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1. Motivation

A model for the time dependent flow of water transported in variably-saturated

porous medium with exponential diffusivity such as rock, soil or building materials

@ W. Brutsaert, Universal constants for scaling the exponential soil water diffusivity,

Water Resour. Res., 15(2) 1979, 481-483.
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where u = u(y, t) is called saturation and represents the volume function of the

is given by

pore space occupied by liquid, and
D(u) = Dye’, Dy >0, 8> 0.
The self-similar solutions are stable attractors and take the form

uly,t) =€&(x), x=y/tV? 0<x < oo
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If we set w(x) = e%¢() and make a trivial rescaling, then it follows that w is a

solution of the initial value problem

w' (1)
w(0) =1, w'(0)=-v<0 (v=1(8)).
Asymptotic behaviour and asymptotical computations for problem (1) are given in
@ P. Amodio, C.J. Budd, O. Koch, G. Settanni, E. Weinmiiller, Asymptotic
computations for a model of flow in concrete, submitted to Comput. Math. Appl.
@ C.J. Budd, J.M. Stockie, Asymptotic behaviour of wetting fronts in porous media
with exponential moisture diffusivity, submitted

Motivated by (1), we investigate the initial value problem

ey — o PO (8)
y'(t) = (f)ig(y(t))-, (2)
y(0)=1, y'(0)=-v, ~7>0 (3)
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Assumptions
(Hy) a € C0,00), a(0) > 0 and a’ > 0 on (0, ),
(H2) p € CY—o0,0], p(0) =0, p’ < 0 on (—o0,0] and there exist positive

constants m, M such that
m < |p'(x)] <M for x € (—o0,0],

(H3) g € C[0,1], g(0) =0 and g’ > 0 on [0, 1].

A function y is called a solution of problem (2), (3) on an interval J, J C [0, 00),
0€ J,ify € C3(J), y >0on J, y satisfies (3) and (2) holds for t € J.
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EXAMPLE 1. Let o, 8 € [1,00), k,c € [0,00), h € C(—00,0], m < h(x) <M

for x € (—o0,0], where m, M are positive constants. The equation

a t 0
y" &/ h(s)ds (4)

- yP +ktany J,,

satisfies conditions (H;) — (Hs) for a(t) = t*, p(x) = ff h(s)ds and
g(v) =v? + ktanv.
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REMARK 1.

Under condition (H,), p > 0 on (—o0,0) and since

—mx < p(x) < —Mx for x € (—o0,0], (5)

[t Lo

REMARK 2. We can also discuss equation (2) under more generally initial

we have

conditions
y(o):/)a yl(o):_ﬁyla p>07 ’YIZO
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2. Preliminaries

LEMMA 1. If v =0, then y = 1 is the unique solution of (2), (3) on [0, ).
If v > 0, then problem (2), (3) has a unique solution y on an interval [0, #(7)),

where

$(7) = sup{t > 0:y(s) >0 for s € [0, ]},

and y" < 0 on [0,9(7)), y" >0 on (0, $(7))-

Proof. The function f(t,x,y) = a(t)% and its partial derivatives %, g—; are
continuous on on the set [0,00) x (0,1] x (—o00,0], and f > 0 on

(0,00) x (0,1] x (—o0,0). Hence problem (2), (3) has a unique solution y on an
interval J C [0, 00).

If v =0, then y = 1 is the unique solution of (2), (3) on [0, c0).
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Let v > 0. We claim that y’ < 0 on J. In the opposite case there exists £ € J
such that y’(§) =0 and y’ < 0 on [0,&). Consider the initial value problem

I
= g ©)

u(€) = y(§), u'(§)=0.

Problem (6) has a unique solution u(t) = y(§) for t € J. Since y is also a solution
of (6), we have y(t) = y(&) for t € J, which is impossible. Hence y’ < 0 on J,
and therefore y > 0 and y is defined on [0, ¢(7)). It follows from (H;) — (Hs)
that y” > 0 on the interval (0, ¢(7)).

e T



|
Keeping in mind Lemma 1, we denote by y, the unique solution of (2), (3). Then
y- is defined on [0, (7)), yo = 1, ¢(0) = oo, and for each v > 0 we have y, > 0,
¥y <0on [0,¢(7)) and ¥ > 0 on (0, ¢(7)).

