An application of the Kurzweil-Stieltjes integral in financial markets

joint work with Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii, in progress.

Pavel Krejčí

Matematický ústav AV ČR
Workshop on Differential Equations 2014, Malá Morávka

Observation:

Observation:

Simple 1D mathematical models can model complex human behavior.

Observation:

Simple 1D mathematical models can model complex human behavior.
Examples:

- Traffic flow problem: Drivers behave like compressible fluid.

Observation:

Simple 1D mathematical models can model complex human behavior.

Examples:

- Traffic flow problem: Drivers behave like compressible fluid.
- Financial markets: Traders behave like a 1D deformable solid.

Observation:

Simple 1D mathematical models can model complex human behavior.

Examples:

- Traffic flow problem: Drivers behave like compressible fluid.
- Financial markets: Traders behave like a 1D deformable solid.

Difference between them:

Observation:

Simple 1D mathematical models can model complex human behavior.
Examples:

- Traffic flow problem: Drivers behave like compressible fluid.
- Financial markets: Traders behave like a 1D deformable solid.

Difference between them:
Solids remember their shape, fluids have no memory.

Madelung's memory laws

- The shape of a monotone magnetization curve does not depend on the rate of change.
- The local shape of a curve starting from a turning point does not depend on the previous history.
- After second turn the curve returns back to its starting point.
- As soon as the minor loop is closed, the process continues as if no turn had taken place.

Erwin Madelung: Über Magnetisierung durch schnell verlaufende Ströme und die Wirkungsweise des RutherfordMarconischen Magnetdetektors. Ann. Phys. 17 (1905), 861-890.

Madelung's memory laws

- The shape of a monotone magnetization curve does not depend on the rate of change.
- The local shape of a curve starting from a turning point does not depend on the previous history.
- After second turn the curve returns back to its starting point.
- As soon as the minor loop is closed, the process continues as if no turn had taken place.

Erwin Madelung: Über Magnetisierung durch schnell verlaufende Ströme und die Wirkungsweise des RutherfordMarconischen Magnetdetektors. Ann. Phys. 17 (1905), 861-890.

Madelung's memory laws

- The shape of a monotone magnetization curve does not depend on the rate of change.
- The local shape of a curve starting from a turning point does not depend on the previous history.
- After second turn the curve returns back to its starting point.
- As soon as the minor loop is closed, the process continues as if no turn had taken place.

Erwin Madelung: Über Magnetisierung durch schnell verlaufende Ströme und die Wirkungsweise des RutherfordMarconischen Magnetdetektors. Ann. Phys. 17 (1905), 861-890.

Madelung's memory laws

- The shape of a monotone magnetization curve does not depend on the rate of change.
- The local shape of a curve starting from a turning point does not depend on the previous history.
- After second turn the curve returns back to its starting point.
- As soon as the minor loop is closed, the process continues as if no turn had taken place.

Erwin Madelung: Über Magnetisierung durch schnell verlaufende Ströme und die Wirkungsweise des RutherfordMarconischen Magnetdetektors. Ann. Phys. 17 (1905), 861-890.

Madelung's memory laws

- The shape of a monotone magnetization curve does not depend on the rate of change.
- The local shape of a curve starting from a turning point does not depend on the previous history.
- After second turn the curve returns back to its starting point.
- As soon as the minor loop is closed, the process continues as if no turn had taken place.

Erwin Madelung: Über Magnetisierung durch schnell verlaufende Ströme und die Wirkungsweise des RutherfordMarconischen Magnetdetektors. Ann. Phys. 17 (1905), 861-890.

Prandtl's (Berliner's) elastoplastic experiment

$$
\begin{array}{lll}
\sigma \ldots & \text { stress } \\
\varepsilon \ldots & \text { strain }
\end{array}
$$

S. Berliner: Über das Verhalten des Gußeisens bei langsamen Belastungswechseln. Ann. Phys. 20 (1906), 527-562.

Prandtl's (Berliner's) elastoplastic experiment

| $\sigma \ldots$ | stress |
| :--- | :--- | :--- |
| $\varepsilon \ldots$ | strain |

S. Berliner: Über das Verhalten des Gußeisens bei langsamen Belastungswechseln. Ann. Phys. 20 (1906), 527-562.
L. Prandtl: Ein Gedankenmodell zur kinetischen Theorie der festen Körper.
Z. Ang. Math. Mech. 8 (1928), 85-106.

