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1. Motivation

A model for the time dependent flow of water transported in variably-saturated

porous medium with exponential diffusivity such as rock, soil or building materials

W. Brutsaert, Universal constants for scaling the exponential soil water diffusivity,

Water Resour. Res., 15(2) 1979, 481–483.

is given by
∂u

∂t
=

∂

∂y

(
D(u)

∂u

∂y

)
,

where u = u(y , t) is called saturation and represents the volume function of the

pore space occupied by liquid, and

D(u) = D0e
βu, D0 > 0, β > 0.

The self-similar solutions are stable attractors and take the form

u(y , t) = ξ(x), x = y/t1/2, 0 < x <∞.
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If we set w(x) = eβξ(x) and make a trivial rescaling, then it follows that w is a

solution of the initial value problem

w ′′ = −xw ′

w
,

w(0) = 1, w ′(0) = −γ < 0 (γ = γ(β)).

 (1)

Asymptotic behaviour and asymptotical computations for problem (1) are given in

P. Amodio, C.J. Budd, O. Koch, G. Settanni, E. Weinmüller, Asymptotic

computations for a model of flow in concrete, submitted to Comput. Math. Appl.

C.J. Budd, J.M. Stockie, Asymptotic behaviour of wetting fronts in porous media

with exponential moisture diffusivity, submitted

Motivated by (1), we investigate the initial value problem

y ′′(t) = a(t)
p(y ′(t))

g(y(t))
, (2)

y(0) = 1, y ′(0) = −γ, γ ≥ 0. (3)

(a(t) = t, p(x) = −x , g(y) = y)
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y ′′(t) = a(t)
p(y ′(t))

g(y(t))
y(0) = 1, y ′(0) = −γ, γ ≥ 0

Assumptions

(H1) a ∈ C 1[0,∞), a(0) ≥ 0 and a′ > 0 on (0,∞),

(H2) p ∈ C 1(−∞, 0], p(0) = 0, p′ < 0 on (−∞, 0] and there exist positive

constants m,M such that

m ≤ |p′(x)| ≤ M for x ∈ (−∞, 0],

(H3) g ∈ C 1[0, 1], g(0) = 0 and g ′ > 0 on [0, 1].

A function y is called a solution of problem (2), (3) on an interval J, J ⊂ [0,∞),

0 ∈ J, if y ∈ C 2(J), y > 0 on J, y satisfies (3) and (2) holds for t ∈ J.
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EXAMPLE 1. Let α, β ∈ [1,∞), k , c ∈ [0,∞), h ∈ C (−∞, 0], m ≤ h(x) ≤ M

for x ∈ (−∞, 0], where m,M are positive constants. The equation

y ′′ =
tα + cet

yβ + k tan y

∫ 0

y ′
h(s)ds (4)

satisfies conditions (H1)− (H3) for a(t) = tα, p(x) =
∫ 0

x
h(s)ds and

g(v) = vβ + k tan v .
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REMARK 1.

Under condition (H2), p > 0 on (−∞, 0) and since

−mx ≤ p(x) ≤ −Mx for x ∈ (−∞, 0], (5)

we have ∫ −1
−∞

1

p(x)
dx =∞,

∫ 0

−1

1

p(x)
dx =∞.

REMARK 2. We can also discuss equation (2) under more generally initial

conditions

y(0) = ρ, y ′(0) = −γ1, ρ > 0, γ1 ≥ 0.
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2. Preliminaries

LEMMA 1. If γ = 0, then y = 1 is the unique solution of (2), (3) on [0,∞).

If γ > 0, then problem (2), (3) has a unique solution y on an interval [0, φ(γ)),

where

φ(γ) = sup{t ≥ 0 : y(s) > 0 for s ∈ [0, t]},

and y ′ < 0 on [0, φ(γ)), y ′′ > 0 on (0, φ(γ)).

Proof. The function f (t, x , y) = a(t) p(y)
g(x) and its partial derivatives ∂f

∂x , ∂f
∂y are

continuous on on the set [0,∞)× (0, 1]× (−∞, 0], and f > 0 on

(0,∞)× (0, 1]× (−∞, 0). Hence problem (2), (3) has a unique solution y on an

interval J ⊂ [0,∞).

If γ = 0, then y = 1 is the unique solution of (2), (3) on [0,∞).
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Let γ > 0. We claim that y ′ < 0 on J. In the opposite case there exists ξ ∈ J

such that y ′(ξ) = 0 and y ′ < 0 on [0, ξ). Consider the initial value problem

u′′ =
a(t)

g(y(t))
p(u′),

u(ξ) = y(ξ), u′(ξ) = 0.

 (6)

Problem (6) has a unique solution u(t) = y(ξ) for t ∈ J. Since y is also a solution

of (6), we have y(t) = y(ξ) for t ∈ J, which is impossible. Hence y ′ < 0 on J,

and therefore y > 0 and y is defined on [0, φ(γ)). It follows from (H1)− (H3)

that y ′′ > 0 on the interval (0, φ(γ)).
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Keeping in mind Lemma 1, we denote by yγ the unique solution of (2), (3). Then

yγ is defined on [0, φ(γ)), y0 = 1, φ(0) =∞, and for each γ > 0 we have yγ > 0,

y ′γ < 0 on [0, φ(γ)) and y ′′γ > 0 on (0, φ(γ)).

