ON POSITIVE SOLUTIONS TO A SINGULAR INITIAL VALUE PROBLEM

Svatoslav Staněk, Czech Republic
e-mail: svatoslav.stanek@upol.cz

Workshop z diferenciálních rovnic konaný u příležitosti životního jubilea

Doc. RNDr. Milana Tvrdého, CSc.
Malá Morávka, 2014

1. Motivation

A model for the time dependent flow of water transported in variably-saturated porous medium with exponential diffusivity such as rock, soil or building materials
W. Brutsaert, Universal constants for scaling the exponential soil water diffusivity, Water Resour. Res., 15(2) 1979, 481-483.
is given by

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial y}\left(D(u) \frac{\partial u}{\partial y}\right),
$$

where $u=u(y, t)$ is called saturation and represents the volume function of the pore space occupied by liquid, and

$$
D(u)=D_{0} e^{\beta u}, \quad D_{0}>0, \beta>0 .
$$

The self-similar solutions are stable attractors and take the form

$$
u(y, t)=\xi(x), \quad x=y / t^{1 / 2}, 0<x<\infty
$$

If we set $w(x)=e^{\beta \xi(x)}$ and make a trivial rescaling, then it follows that w is a solution of the initial value problem

$$
\left.\begin{array}{rl}
w^{\prime \prime} & =-\frac{x w^{\prime}}{w} \tag{1}\\
w(0)=1, \quad w^{\prime}(0) & =-\gamma<0 \quad(\gamma=\gamma(\beta)) .
\end{array}\right\}
$$

Asymptotic behaviour and asymptotical computations for problem (1) are given in
围 P. Amodio, C.J. Budd, O. Koch, G. Settanni, E. Weinmüller, Asymptotic computations for a model of flow in concrete, submitted to Comput. Math. Appl.
显
C.J. Budd, J.M. Stockie, Asymptotic behaviour of wetting fronts in porous media with exponential moisture diffusivity, submitted
Motivated by (1), we investigate the initial value problem

$$
\begin{gather*}
y^{\prime \prime}(t)=a(t) \frac{p\left(y^{\prime}(t)\right)}{g(y(t))} \tag{2}\\
y(0)=1, \quad y^{\prime}(0)=-\gamma, \quad \gamma \geq 0 . \tag{3}\\
(a(t)=t, p(x)=-x, g(y)=y)
\end{gather*}
$$

$$
y^{\prime \prime}(t)=a(t) \frac{p\left(y^{\prime}(t)\right)}{g(y(t))} \quad y(0)=1, y^{\prime}(0)=-\gamma, \quad \gamma \geq 0
$$

Assumptions
$\left(H_{1}\right) a \in C^{1}[0, \infty), a(0) \geq 0$ and $a^{\prime}>0$ on $(0, \infty)$,
$\left(H_{2}\right) p \in C^{1}(-\infty, 0], p(0)=0, p^{\prime}<0$ on $(-\infty, 0]$ and there exist positive constants m, M such that

$$
m \leq\left|p^{\prime}(x)\right| \leq M \quad \text { for } x \in(-\infty, 0],
$$

$\left(H_{3}\right) g \in C^{1}[0,1], g(0)=0$ and $g^{\prime}>0$ on $[0,1]$.

A function y is called a solution of problem (2), (3) on an interval $J, J \subset[0, \infty)$, $0 \in J$, if $y \in C^{2}(J), y>0$ on J, y satisfies (3) and (2) holds for $t \in J$.

EXAMPLE 1. Let $\alpha, \beta \in[1, \infty), k, c \in[0, \infty), h \in C(-\infty, 0], m \leq h(x) \leq M$ for $x \in(-\infty, 0]$, where m, M are positive constants. The equation

$$
\begin{equation*}
y^{\prime \prime}=\frac{t^{\alpha}+c e^{t}}{y^{\beta}+k \tan y} \int_{y^{\prime}}^{0} h(s) \mathrm{d} s \tag{4}
\end{equation*}
$$

satisfies conditions $\left(H_{1}\right)-\left(H_{3}\right)$ for $a(t)=t^{\alpha}, p(x)=\int_{x}^{0} h(s) \mathrm{d} s$ and $g(v)=v^{\beta}+k \tan v$.

REMARK 1.

Under condition $\left(H_{2}\right), p>0$ on $(-\infty, 0)$ and since

$$
\begin{equation*}
-m x \leq p(x) \leq-M x \quad \text { for } x \in(-\infty, 0] \tag{5}
\end{equation*}
$$

we have

$$
\int_{-\infty}^{-1} \frac{1}{p(x)} \mathrm{d} x=\infty, \quad \int_{-1}^{0} \frac{1}{p(x)} \mathrm{d} x=\infty
$$

REMARK 2. We can also discuss equation (2) under more generally initial conditions

$$
y(0)=\rho, \quad y^{\prime}(0)=-\gamma_{1}, \quad \rho>0, \gamma_{1} \geq 0
$$