Analogical models

Analogical models

Phase diagram of a parallel combination of one elastic spring and one friction term with yield point r :

Variational inequalities

In a parallel combination of a spring with elasticity modulus E and a friction element with yield point r, the relation between a time dependent stress $\sigma(t)$ and time dependent strain $\varepsilon(t)$ is given by the variational inequality

$$
\begin{array}{ll}
|\sigma(t)-E \varepsilon(t)| \leq r & \forall t \in[0, T] \\
\varepsilon(0)=\varepsilon^{0} & \\
\dot{\varepsilon}(t)(\sigma(t)-E \varepsilon(t)-y) \geq 0 & \text { a.e. } \forall|y| \leq r
\end{array}
$$

Variational inequalities

In a parallel combination of a spring with elasticity modulus E and a friction element with yield point r, the relation between a time dependent stress $\sigma(t)$ and time dependent strain $\varepsilon(t)$ is given by the variational inequality

$$
\begin{array}{ll}
|\sigma(t)-E \varepsilon(t)| \leq r & \forall t \in[0, T] \\
\varepsilon(0)=\varepsilon^{0} & \\
\dot{\varepsilon}(t)(\sigma(t)-E \varepsilon(t)-y) \geq 0 & \text { a.e. } \forall|y| \leq r
\end{array}
$$

If σ is absolutely continuous, then there exists a unique absolutely continuous solution ε.

Variational inequalities

In a parallel combination of a spring with elasticity modulus E and a friction element with yield point r, the relation between a time dependent stress $\sigma(t)$ and time dependent strain $\varepsilon(t)$ is given by the variational inequality

$$
\begin{array}{ll}
|\sigma(t)-E \varepsilon(t)| \leq r & \forall t \in[0, T] \\
\varepsilon(0)=\varepsilon^{0} & \\
\dot{\varepsilon}(t)(\sigma(t)-E \varepsilon(t)-y) \geq 0 & \text { a.e. } \forall|y| \leq r
\end{array}
$$

If σ is absolutely continuous, then there exists a unique absolutely continuous solution ε.

We thus can define a mapping \mathfrak{p}_{r} called the Prandtl operator which with every input function σ and with every initial condition ε^{0} associates the solution $E \varepsilon=\mathfrak{p}_{r}\left[\varepsilon^{0}, \sigma\right]$.

Variational inequalities

In a parallel combination of a spring with elasticity modulus E and a friction element with yield point r, the relation between a time dependent stress $\sigma(t)$ and time dependent strain $\varepsilon(t)$ is given by the variational inequality

$$
\begin{array}{ll}
|\sigma(t)-E \varepsilon(t)| \leq r & \forall t \in[0, T] \\
\varepsilon(0)=\varepsilon^{0} & \\
\dot{\varepsilon}(t)(\sigma(t)-E \varepsilon(t)-y) \geq 0 & \text { a.e. } \forall|y| \leq r
\end{array}
$$

If σ is absolutely continuous, then there exists a unique absolutely continuous solution ε.

We thus can define a mapping \mathfrak{p}_{r} called the Prandtl operator which with every input function σ and with every initial condition ε^{0} associates the solution $E \varepsilon=\mathfrak{p}_{r}\left[\varepsilon^{0}, \sigma\right]$. It is Lipschitz continuous in the space of absolutely continuous functions and admits a Lipschitz continuous extension to the space of continuous functions.

Discontinuous processes
Prandtl's variational inequality can be solved also for discontinuous inputs σ, but it is necessary to extend the solution concept.

Discontinuous processes
Prandtl's variational inequality can be solved also for discontinuous inputs σ, but it is necessary to extend the solution concept.
A function σ is said to be regulated on $[0, T]$, if at each point $t \in[0, T]$ it admits both one-sided finite limits $\sigma(t+), \sigma(t-)$, with the convention $\sigma(0-)=\sigma(0), \sigma(T+)=\sigma(T)$.

