Boundary value problems for systems coming from models of house burglary

Jean Mawhin

(joint work with Marta Garcia-Huidobro and Raul Manásevich)

The motivation

- mathematical model (M) for burglary of houses (PITCHER, 2010)
- $\Omega \subset \mathbb{R}^{n}$ open, bounded, smooth boundary
- $\eta>0, A^{0}>0, \psi>0, \omega>0$ given
- A attractiveness for a house to be burgled, N density of burglars
- $\eta \Delta\left(A-A^{0}\right)-A+A^{0}+\psi N A(1-A)=0$ in Ω
$\Delta N-\nabla \cdot\left(2 N \frac{\nabla A}{A}\right)-\omega^{2}(N-1)=0$ in Ω
$\partial_{\nu} A=\partial_{\nu} N=0$ on $\partial \Omega$

The motivation

- mathematical model (M) for burglary of houses (PITCHER, 2010)
- $\Omega \subset \mathbb{R}^{n}$ open, bounded, smooth boundary
- $\eta>0, A^{0}>0, \psi>0, \omega>0$ given
- A attractiveness for a house to be burgled, N density of burglars
- $\eta \Delta\left(A-A^{0}\right)-A+A^{0}+\psi N A(1-A)=0$ in Ω
$\Delta N-\nabla \cdot\left(2 N \frac{\nabla A}{A}\right)-\omega^{2}(N-1)=0$ in Ω
$\partial_{\nu} A=\partial_{\nu} N=0$ on $\partial \Omega$
- $A>0, N>0$ natural assumptions
- equilibria of the associated parabolic evolution problem
- positive constant solution

$$
A=(2 \psi)^{-1}\left[\psi-1+\sqrt{(\psi-1)^{2}+4 A^{0} \psi}\right], \quad N=1
$$

Generalizations

- $A^{0}, \psi, \eta \in C\left(\bar{\Omega}, \mathbb{R}^{+}\right)$
- $\eta(x) \Delta\left[A-A^{0}(x)\right]-A+A^{0}(x)+\psi(x) N A(1-A)=0$ in Ω
$\Delta N-\nabla \cdot\left(2 N \frac{\nabla A}{A}\right)-\omega^{2}(N-1)=0$ in Ω
$\partial_{\nu} A=\partial_{\nu} N=0$ on $\partial \Omega$
- question : existence of positive (non constant) solution ?

Generalizations

- $A^{0}, \psi, \eta \in C\left(\bar{\Omega}, \mathbb{R}^{+}\right)$
- $\eta(x) \Delta\left[A-A^{0}(x)\right]-A+A^{0}(x)+\psi(x) N A(1-A)=0$ in Ω
$\Delta N-\nabla \cdot\left(2 N \frac{\nabla A}{A}\right)-\omega^{2}(N-1)=0$ in Ω
$\partial_{\nu} A=\partial_{\nu} N=0$ on $\partial \Omega$
- question : existence of positive (non constant) solution ?
- more general problem :
$\eta(x) \Delta\left[A-A^{0}(x)\right]-A+A^{0}(x)+N f(x, A)=0$ in Ω
$\Delta N+\nabla \cdot[N \nabla h(A)]-\omega^{2}(N-1)=0$ in Ω
$\partial_{\nu} A=\partial_{\nu} N=0$ on $\partial \Omega$
- $f \in C\left(\bar{\Omega} \times \mathbb{R}_{0}^{+}, \mathbb{R}\right), h \in C^{2}\left(\mathbb{R}^{+}, \mathbb{R}\right)$

Radial solutions on an annulus

- $0<l<L, \Omega=\left\{x \in \mathbb{R}^{n}: l<\|x\|<L\right\}$
- $\eta=\eta(\|x\|), A_{0}=A_{0}(\|x\|), f=f(\|x\|, u)$
- radial solutions of the Neumann problem on Ω for $\eta(\|x\|) \Delta\left[A-A^{0}(\|x\|)\right]-A+A^{0}(\|x\|)+N f(\|x\|, A)=0$ in Ω
$\Delta N+\nabla \cdot[N \nabla h(A)]-\omega^{2}(N-1)=0$ in Ω