LEMMA 2. If ¢(y) < oo for some > 0, then lim,_,4(,) y,(t) =0,

|imtﬁ¢(,y) y,/y(t) =0.
If ¢(v) = oo for some v > 0, then lim;, . y,(t) >0, lim; oy (t) = 0.
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LEMMA 3. Let 0 <71 < 7y2. Then ¢(71) > ¢(72) and

Yu(t) > yp(t)  for t € (0,6(72))- (7)
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3. Qualitative properties of solutions

Theorem 1. For each v > 0,

¢(y) =00, lim y,(t)>0, lim y/(t)=0.

t—o00 t—o00
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The following result states the properties of y/ on [0, c0) with different values of .
Lemma 4. Let 0 < o < 3. Then either

yo(t) > y(t) for t €[0,00)
or there exists £ > 0 such that

Ya(8) = ¥5(8) Yo > yp on [0,£) and y;, < yj on (£, 00).
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It follows from Theorem 1 that ¢(y) = oo for all v > 0. In order to investigate the

values of lim;_, y~(t), we introduce a function A : [0, 00) — (0, 1] by the formula

A(y) = lim y,(t).

t— 00

The properties of A are collected in the following result.

Theorem 2. A € C[0,00), A is nonincreasing, A(0) =1, A(y) > 0 for v >0
and lim,_o A(y) = 0.
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By Theorem 2, for each p € (0, 1] there exists at least one v = v(p) > 0 such that
lim¢—so0 Y4 (t) = A(p). We are interested in the set of all such . To this end, we

introduce a multi-valued function A : (0,1] — 2% as
Np) = {7 € [0,00) : A(7) = p}-
The following result gives properties of A.

Theorem 3. For each p € (0, 1], A(p) is either a one-point set or a compact
interval [a,, b,]. If [ is the set of all p € (0,1] such that A(p) is a one-point set,
then (0,1] \ T is at most countable.
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Theorem 4. Let the function a satisfying (Hy) be bounded. Then for all
p € (0,1], the set A(p) is one-point, and therefore A is decreasing on (0, 1].

e T



The next result states the limit properties of y., and its derivative as v — oo at
points of the interval (0,00), and the properties of a function ¢; : [0,00) — [0, 1),
t > 0, defined as

Theorem 5. Let t, > 0. Then
(a) limy o0 ¥4 (ts) = 0 and lim, o ! (t.) = 0,
(b) ¢, € C[0,00), ¢y, is decreasing, ¢ (0) =1 and limy_,o ¢¢, () = 0.
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4. Boundary value problems for equation (2)

In this section, we apply Theorems 2, 4 and 5 to the solvability of the boundary
values problems

g(y)
V' =a0B0) 0 =1 y(0) =~ im (o).

and
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Theorem 6. For each ¢ € (0, 1] there exists at least one solution of problem

20)’ y(0) =1, lim y(t) =c.

If in addition a is bounded, then for each ¢ € (0, 1] this problem has a unique
solution.

Proof. Choose ¢ € (0,1]. Theorem 2 guarantees that the equation A(y) = ¢ has
at least one solution v = p. Then y, is a solution of our problem.

If a is bounded, then equation A(y) = ¢ has a unique solution v = v, by

Theorems 2 and 4. Hence y,, is the unique solution of our problem.
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Theorem 7. Problem

20) y(0) =1, ¥'(0) = — lim y(t),

has a unique solution.
Proof. It follows from the definition of the function A that our problem is solvable
and y is its solution if and only if y = y,, where v is a solution of the equation

A() = . By Theorem 2, the last equation has a unique solution.
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Theorem 8. For each ¢ € (0,1] and each t, € (0,00), there exists a unique

solution of problem

Proof. Choose ¢ € (0,1] and t. € (0,00). By Theorem 4, the equation
©¢. (7) = ¢ has a unique solution 7 = 7., 74 € [0,00). Then y,, is the unique

solution of our problem.
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