2. Preliminaries

LEMMA 1. If $\gamma=0$, then $y=1$ is the unique solution of (2), (3) on $[0, \infty)$. If $\gamma>0$, then problem (2), (3) has a unique solution y on an interval $[0, \phi(\gamma)$), where

$$
\phi(\gamma)=\sup \{t \geq 0: y(s)>0 \text { for } s \in[0, t]\}
$$

and $y^{\prime}<0$ on $[0, \phi(\gamma)), y^{\prime \prime}>0$ on $(0, \phi(\gamma))$.
Proof. The function $f(t, x, y)=a(t) \frac{p(y)}{g(x)}$ and its partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are continuous on on the set $[0, \infty) \times(0,1] \times(-\infty, 0]$, and $f>0$ on $(0, \infty) \times(0,1] \times(-\infty, 0)$. Hence problem (2), (3) has a unique solution y on an interval $J \subset[0, \infty)$.
If $\gamma=0$, then $y=1$ is the unique solution of (2), (3) on $[0, \infty)$.

Let $\gamma>0$. We claim that $y^{\prime}<0$ on J. In the opposite case there exists $\xi \in J$ such that $y^{\prime}(\xi)=0$ and $y^{\prime}<0$ on $[0, \xi)$. Consider the initial value problem

$$
\left.\begin{array}{rl}
u^{\prime \prime} & =\frac{a(t)}{g(y(t))} p\left(u^{\prime}\right), \tag{6}\\
(\xi) & =y(\xi), \quad u^{\prime}(\xi)=0 .
\end{array}\right\}
$$

Problem (6) has a unique solution $u(t)=y(\xi)$ for $t \in J$. Since y is also a solution of (6), we have $y(t)=y(\xi)$ for $t \in J$, which is impossible. Hence $y^{\prime}<0$ on J, and therefore $y>0$ and y is defined on $[0, \phi(\gamma))$. It follows from $\left(H_{1}\right)-\left(H_{3}\right)$ that $y^{\prime \prime}>0$ on the interval $(0, \phi(\gamma))$.

Keeping in mind Lemma 1, we denote by y_{γ} the unique solution of (2), (3). Then y_{γ} is defined on $[0, \phi(\gamma)), y_{0}=1, \phi(0)=\infty$, and for each $\gamma>0$ we have $y_{\gamma}>0$, $y_{\gamma}^{\prime}<0$ on $[0, \phi(\gamma))$ and $y_{\gamma}^{\prime \prime}>0$ on $(0, \phi(\gamma))$.

LEMMA 2. If $\phi(\gamma)<\infty$ for some $\gamma>0$, then $\lim _{t \rightarrow \phi(\gamma)} y_{\gamma}(t)=0$, $\lim _{t \rightarrow \phi(\gamma)} y_{\gamma}^{\prime}(t)=0$.
If $\phi(\gamma)=\infty$ for some $\gamma>0$, then $\lim _{t \rightarrow \infty} y_{\gamma}(t) \geq 0, \lim _{t \rightarrow \infty} y_{\gamma}^{\prime}(t)=0$.

LEMMA 3. Let $0 \leq \gamma_{1}<\gamma_{2}$. Then $\phi\left(\gamma_{1}\right) \geq \phi\left(\gamma_{2}\right)$ and

$$
\begin{equation*}
y_{\gamma_{1}}(t)>y_{\gamma_{2}}(t) \quad \text { for } t \in\left(0, \phi\left(\gamma_{2}\right)\right) . \tag{7}
\end{equation*}
$$

3. Qualitative properties of solutions

Theorem 1. For each $\gamma \geq 0$,

$$
\phi(\gamma)=\infty, \quad \lim _{t \rightarrow \infty} y_{\gamma}(t)>0, \quad \lim _{t \rightarrow \infty} y_{\gamma}^{\prime}(t)=0
$$

The following result states the properties of y_{γ}^{\prime} on $[0, \infty)$ with different values of γ.
Lemma 4. Let $0<\alpha<\beta$. Then either

$$
y_{\alpha}^{\prime}(t)>y_{\beta}^{\prime}(t) \quad \text { for } t \in[0, \infty)
$$

or there exists $\xi>0$ such that

$$
y_{\alpha}^{\prime}(\xi)=y_{\beta}^{\prime}(\xi), y_{\alpha}^{\prime}>y_{\beta}^{\prime} \text { on }[0, \xi) \text { and } y_{\alpha}^{\prime}<y_{\beta}^{\prime} \text { on }(\xi, \infty) .
$$

It follows from Theorem 1 that $\phi(\gamma)=\infty$ for all $\gamma \geq 0$. In order to investigate the values of $\lim _{t \rightarrow \infty} y_{\gamma}(t)$, we introduce a function $\Delta:[0, \infty) \rightarrow(0,1]$ by the formula

$$
\Delta(\gamma)=\lim _{t \rightarrow \infty} y_{\gamma}(t) .
$$

The properties of Δ are collected in the following result.

Theorem 2. $\Delta \in C[0, \infty), \Delta$ is nonincreasing, $\Delta(0)=1, \Delta(\gamma)>0$ for $\gamma \geq 0$ and $\lim _{\gamma \rightarrow \infty} \Delta(\gamma)=0$.