Radial solutions on an annulus

- $0<l<L, \Omega=\left\{x \in \mathbb{R}^{n}: l<\|x\|<L\right\}$
- $\eta=\eta(\|x\|), A_{0}=A_{0}(\|x\|), f=f(\|x\|, u)$
- radial solutions of the Neumann problem on Ω for $\eta(\|x\|) \Delta\left[A-A^{0}(\|x\|)\right]-A+A^{0}(\|x\|)+N f(\|x\|, A)=0$ in Ω
$\Delta N+\nabla \cdot[N \nabla h(A)]-\omega^{2}(N-1)=0$ in Ω
- equivalent to ODE problem
$\eta(r)\left[r^{n-1}\left(A-A^{0}(r)\right)^{\prime}\right]^{\prime}+r^{n-1}\left[-A+A^{0}(r)+N f(r, A)\right]$
$=0$ in (l, L)
$\left(r^{n-1} N^{\prime}\right)^{\prime}+\left\{r^{n-1}[h(A)]^{\prime} N\right\}^{\prime}-r^{n-1} \omega^{2}(N-1)=0$ in (l, L)
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$

Radial solutions on an annulus

- $0<l<L, \Omega=\left\{x \in \mathbb{R}^{n}: l<\|x\|<L\right\}$
- $\eta=\eta(\|x\|), A_{0}=A_{0}(\|x\|), f=f(\|x\|, u)$
- radial solutions of the Neumann problem on Ω for $\eta(\|x\|) \Delta\left[A-A^{0}(\|x\|)\right]-A+A^{0}(\|x\|)+N f(\|x\|, A)=0$ in Ω
$\Delta N+\nabla \cdot[N \nabla h(A)]-\omega^{2}(N-1)=0$ in Ω
- equivalent to ODE problem
$\eta(r)\left[r^{n-1}\left(A-A^{0}(r)\right)^{\prime}\right]^{\prime}+r^{n-1}\left[-A+A^{0}(r)+N f(r, A)\right]$
$=0$ in (l, L)
$\left(r^{n-1} N^{\prime}\right)^{\prime}+\left\{r^{n-1}[h(A)]^{\prime} N\right\}^{\prime}-r^{n-1} \omega^{2}(N-1)=0$ in (l, L)
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$
- still more general second equation
$\left(r^{n-1} N^{\prime}\right)^{\prime}+\left[r^{n-1} g\left(r, A, A^{\prime}\right) N\right]^{\prime}-r^{n-1} \omega^{2}(N-1)=0$ in (l, L)
- $g \in C^{1}\left([l, L] \times \mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}\right)$

The case where $n=1$ (for simplicity)

- r rebaptized x
- $0 \leq l<L, \omega>0, \eta \in C\left([l, L], \mathbb{R}^{+}\right), A^{0} \in C^{2}\left([l, L], \mathbb{R}^{+}\right)$
$f \in C\left([l, L] \times \mathbb{R}_{0}^{+}, \mathbb{R}\right), g \in C^{1}\left([l, L] \times \mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}\right)$
- Neumann problem :
$\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+N f(x, A)=0$
$N^{\prime \prime}+\left[g\left(x, A, A^{\prime}\right) N\right]^{\prime}-\omega^{2}(N-1)=0$
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$

The case where $n=1$ (for simplicity)