Discontinuous processes

Prandtl's variational inequality can be solved also for discontinuous inputs σ, but it is necessary to extend the solution concept.
A function σ is said to be regulated on $[0, T]$, if at each point $t \in[0, T]$ it admits both one-sided finite limits $\sigma(t+), \sigma(t-)$, with the convention $\sigma(0-)=\sigma(0), \sigma(T+)=\sigma(T)$.
Let σ be a regulated left continuous function on $[0, T]$. We say that ε is a Kurzweil solution of the Prandtl variational inequality if it has bounded variation on $[0, T]$, and we have

$$
\begin{aligned}
& |\sigma(t)-E \varepsilon(t)| \leq r \quad \forall t \in[0, T] \\
& \varepsilon(0)=\varepsilon^{0} \\
& \int_{0}^{T}(\sigma(t+)-E \varepsilon(t+)-y(t)) \mathrm{d} \varepsilon(t) \geq 0 \\
& \text { for each regulated function } y:[0, T] \rightarrow[-r, r],
\end{aligned}
$$

the integral being understood in the Kurzweil sense.

Discontinuous processes

Prandtl's variational inequality can be solved also for discontinuous inputs σ, but it is necessary to extend the solution concept.
A function σ is said to be regulated on $[0, T]$, if at each point $t \in[0, T]$ it admits both one-sided finite limits $\sigma(t+), \sigma(t-)$, with the convention $\sigma(0-)=\sigma(0), \sigma(T+)=\sigma(T)$.
Let σ be a regulated left continuous function on $[0, T]$. We say that ε is a Kurzweil solution of the Prandtl variational inequality if it has bounded variation on $[0, T]$, and we have

$$
\begin{aligned}
& |\sigma(t)-E \varepsilon(t)| \leq r \quad \forall t \in[0, T] \\
& \varepsilon(0)=\varepsilon^{0} \\
& \int_{0}^{T}(\sigma(t+)-E \varepsilon(t+)-y(t)) \mathrm{d} \varepsilon(t) \geq 0 \\
& \text { for each regulated function } \quad y:[0, T] \rightarrow[-r, r]
\end{aligned}
$$

the integral being understood in the Kurzweil sense.
Theorem. There exists a unique solution $E \varepsilon=\mathfrak{p}_{r}\left[\varepsilon^{0}, \sigma\right]$ in $B V_{L}(0, T)$.

Kurzweil integral: Partitions and gauges
For a given interval $[a, b] \subset \mathbb{R}$ we denote by $\mathcal{D}_{a, b}$ the set of divisions of the form

$$
d=\left\{t_{0}, \ldots, t_{m}\right\}, \quad a=t_{0}<t_{1}<\cdots<t_{m}=b
$$

Kurzweil integral: Partitions and gauges
For a given interval $[a, b] \subset \mathbb{R}$ we denote by $\mathcal{D}_{a, b}$ the set of divisions of the form

$$
d=\left\{t_{0}, \ldots, t_{m}\right\}, \quad a=t_{0}<t_{1}<\cdots<t_{m}=b .
$$

With a division $d=\left\{t_{0}, \ldots, t_{m}\right\} \in \mathcal{D}_{a, b}$ we associate a partition D by adding tags τ_{j}, that is,

$$
D=\left\{\left(\tau_{j},\left[t_{j-1}, t_{j}\right]\right) ; j=1, \ldots, m\right\} ; \quad \tau_{j} \in\left[t_{j-1}, t_{j}\right] \quad \forall j=1, \ldots, m
$$

Kurzweil integral: Partitions and gauges
For a given interval $[a, b] \subset \mathbb{R}$ we denote by $\mathcal{D}_{a, b}$ the set of divisions of the form

$$
d=\left\{t_{0}, \ldots, t_{m}\right\}, \quad a=t_{0}<t_{1}<\cdots<t_{m}=b
$$

With a division $d=\left\{t_{0}, \ldots, t_{m}\right\} \in \mathcal{D}_{a, b}$ we associate a partition D by adding tags τ_{j}, that is,

$$
D=\left\{\left(\tau_{j},\left[t_{j-1}, t_{j}\right]\right) ; j=1, \ldots, m\right\} ; \quad \tau_{j} \in\left[t_{j-1}, t_{j}\right] \quad \forall j=1, \ldots, m
$$

We define the set

$$
\Gamma(a, b):=\{\delta:[a, b] \rightarrow \mathbb{R} ; \delta(t)>0 \quad \text { for all } t \in[a, b]\} .
$$

An element $\delta \in \Gamma(a, b)$ is called a gauge. We say that a partition D is δ-fine, if for every $j=1, \ldots, m$ we have

$$
\left.\tau_{j} \in\left[t_{j-1}, t_{j}\right] \subset\right] \tau_{j}-\delta\left(\tau_{j}\right), \tau_{j}+\delta\left(\tau_{j}\right)[
$$

with $\tau_{j}=t_{j-1}$ only if $j=1$ and $\tau_{j}=t_{j}$ only if $j=m$.