By Theorem 2, for each $\rho \in(0,1]$ there exists at least one $\gamma=\gamma(\rho) \geq 0$ such that $\lim _{t \rightarrow \infty} y_{\gamma}(t)=\Delta(\rho)$. We are interested in the set of all such γ. To this end, we introduce a multi-valued function $\Lambda:(0,1] \rightarrow 2^{\mathbb{R}}$ as

$$
\Lambda(\rho)=\{\gamma \in[0, \infty): \Delta(\gamma)=\rho\}
$$

The following result gives properties of Λ.

Theorem 3. For each $\rho \in(0,1], \Lambda(\rho)$ is either a one-point set or a compact interval $\left[a_{\rho}, b_{\rho}\right]$. If Γ is the set of all $\rho \in(0,1]$ such that $\Lambda(\rho)$ is a one-point set, then $(0,1] \backslash \Gamma$ is at most countable.

Theorem 4. Let the function a satisfying $\left(H_{1}\right)$ be bounded. Then for all $\rho \in(0,1]$, the set $\Lambda(\rho)$ is one-point, and therefore Δ is decreasing on $(0,1]$.

The next result states the limit properties of y_{γ} and its derivative as $\gamma \rightarrow \infty$ at points of the interval $(0, \infty)$, and the properties of a function $\varphi_{t}:[0, \infty) \rightarrow[0,1)$, $t>0$, defined as

$$
\varphi_{t}(\gamma)=y_{\gamma}(t) .
$$

Theorem 5. Let $t_{*}>0$. Then
(a) $\lim _{\gamma \rightarrow \infty} y_{\gamma}\left(t_{*}\right)=0$ and $\lim _{\gamma \rightarrow \infty} y_{\gamma}^{\prime}\left(t_{*}\right)=0$,
(b) $\varphi_{t_{*}} \in C[0, \infty), \varphi_{t_{*}}$ is decreasing, $\varphi_{t_{*}}(0)=1$ and $\lim _{\gamma \rightarrow \infty} \varphi_{t_{*}}(\gamma)=0$.

4. Boundary value problems for equation (2)

In this section, we apply Theorems 2, 4 and 5 to the solvability of the boundary values problems

$$
\begin{gathered}
y^{\prime \prime}=a(t) \frac{p\left(y^{\prime}\right)}{g(y)}, \quad y(0)=1, \quad \lim _{t \rightarrow \infty} y(t)=c, \quad c \in(0,1], \\
y^{\prime \prime}=a(t) \frac{p\left(y^{\prime}\right)}{g(y)}, \quad y(0)=1, \quad y^{\prime}(0)=-\lim _{t \rightarrow \infty} y(t),
\end{gathered}
$$

and

$$
y^{\prime \prime}=a(t) \frac{p\left(y^{\prime}\right)}{g(y)}, \quad y(0)=1, \quad y\left(t_{*}\right)=c, \quad t^{*} \in(0, \infty), c \in(0,1] .
$$

Theorem 6. For each $c \in(0,1]$ there exists at least one solution of problem

$$
y^{\prime \prime}=a(t) \frac{p\left(y^{\prime}\right)}{g(y)}, \quad y(0)=1, \quad \lim _{t \rightarrow \infty} y(t)=c .
$$

If in addition a is bounded, then for each $c \in(0,1]$ this problem has a unique solution.
Proof. Choose $c \in(0,1]$. Theorem 2 guarantees that the equation $\Delta(\gamma)=c$ has at least one solution $\gamma=\gamma_{0}$. Then $y_{\gamma_{0}}$ is a solution of our problem. If a is bounded, then equation $\Delta(\gamma)=c$ has a unique solution $\gamma=\gamma_{*}$ by Theorems 2 and 4. Hence $y_{\gamma_{*}}$ is the unique solution of our problem.

Theorem 7. Problem

$$
y^{\prime \prime}=a(t) \frac{p\left(y^{\prime}\right)}{g(y)}, \quad y(0)=1, \quad y^{\prime}(0)=-\lim _{t \rightarrow \infty} y(t)
$$

has a unique solution.
Proof. It follows from the definition of the function Δ that our problem is solvable and y is its solution if and only if $y=y_{\gamma}$, where γ is a solution of the equation $\Delta(\gamma)=\gamma$. By Theorem 2, the last equation has a unique solution.

Theorem 8. For each $c \in(0,1]$ and each $t_{*} \in(0, \infty)$, there exists a unique solution of problem

$$
y^{\prime \prime}=a(t) \frac{p\left(y^{\prime}\right)}{g(y)}, \quad y(0)=1, \quad y\left(t_{*}\right)=c .
$$

Proof. Choose $c \in(0,1]$ and $t_{*} \in(0, \infty)$. By Theorem 4, the equation $\varphi_{t_{*}}(\gamma)=c$ has a unique solution $\gamma=\gamma_{*}, \gamma_{*} \in[0, \infty)$. Then $y_{\gamma_{*}}$ is the unique solution of our problem.