- r rebaptized x
- $0 \leq l<L, \omega>0, \eta \in C\left([l, L], \mathbb{R}^{+}\right), A^{0} \in C^{2}\left([l, L], \mathbb{R}^{+}\right)$
$f \in C\left([l, L] \times \mathbb{R}_{0}^{+}, \mathbb{R}\right), g \in C^{1}\left([l, L] \times \mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}\right)$
- Neumann problem :
$\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+N f(x, A)=0$
$N^{\prime \prime}+\left[g\left(x, A, A^{\prime}\right) N\right]^{\prime}-\omega^{2}(N-1)=0$
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$
e solution :
$(A, N) \in C^{2}([0, T]) \times C^{2}([0, T]): A(x)>0, \forall x \in[l, L]$
- positive solution :

$$
(A, N): A(x)>0, N(x)>0, \forall x \in[l, L]
$$

Assumptions upon f, g and statement

- $\left(f_{1}\right) \exists R>\operatorname{osc} A^{0}: \forall x \in[l, L]$:
- $f(x, A) \geq 0$ when $0 \leq A \leq R$
- $f(x, A) \leq 0$ when $A \geq R$
- $\left(f_{2}\right) A^{0}-\eta\left(A^{0}\right)^{\prime \prime}$ is positive and $\exists R>0: \forall x \in[l, L]$:
- $f(x, A) \geq 0$ when $0 \leq A \leq R$
- $f(x, A) \leq 0$ when $A \geq R$
- (g) $g(l, A, 0)=0$ and $g(L, A, 0)=0, \forall A \in \mathbb{R}^{+}$

Assumptions upon f, g and statement

- $\left(f_{1}\right) \exists R>\operatorname{osc} A^{0}: \forall x \in[l, L]$:
- $f(x, A) \geq 0$ when $0 \leq A \leq R$
- $f(x, A) \leq 0$ when $A \geq R$
- $\left(f_{2}\right) A^{0}-\eta\left(A^{0}\right)^{\prime \prime}$ is positive and $\exists R>0: \forall x \in[l, L]$:
- $f(x, A) \geq 0$ when $0 \leq A \leq R$
- $f(x, A) \leq 0$ when $A \geq R$
- (g) $g(l, A, 0)=0$ and $g(L, A, 0)=0, \forall A \in \mathbb{R}^{+}$
- Theorem. $\left(f_{1}\right)+(g)$ or $\left(f_{2}\right)+(g) \Rightarrow$ problem
$\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+N f(x, A)=0$
$N^{\prime \prime}+\left[g\left(x, A, A^{\prime}\right) N\right]^{\prime}-\omega^{2}(N-1)=0$
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$
has at least one positive solution

Homotopy and a priori estimates

- proof. fixed point reduction and Leray-Schauder degree
- homotopy: (H)

$$
\begin{aligned}
& -\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}+A-A^{0}(x)=\lambda N f(x, A) \\
& -N^{\prime \prime}+\omega^{2} N=\omega^{2}+\lambda\left[g\left(x, A, A^{\prime}\right) N\right]^{\prime} \\
& A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0, \quad \lambda \in[0,1]
\end{aligned}
$$

Homotopy and a priori estimates

- proof. fixed point reduction and Leray-Schauder degree
- homotopy: (H)
$-\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}+A-A^{0}(x)=\lambda N f(x, A)$
$-N^{\prime \prime}+\omega^{2} N=\omega^{2}+\lambda\left[g\left(x, A, A^{\prime}\right) N\right]^{\prime}$
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0, \quad \lambda \in[0,1]$
- a priori estimates through a combination of pointwise estimates based upon extremum properties and L^{1}-estimates
- $B \in C([l, L]), \min B:=\min _{[l, L]} B, \max B:=\max _{[l, L]} B$
- estimates for possible positive solution of (H) for any $\lambda \in[0,1]$
- Lemma 1. $\int_{l}^{L} N(x) d x=L-l$
- Lemma 2. $\min N>0$

More a priori estimates
estimates for possible positive solution of (H) for some $\lambda \in[0,1]$:

- Lemma 3. $\left(f_{1}\right) \Rightarrow \forall x \in[l, L]$:
$0<A_{0,1}:=\min \left\{\min A^{0}, R-\right.$ osc $\left.A^{0}\right\} \leq A(x)$
$\leq \max \left\{\max A^{0}, R+\right.$ osc $\left.A^{0}\right\}:=A_{1,1}$
- Lemma 4. $\left(f_{2}\right) \Rightarrow \forall x \in[l, L]$:
$0<A_{0,2}:=\min \left\{\min \left[A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right], R\right\} \leq A(x)$
$\leq \max \left\{\max \left[A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right], R\right\}:=A_{1,2}$