Kurzweil integral (Kurzweil 1957, Henstock 1963)
For given functions $f, g:[a, b] \rightarrow \mathbb{R}$ and a given partition D we define the Kurzweil sum $K_{D}(f, g)$ by the formula

$$
K_{D}(f, g)=\sum_{j=1}^{m} f\left(\tau_{j}\right)\left(g\left(t_{j}\right)-g\left(t_{j-1}\right)\right)
$$

Kurzweil integral (Kurzweil 1957, Henstock 1963)
For given functions $f, g:[a, b] \rightarrow \mathbb{R}$ and a given partition D we define the Kurzweil sum $K_{D}(f, g)$ by the formula

$$
K_{D}(f, g)=\sum_{j=1}^{m} f\left(\tau_{j}\right)\left(g\left(t_{j}\right)-g\left(t_{j-1}\right)\right)
$$

we say that $J \in \mathbb{R}$ is the Kurzweil integral of f with respect to g over $[a, b]$ and denote

$$
J=\int_{a}^{b} f(t) \mathrm{d} g(t)
$$

if for every $\varepsilon>0$ there exists $\delta \in \Gamma(a, b)$ such that for every δ-fine partition D we have

$$
\left|J-K_{D}(f, g)\right| \leq \varepsilon
$$

Kurzweil integral (Kurzweil 1957, Henstock 1963)
For given functions $f, g:[a, b] \rightarrow \mathbb{R}$ and a given partition D we define the Kurzweil sum $K_{D}(f, g)$ by the formula

$$
K_{D}(f, g)=\sum_{j=1}^{m} f\left(\tau_{j}\right)\left(g\left(t_{j}\right)-g\left(t_{j-1}\right)\right)
$$

we say that $J \in \mathbb{R}$ is the Kurzweil integral of f with respect to g over $[a, b]$ and denote

$$
J=\int_{a}^{b} f(t) \mathrm{d} g(t)
$$

if for every $\varepsilon>0$ there exists $\delta \in \Gamma(a, b)$ such that for every δ-fine partition D we have

$$
\left|J-K_{D}(f, g)\right| \leq \varepsilon
$$

The Kurzweil integral is linear with respect to both f, g, and additive with respect to the integration domain.

General properties

(i) $\int_{a}^{b} f(t) \mathrm{d} g(t)$ exists if $f \in G(a, b)$ (= set of regulated functions) and $g \in B V(a, b)$ or vice versa.

General properties

(i) $\int_{a}^{b} f(t) \mathrm{dg}(t)$ exists if $f \in G(a, b)$ (= set of regulated functions) and $g \in B V(a, b)$ or vice versa.
(ii) The integration by parts formula has the form

$$
\begin{aligned}
& \int_{a}^{b} f(t) \mathrm{d} g(t)+\int_{a}^{b} g(t) \mathrm{d} f(t)=f(b) g(b)-f(a) g(a) \\
& \quad+\sum_{t \in[a, b]}((f(t)-f(t-))(g(t)-g(t-))-(f(t+)-f(t))(g(t+)-g(t)))
\end{aligned}
$$

General properties

(i) $\int_{a}^{b} f(t) \mathrm{dg}(t)$ exists if $f \in G(a, b)$ (= set of regulated functions) and $g \in B V(a, b)$ or vice versa.
(ii) The integration by parts formula has the form

$$
\begin{aligned}
& \int_{a}^{b} f(t) \mathrm{d} g(t)+\int_{a}^{b} g(t) \mathrm{d} f(t)=f(b) g(b)-f(a) g(a) \\
& +\sum_{t \in[a, b]}((f(t)-f(t-))(g(t)-g(t-))-(f(t+)-f(t))(g(t+)-g(t))) .
\end{aligned}
$$

