < (T) +(2) .

Then (4) is non-resonant and possesses Green'’s function Gm(t,s) such that
@ Gn(t,s)>0 forall t,se[0,T],

T 1
o Gm(t,s)ds=—;
A m(7 ) mza
@ there exists ¢m €(0,1) such that Gm(s,s)>cm G(t,s) forall t,s € [0,T].
Put P={xe€C[0,T]:x(t)>00n[0,T] and x(t)>cm|/x||on[0,T]}.
2 x"+ax’+s{t)x? —r(t)x* =0, x(0) = x(T), x’(0) = x'(T)

Theorem 4
ASSUME: a>0, r,s € C[0,T], O<a<pf<1,

@ there exists m >0, with m2 < (Z)? + (2)?, such that
rit)x® —s(t)x? + m2x >0 for te[0,T], x>0,

@ r.>0ands, >0.

THEN: (2) has a positive solution.




Application of Krasnoselskii compresion/expansion theorem

2 x"+ax’+s{t)xP —r(t)x* =0, x(0) = x(T), x’(0) = x'(T)

ASSUME: a>0, r,s € C[0,T], O<a<fg<1.
@ r.>0 and s, >0,

@ s*< min{(%)z-i- (g)z, I}

THEN: (2) has a positive solution.

(1) u’+au’ =

(=N

(e(t) =b(u)?) —c, u(0)=u(T), u’'(0) =u'(T),

Corollary 2=Theorem 3
ASSUME:
@ a>0, b>1 c¢>0,
@ e is continuous and T-periodic on R, e, > 0,
b +1)c? m\2 a?
o BT (5)+%
THEN: (1) has a positive solution.




Asymptotic stability

(2) x"+ax'(t)+f(t,x) =0, x(0) = x(T), x’(0) =x'(T)

Lemma (omari & Njoku, 2003)

ASSUME: a>0,

@ o, is a strict lower function, o, is a strict upper function of (2) and
o, <01 on[0,T].
0 m™\2 a®
— < (= —

o f(tx)<(T) +5 for te[0,T], xefoa(t), oa(t)],

@ there is a continuous ~:[0,T]— [0,00) such that ¥ >0 and
0
8_xf(t’x) >~(t) forte[0,T], x € [o2(t), o1 (t)].

Then (2) has at least one asymptotically stable T -periodic solution x
fulfilling

o < X< o7 ON [O,T].




(2) x"4+ax’(t)+f(t,x) =0, x(0) =x(T), x'(0) =x'(T)

Theorem 5
AssumME: a>0, f(t,x)=s(t)x” —r(t)x?,

@ r,s are continuous and positive on [0, T], 0 < a < < 1,

o s () un ()" < () 5

r*

or*
ﬁs

THEN: (2) has at least one asymptotically stable positive solution.




(2) x"4+ax’(t)+f(t,x) =0, x(0) =x(T), x'(0) =x'(T)

Theorem 5
AsSSUME: a>0, f(t,x)=s(t)x” —r(t)x,

@ r,s are continuous and positive on [0, T], 0 < a < < 1,

o v () ) < (Y

(1) has at least one asymptotically stable positive solution if

c(b(e")2— (b—1)(e.)?) _ (1)2+3j (b—1)e*<be..

and

e. (e*)? T 4




Concluding remarks

- L Vo, . " .
@ée>0 (ie.p<gp A—O) is the necessary condition for the existence

T
of a positive T -periodic solution.

e, >0 (i.e. p*<gp A—O) is needed in the sufficient condition for the

.
existence of a positive T -periodic solution.



Concluding remarks

~ .o Vo, . " .
@ée>0 (ie.p<gp A—O) is the necessary condition for the existence
T
of a positive T -periodic solution.

e, >0 (e p*<gpA—°) is needed in the sufficient condition for the
T
existence of a positive T -periodic solution.
@ By Theorem 3,
b+1)c? 2 a?
(b+1)c® (ﬂ) .

Te 3 = existence of a positive T -periodic solution.

T

By Theorem 5,
c?(b(e”)?—(b—-1)(e.)’) _ (ﬂ)z ?

a *
e (e T +Z and (b—1)e*<be,

= existence of a positive and asymptotically
stable T -periodic solution.




Concluding remarks

_ L Vo, . " .
@e>0 (i.e.p<gp A—O) is the necessary condition for the existence
T
of a positive T -periodic solution.

e, >0 (i.e. p*<gp A—O) is needed in the sufficient condition for the
T
existence of a positive T -periodic solution.
@ Ifb=2,c=1/2,then by Theorem 3,

(E)ZJF"’LZ _gpJo) L 3 . existence
T 2 p QPAT 16

and by Theorem 5,
N2 _ (e )2 T2, a? e b
2(e*)*—(es) <4<(T> + 4> and e*<—b_1_2

— existence and asymptotic
stability .



References

@ J.A. Cid, G. Propst and M. Tvrdy: On the pumping effect in a pipe/tank
flow configuration with friction. Physica D 273-274 (2014), 28-33.



References

@ J.A. Cid, G. Propst and M. Tvrdy: On the pumping effect in a pipe/tank
flow configuration with friction. Physica D 273-274 (2014), 28-33.

@ G. Liebau : Uber ein ventilloses Pumpprinzip. Naturwissenschaften 41
(1954), 327.

@ G. Propst : Pumping effects in models of periodically forced flow
configurations. Physica D 217 (2006), 193-201.



References

@ J.A. Cid, G. Propst and M. Tvrdy: On the pumping effect in a pipe/tank
flow configuration with friction. Physica D 273-274 (2014), 28-33.

@ G. Liebau : Uber ein ventilloses Pumpprinzip. Naturwissenschaften 41
(1954), 327.

@ G. Propst : Pumping effects in models of periodically forced flow
configurations. Physica D 217 (2006), 193-201.

@ D. Bonheure and C. De Coster . Forced singular oscillators and the
method of lower and upper solutions, Topological Methods in Nonlinear
Analysis 22 (2003), 297-317.

@ F.I. Njoku & P. Omari . Stability properties of periodic solutions of a
Duffing equation in the presence of lower and upper solutions. Appl.
Math. Comput. 135 (2003), 471-490.

@ P. Omari & M. Trombetta . Remarks on the lower and upper solutions
method for the second and third-order periodic boundary value
problems. Appl. Math. Comput. 50 (1992), 1-21.



Q>



GUSTAVE COURBAT. The man with a pipe. 1849.



JAMES MCNEILL WHISTLER. The man with a pipe. 1859.




PAauL CEZANNE. The man with a pipe. 1892.



—aav.

PABLO PICASSO. The man with a pipe. 1915.



JOAN MIRG. The man with a pipe. 1928.



ROYALTY FREE STOCK PHOTO. The man with a pipe. 1954.



	1. Periodically forced pumps
	3. First observations
	4. Existence of a periodic solution
	5. Asymptotic stability
	6. Concluding remarks
	References