More a priori estimates

estimates for possible positive solution of (H) for some $\lambda \in[0,1]$:

- Lemma 3. $\left(f_{1}\right) \Rightarrow \forall x \in[l, L]$:
$0<A_{0,1}:=\min \left\{\min A^{0}, R-\right.$ osc $\left.A^{0}\right\} \leq A(x)$
$\leq \max \left\{\max A^{0}, R+\right.$ osc $\left.A^{0}\right\}:=A_{1,1}$
- Lemma 4. $\left(f_{2}\right) \Rightarrow \forall x \in[l, L]$:
$0<A_{0,2}:=\min \left\{\min \left[A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right], R\right\} \leq A(x)$
$\leq \max \left\{\max \left[A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right], R\right\}:=A_{1,2}$
- Lemma 5. $\forall x \in[l, L],\left|A^{\prime}(x)\right|$
$\leq L \max \left|\left(A^{0}\right)^{\prime \prime}\right|+\frac{L}{\min \eta}\left[A_{1}+\max A^{0}+\max |f|\right]:=A_{2}$
- Lemma 6. $\forall x \in[l, L]: N(x)$
$\leq 1+2 \omega^{2} L^{2}+L \max _{[l, L] \times\left[A_{0}, A_{1}\right] \times\left[-A_{2}, A_{2}\right]}|g|:=A_{3}$

Linear results

- Lemma 7. $\forall f \in C([l, L])$
$-\eta(x) A^{\prime \prime}+A=f(x), A^{\prime}(l)=0=A^{\prime}(L)$
has a unique solution $A \in C^{2}([l, L])$, and
$\exists C>0:\|A\|_{\infty}+\left\|A^{\prime}\right\|_{\infty} \leq C\|f\|_{\infty}$. Furthermore, $f(x)>0, \forall x \in[l, L] \Rightarrow A(x)>0, \forall x \in[l, L]$

Linear results

- Lemma 7. $\forall f \in C([l, L])$
$-\eta(x) A^{\prime \prime}+A=f(x), A^{\prime}(l)=0=A^{\prime}(L)$
has a unique solution $A \in C^{2}([l, L])$, and
$\exists C>0:\|A\|_{\infty}+\left\|A^{\prime}\right\|_{\infty} \leq C\|f\|_{\infty}$. Furthermore, $f(x)>0, \forall x \in[l, L] \Rightarrow A(x)>0, \forall x \in[l, L]$
- Lemma 8. $-N^{\prime \prime}+\omega^{2} N=\omega^{2}, \quad N^{\prime}(l)=0=N^{\prime}(L)$ has the unique solution $N \equiv 1$

Linear results

- Lemma 7. $\forall f \in C([l, L])$
$-\eta(x) A^{\prime \prime}+A=f(x), A^{\prime}(l)=0=A^{\prime}(L)$
has a unique solution $A \in C^{2}([l, L])$, and
$\exists C>0:\|A\|_{\infty}+\left\|A^{\prime}\right\|_{\infty} \leq C\|f\|_{\infty}$. Furthermore, $f(x)>0, \forall x \in[l, L] \Rightarrow A(x)>0, \forall x \in[l, L]$
- Lemma 8. $-N^{\prime \prime}+\omega^{2} N=\omega^{2}, \quad N^{\prime}(l)=0=N^{\prime}(L)$
has the unique solution $N \equiv 1$
- Lemma 9. $\forall f \in C([l, L])$

$$
-N^{\prime \prime}+\omega^{2} N=f(x), \quad N^{\prime}(l)=0=N^{\prime}(L)
$$

has the unique solution $N(x)=\int_{l}^{L} G(x, y) f(y) d y$, where

$$
G(x, y)=\left\{\begin{array}{lll}
\frac{\cosh \omega(L-y) \cosh \omega(x-l)}{\omega \sinh \omega(L-l)} & \text { if } & l \leq x \leq y \leq L \\
\frac{\cosh \omega(L-x) \cosh \omega(y-l)}{\omega \sinh \omega(L-l)} & \text { if } & l \leq y<x \leq L
\end{array}\right.
$$