(iii) If $f_{n} \in G(a, b)$ and $g_{n} \in B V(a, b)$ satisfy the conditions $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0,\left\|g_{n}-g\right\|_{\infty} \rightarrow 0$ for $n \rightarrow \infty$ and $\operatorname{Var}_{[a, b]} g_{n} \leq C$ independently of n, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(t) \mathrm{d} g_{n}(t)=\int_{a}^{b} f(t) \mathrm{d} g(t)
$$

Method of construction of the Kurzweil solution to the Prandtl variational inequality
For a piecewise constant input $\sigma(t)=\sigma_{k}$ for $t \in\left(t_{k-1}, t_{k}\right]$ with an arbitrary choice of the division $\left\{t_{0}, \ldots, t_{m}\right\}$, the Kurzweil solution can be written explicitly and coincides with the classical Moreau time discrete approximation. In the interval $\left(t_{k-1}, t_{k}\right]$ is the value ε_{k} determined as the minimizer of the convex energy functional
$\varepsilon \mapsto \frac{E}{2}|\varepsilon|^{2}-\sigma_{k} \varepsilon+r\left|\varepsilon-\varepsilon_{k-1}\right|$.

Method of construction of the Kurzweil solution to the Prandtl variational inequality
For a piecewise constant input $\sigma(t)=\sigma_{k}$ for $t \in\left(t_{k-1}, t_{k}\right]$ with an arbitrary choice of the division $\left\{t_{0}, \ldots, t_{m}\right\}$, the Kurzweil solution can be written explicitly and coincides with the classical Moreau time discrete approximation. In the interval $\left(t_{k-1}, t_{k}\right]$ is the value ε_{k} determined as the minimizer of the convex energy functional
$\varepsilon \mapsto \frac{E}{2}|\varepsilon|^{2}-\sigma_{k} \varepsilon+r\left|\varepsilon-\varepsilon_{k-1}\right|$.
Every regulated function σ can be uniformly approximated by piecewise constant functions.

Method of construction of the Kurzweil solution to the Prandt| variational inequality
For a piecewise constant input $\sigma(t)=\sigma_{k}$ for $t \in\left(t_{k-1}, t_{k}\right]$ with an arbitrary choice of the division $\left\{t_{0}, \ldots, t_{m}\right\}$, the Kurzweil solution can be written explicitly and coincides with the classical Moreau time discrete approximation. In the interval $\left(t_{k-1}, t_{k}\right]$ is the value ε_{k} determined as the minimizer of the convex energy functional

$$
\varepsilon \mapsto \frac{E}{2}|\varepsilon|^{2}-\sigma_{k} \varepsilon+r\left|\varepsilon-\varepsilon_{k-1}\right| .
$$

Every regulated function σ can be uniformly approximated by piecewise constant functions.
We prove that the piecewise constant solutions $\varepsilon^{(n)}$ corresponding to a uniformly convergent sequence $\sigma^{(n)}$ of piecewise constant inputs have uniformly bounded variation, and form a Cauchy sequence in the space $G(0, T)$ of regulated functions, which enables us to pass to the limit in the variational inequality.

Method of construction of the Kurzweil solution to the Prandt| variational inequality
For a piecewise constant input $\sigma(t)=\sigma_{k}$ for $t \in\left(t_{k-1}, t_{k}\right]$ with an arbitrary choice of the division $\left\{t_{0}, \ldots, t_{m}\right\}$, the Kurzweil solution can be written explicitly and coincides with the classical Moreau time discrete approximation. In the interval $\left(t_{k-1}, t_{k}\right]$ is the value ε_{k} determined as the minimizer of the convex energy functional

$$
\varepsilon \mapsto \frac{E}{2}|\varepsilon|^{2}-\sigma_{k} \varepsilon+r\left|\varepsilon-\varepsilon_{k-1}\right| .
$$

Every regulated function σ can be uniformly approximated by piecewise constant functions.
We prove that the piecewise constant solutions $\varepsilon^{(n)}$ corresponding to a uniformly convergent sequence $\sigma^{(n)}$ of piecewise constant inputs have uniformly bounded variation, and form a Cauchy sequence in the space $G(0, T)$ of regulated functions, which enables us to pass to the limit in the variational inequality.
Theorem. The Prandtl operator \mathfrak{p}_{r} with a fixed initial condition maps the space $G_{L}(a, b)$ into $B V_{L}(a, b)$, and is Lipschitz continuous as mapping $G_{L}(a, b) \rightarrow G_{L}(a, b)$.