LEMMA 2. If φ(γ) <∞ for some γ > 0, then limt→φ(γ) yγ(t) = 0,

limt→φ(γ) y
′
γ(t) = 0.

If φ(γ) =∞ for some γ > 0, then limt→∞ yγ(t) ≥ 0, limt→∞ y ′γ(t) = 0.
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LEMMA 3. Let 0 ≤ γ1 < γ2. Then φ(γ1) ≥ φ(γ2) and

yγ1(t) > yγ2(t) for t ∈ (0, φ(γ2)). (7)
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3. Qualitative properties of solutions

Theorem 1. For each γ ≥ 0,

φ(γ) =∞, lim
t→∞

yγ(t) > 0, lim
t→∞

y ′γ(t) = 0.
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The following result states the properties of y ′γ on [0,∞) with different values of γ.

Lemma 4. Let 0 < α < β. Then either

y ′α(t) > y ′β(t) for t ∈ [0,∞)

or there exists ξ > 0 such that

y ′α(ξ) = y ′β(ξ), y ′α > y ′β on [0, ξ) and y ′α < y ′β on (ξ,∞).
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It follows from Theorem 1 that φ(γ) =∞ for all γ ≥ 0. In order to investigate the

values of limt→∞ yγ(t), we introduce a function ∆ : [0,∞)→ (0, 1] by the formula

∆(γ) = lim
t→∞

yγ(t).

The properties of ∆ are collected in the following result.

Theorem 2. ∆ ∈ C [0,∞), ∆ is nonincreasing, ∆(0) = 1, ∆(γ) > 0 for γ ≥ 0

and limγ→∞∆(γ) = 0.
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By Theorem 2, for each ρ ∈ (0, 1] there exists at least one γ = γ(ρ) ≥ 0 such that

limt→∞ yγ(t) = ∆(ρ). We are interested in the set of all such γ. To this end, we

introduce a multi-valued function Λ : (0, 1]→ 2R as

Λ(ρ) = {γ ∈ [0,∞) : ∆(γ) = ρ}.

The following result gives properties of Λ.

Theorem 3. For each ρ ∈ (0, 1], Λ(ρ) is either a one-point set or a compact

interval [aρ, bρ]. If Γ is the set of all ρ ∈ (0, 1] such that Λ(ρ) is a one-point set,

then (0, 1] \ Γ is at most countable.
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Theorem 4. Let the function a satisfying (H1) be bounded. Then for all

ρ ∈ (0, 1], the set Λ(ρ) is one-point, and therefore ∆ is decreasing on (0, 1].
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The next result states the limit properties of yγ and its derivative as γ →∞ at

points of the interval (0,∞), and the properties of a function ϕt : [0,∞)→ [0, 1),

t > 0, defined as

ϕt(γ) = yγ(t).

Theorem 5. Let t∗ > 0. Then

(a) limγ→∞ yγ(t∗) = 0 and limγ→∞ y ′γ(t∗) = 0,

(b) ϕt∗ ∈ C [0,∞), ϕt∗ is decreasing, ϕt∗(0) = 1 and limγ→∞ ϕt∗(γ) = 0.
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4. Boundary value problems for equation (2)

In this section, we apply Theorems 2, 4 and 5 to the solvability of the boundary

values problems

y ′′ = a(t)
p(y ′)

g(y)
, y(0) = 1, lim

t→∞
y(t) = c , c ∈ (0, 1],

y ′′ = a(t)
p(y ′)

g(y)
, y(0) = 1, y ′(0) = − lim

t→∞
y(t),

and

y ′′ = a(t)
p(y ′)

g(y)
, y(0) = 1, y(t∗) = c , t∗ ∈ (0,∞), c ∈ (0, 1].
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Theorem 6. For each c ∈ (0, 1] there exists at least one solution of problem

y ′′ = a(t)
p(y ′)

g(y)
, y(0) = 1, lim

t→∞
y(t) = c .

If in addition a is bounded, then for each c ∈ (0, 1] this problem has a unique

solution.

Proof. Choose c ∈ (0, 1]. Theorem 2 guarantees that the equation ∆(γ) = c has

at least one solution γ = γ0. Then yγ0 is a solution of our problem.

If a is bounded, then equation ∆(γ) = c has a unique solution γ = γ∗ by

Theorems 2 and 4. Hence yγ∗ is the unique solution of our problem.
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Theorem 7. Problem

y ′′ = a(t)
p(y ′)

g(y)
, y(0) = 1, y ′(0) = − lim

t→∞
y(t),

has a unique solution.

Proof. It follows from the definition of the function ∆ that our problem is solvable

and y is its solution if and only if y = yγ , where γ is a solution of the equation

∆(γ) = γ. By Theorem 2, the last equation has a unique solution.
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Theorem 8. For each c ∈ (0, 1] and each t∗ ∈ (0,∞), there exists a unique

solution of problem

y ′′ = a(t)
p(y ′)

g(y)
, y(0) = 1, y(t∗) = c .

Proof. Choose c ∈ (0, 1] and t∗ ∈ (0,∞). By Theorem 4, the equation

ϕt∗(γ) = c has a unique solution γ = γ∗, γ∗ ∈ [0,∞). Then yγ∗ is the unique

solution of our problem. 2
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