Fixed point reduction

- $K: C([l, L]) \rightarrow C^{1}([l, L]), f \mapsto$ unique solution A of
$-\eta(x) A^{\prime \prime}+A=f(x), A^{\prime}(l)=0=A^{\prime}(L)$
K is continuous and takes positive functions into positive functions

Fixed point reduction

- $K: C([l, L]) \rightarrow C^{1}([l, L]), f \mapsto$ unique solution A of
$-\eta(x) A^{\prime \prime}+A=f(x), A^{\prime}(l)=0=A^{\prime}(L)$
K is continuous and takes positive functions into positive functions
- $E:=C^{1}([l, L]) \times C([l, L])$
$\|(A, N)\|_{E}=\|A\|_{\infty}+\left\|A^{\prime}\right\|_{\infty}+\|N\|_{\infty}$
- $\mathcal{F}:\{(A, U, \lambda) \in E \times[0,1] \mid A>0, N>0\} \rightarrow E$
$\mathcal{F}(A, N, \lambda)=\left(K\left[-\eta\left(A^{0}\right)^{\prime \prime}+A^{0}+\lambda N f(\cdot, A)\right]\right.$,
$\left.-\lambda \int_{l}^{L} \partial_{y} G(\cdot, y) g\left(y, A(y), A^{\prime}(y)\right) N(y) d y+\omega^{2} \int_{l}^{L} G(\cdot, y) d y\right)$
- Lemma 10. $\forall \lambda \in[0,1]$ fixed, (A, N) is a positive solution of (H) $\Leftrightarrow(A, N)$ is a fixed point of \mathcal{F}

Existence proof

- fix $0<R_{0}<A_{0}, R_{1}>A_{1}, R_{2}>A_{2}, R_{3}>A_{3}$ define $D=\left\{(A, N) \in E: R_{0}<A(x)<R_{1},\left\|A^{\prime}\right\|_{\infty}<R_{2}\right.$, $\left.0<N(x)<R_{3}(x \in[l, L])\right\}$

Existence proof

- fix $0<R_{0}<A_{0}, R_{1}>A_{1}, R_{2}>A_{2}, R_{3}>A_{3}$ define $D=\left\{(A, N) \in E: R_{0}<A(x)<R_{1},\left\|A^{\prime}\right\|_{\infty}<R_{2}\right.$, $\left.0<N(x)<R_{3}(x \in[l, L])\right\}$
- continuity and compactness of \mathcal{F} on \bar{D} follow from Ascoli-Arzela's theorem
- apply Leray-Schauder's continuation theorem to \mathcal{F} on $\bar{D} \times[0,1]$

Existence proof

- fix $0<R_{0}<A_{0}, R_{1}>A_{1}, R_{2}>A_{2}, R_{3}>A_{3}$ define $D=\left\{(A, N) \in E: R_{0}<A(x)<R_{1},\left\|A^{\prime}\right\|_{\infty}<R_{2}\right.$, $\left.0<N(x)<R_{3}(x \in[l, L])\right\}$
- continuity and compactness of \mathcal{F} on \bar{D} follow from Ascoli-Arzela's theorem
- apply Leray-Schauder's continuation theorem to \mathcal{F} on $\bar{D} \times[0,1]$
- Lemmas 1 to $6 \Rightarrow \forall \lambda \in[0,1]$ and for any possible fixed point (A, N) of $\mathcal{F},(A, N) \notin \partial D$
- $d_{L S}[I-\mathcal{F}(\cdot, 1), D, 0]=d_{L S}[I-\mathcal{F}(\cdot, 0), D, 0]=1$
- $\mathcal{F}(\cdot, 1)$ has a fixed point in Ω

Application to the model

- Corollary 1. If either osc $A^{0}<1$ or $\min \left(A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right)>0$,
$\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+\psi(x) N A(1-A)=0$
$N^{\prime \prime}-2\left(\frac{A^{\prime}}{A} N\right)^{\prime}-\omega^{2}(N-1)=0$
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$
has at least one positive solution