Prandtl-Ishlinskii model

Prandtl-Ishlinskii model

Consider a connection in series of Prandtl's parallel combinations of elastic springs with friction elements, with different yield points $r>0$ and different elasticity moduli $E(r)>0$. The total deformation ε is the given by the sum (integral) of individual deformations

$$
\varepsilon_{r}(t)=\frac{1}{E(r)} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t),
$$

Prandtl-Ishlinskii model

Consider a connection in series of Prandtl's parallel combinations of elastic springs with friction elements, with different yield points $r>0$ and different elasticity moduli $E(r)>0$. The total deformation ε is the given by the sum (integral) of individual deformations

$$
\varepsilon_{r}(t)=\frac{1}{E(r)} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t),
$$

that is

$$
\varepsilon(t)=\frac{1}{E(0)} \sigma+\int_{0}^{\infty} \frac{1}{E(r)} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t) \mathrm{d} r .
$$

Consider a connection in series of Prandtl's parallel combinations of elastic springs with friction elements, with different yield points $r>0$ and different elasticity moduli $E(r)>0$. The total deformation ε is the given by the sum (integral) of individual deformations

$$
\varepsilon_{r}(t)=\frac{1}{E(r)} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t)
$$

that is

$$
\varepsilon(t)=\frac{1}{E(0)} \sigma+\int_{0}^{\infty} \frac{1}{E(r)} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t) \mathrm{d} r .
$$

The variable r determines the level (depth) of memory.

Primary response curve

Primary response curve

We define the primary response curve

$$
g(\sigma)=\frac{r}{E(0)}+\int_{0}^{\sigma}(\sigma-\varrho) \frac{1}{E(\varrho)} \mathrm{d} \varrho
$$

and rewrite the Prandtl-Ishlinskii constitutive law in the form

$$
\varepsilon(t)=-\int_{0}^{\infty} \frac{\partial}{\partial r} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t) \mathrm{d} g(r)
$$

Primary response curve

We define the primary response curve

$$
g(\sigma)=\frac{r}{E(0)}+\int_{0}^{\sigma}(\sigma-\varrho) \frac{1}{E(\varrho)} \mathrm{d} \varrho
$$

and rewrite the Prandtl-Ishlinskii constitutive law in the form

$$
\varepsilon(t)=-\int_{0}^{\infty} \frac{\partial}{\partial r} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t) \mathrm{d} g(r)
$$

All secondary branches have the form $g^{*}(\sigma)=\sigma^{*} \pm 2 g\left(\frac{1}{2}\left|\varepsilon-\varepsilon^{*}\right|\right)$.

Properties of the Prandtl-Ishlinskii operator

Properties of the Prandtl-Ishlinskii operator

Brokate Theorem. Every memory operator satisfying Madelung's memory rules can be represented by a functional on the system $\left\{\mathfrak{p}_{r}: r \geq 0\right\}$ of Prandtl operators.

Properties of the Prandtl-Ishlinskii operator

Brokate Theorem. Every memory operator satisfying Madelung's memory rules can be represented by a functional on the system $\left\{\mathfrak{p}_{r}: r \geq 0\right\}$ of Prandtl operators.

Linear functionals generate Prandtl-Ishlinskii operators.

Properties of the Prandtl-Ishlinskii operator

Brokate Theorem. Every memory operator satisfying Madelung's memory rules can be represented by a functional on the system $\left\{\mathfrak{p}_{r}: r \geq 0\right\}$ of Prandtl operators.

Linear functionals generate Prandtl-Ishlinskii operators.
Theorem. A superposition of two Prandtl-Ishlinskii operators with continuous primary response curves g_{1}, g_{2} is the Prandtl-Ishlinskii operator with primary response curve $g_{1} \circ g_{2}$.

Properties of the Prandtl-Ishlinskii operator

Brokate Theorem. Every memory operator satisfying Madelung's memory rules can be represented by a functional on the system $\left\{\mathfrak{p}_{r}: r \geq 0\right\}$ of Prandtl operators.