Application to the model

- Corollary 1. If either osc $A^{0}<1$ or $\min \left(A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right)>0$,

$$
\begin{aligned}
& \eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+\psi(x) N A(1-A)=0 \\
& N^{\prime \prime}-2\left(\frac{A^{\prime}}{A} N\right)^{\prime}-\omega^{2}(N-1)=0 \\
& A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0
\end{aligned}
$$

has at least one positive solution

- similar results for arbitrary n
- for $n=1$, similar results under periodic boundary conditions

Application to the model

- Corollary 1. If either osc $A^{0}<1$ or $\min \left(A^{0}-\eta\left(A^{0}\right)^{\prime \prime}\right)>0$,
$\eta(x)\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+\psi(x) N A(1-A)=0$
$N^{\prime \prime}-2\left(\frac{A^{\prime}}{A} N\right)^{\prime}-\omega^{2}(N-1)=0$
$A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0$
has at least one positive solution
- similar results for arbitrary n
- for $n=1$, similar results under periodic boundary conditions
- open problems
- conditions for uniqueness of the solution in the model case
- radial problem for $n \geq 2$ on a ball (i.e. case $l=0$)
- other symmetries or non radial case

Other models

- similar results also obtained for models of the type

$$
\begin{aligned}
& \eta\left[A-A^{0}(x)\right]^{\prime \prime}-A+A^{0}(x)+N A=0 \\
& \left(N^{\prime}-2 N \frac{A^{\prime}}{A}\right)^{\prime}+A^{1}(x)-A^{0}(x)-N A=0 \\
& A^{\prime}(l)=A^{\prime}(L)=N^{\prime}(l)=N^{\prime}(L)=0
\end{aligned}
$$

- Theorem 2. If $L>0, \eta>0, A^{0} \in C^{2}\left([0, L], \mathbb{R}^{+}\right)$, $\left(A^{0}\right)^{\prime}(0)=\left(A^{0}\right)^{\prime}(L)=0, A^{1} \in C\left([0, L], \mathbb{R}^{+}\right)$, $A^{1}(x)>A^{0}(x) \forall x \in[0, L]$, the Neumann problem (*) has at least one positive solution.
- similar but more involved method of proof because homotopy to a nonlinear problem inspired by the technique of the continuation theorem of coincidence degree theory

Bibliography : model

- H. Berestycki, J.-P. Nadal. Self-organised critical hot spots of criminal activity. European J. Appl. Math., 21 (2010), 371-399
- S. Cantrell, C. Cosner, R. Manásevich. Global bifurcation of solutions for crime modeling equations. SIAM J. Math. Anal., 44 (2012), 1340-1358
- A.B. Pitcher. Adding police to a mathematical model of burglary. European J. Appl. Math., 21 (2010), 401-419
- N. Rodriguez, A.L. Bertozzi. Local existence and uniqueness of solutions to a PDE model for criminal behavior. Math. Models Methods Appl. Sci., 20 (2010), 1425-1457
- M.B. Short, A.L. Bertozzi, P.J. Brantingham. Nonlinear patterns in urban crime: hotspots, bifurcations, and suppression. SIAM J. Appl. Dyn. Syst. 9 (2010), 462-483

Bibliography : results

- M. Garcia-Huidobro, R. Manásevich, J. Mawhin. Existence of solutions for a 1-D boundary value problem coming from a model for burglary. Nonlinear Anal. RWA 14 (2013), 1939-1946
- M. Garcia-Huidobro, R. Manásevich, J. Mawhin. Solvability of a nonlinear Neumann problem for systems arising from a burglary model. Appl. Math. Letters, to appear
- M. Garcia-Huidobro, R. Manásevich, J. Mawhin. Radial solutions of a Neumann problem coming from a burglary model, in preparation

Happy birthday, Milan, many more Stieltjes integrals and snapshots !

Thank you for your attention!