Linear functionals generate Prandtl-Ishlinskii operators.
Theorem. A superposition of two Prandtl-Ishlinskii operators with continuous primary response curves g_{1}, g_{2} is the Prandtl-Ishlinskii operator with primary response curve $g_{1} \circ g_{2}$.
The function $r \mapsto \frac{\partial}{\partial r} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t)$ is regulated on every interval $[a, b] \subset(0, \infty)$. The formula

$$
\varepsilon(t)=-\int_{0}^{\infty} \frac{\partial}{\partial r} \mathfrak{p}_{r}\left[\varepsilon_{r}^{0}, \sigma\right](t) \mathrm{d} g(r)
$$

is therefore meaningful for arbitrary nondecreasing primary response curve g if the integral is interpreted in the Kurzweil sense!

A Substitution Theorem

Let $f:[0, b] \rightarrow \mathbb{R}$ be a bounded function and let $\left.f\right|_{[a, b]} \in G(a, b)$ for all $a \in(0, b)$. Let $\varphi:[0, b] \rightarrow[0, B]$ be a nondecreasing function, $\varphi(0)=0$, $\varphi(b)=B$, and let $\psi:[0, B] \rightarrow \mathbb{R}$ be a right continuous function with bounded variation. For $s \in[0, B]$ put

$$
\varphi^{-1}(s)=\inf \{t \in[0, b]: s \leq \varphi(t)\}
$$

Then for all $a \in[0, b)$ we have

$$
\int_{a}^{b} f(t) \mathrm{d}(\psi \circ \varphi)(t)=\int_{\varphi(a)}^{\varphi(b)} f\left(\varphi^{-1}(s)\right) \mathrm{d} \psi(s)
$$

A Substitution Theorem

Let $f:[0, b] \rightarrow \mathbb{R}$ be a bounded function and let $\left.f\right|_{[a, b]} \in G(a, b)$ for all $a \in(0, b)$. Let $\varphi:[0, b] \rightarrow[0, B]$ be a nondecreasing function, $\varphi(0)=0$, $\varphi(b)=B$, and let $\psi:[0, B] \rightarrow \mathbb{R}$ be a right continuous function with bounded variation. For $s \in[0, B]$ put

$$
\varphi^{-1}(s)=\inf \{t \in[0, b]: s \leq \varphi(t)\}
$$

Then for all $a \in[0, b)$ we have

$$
\int_{a}^{b} f(t) \mathrm{d}(\psi \circ \varphi)(t)=\int_{\varphi(a)}^{\varphi(b)} f\left(\varphi^{-1}(s)\right) \mathrm{d} \psi(s)
$$

This result enables us to consider inversions and superpositions of Prandtl-Ishlinskii operators also in case of discontinuous primary response curves.

Financial markets

Financial markets

Consider trading in a time interval $t \in[0, T]$ with a particular commodity. We denote by $p(t)>0$ a basic price at time t for one unit in a referential currency. It may depend on changing production costs, traffic problems, political situation, etc.

Financial markets

Consider trading in a time interval $t \in[0, T]$ with a particular commodity. We denote by $p(t)>0$ a basic price at time t for one unit in a referential currency. It may depend on changing production costs, traffic problems, political situation, etc. The market price is given by

$$
q(t)=\varrho(t) p^{\kappa}(t),
$$

where $\varrho(t)>0$ is the market sentiment at time t, and $\kappa>0$ is an empirical exponent.

Financial markets

Consider trading in a time interval $t \in[0, T]$ with a particular commodity. We denote by $p(t)>0$ a basic price at time t for one unit in a referential currency. It may depend on changing production costs, traffic problems, political situation, etc. The market price is given by

$$
q(t)=\varrho(t) p^{\kappa}(t)
$$

where $\varrho(t)>0$ is the market sentiment at time t, and $\kappa>0$ is an empirical exponent.

Let A be the set of traders who buy and sell the product. The traders are divided into classes $A_{r} \subset A$ according to their trading strategy parameterized by a number $0<r<1$ characterizing their risk susceptibility.

Trading strategy

Trading strategy
The reaction on small price fluctuations is not instantaneous, but each trader has a different risk threshold. They have in common, however, the way to evaluate the market tendencies.

Trading strategy

The reaction on small price fluctuations is not instantaneous, but each trader has a different risk threshold. They have in common, however, the way to evaluate the market tendencies.
We say that a trader $\alpha \in A$ belongs to the class A_{r}, if his market strategy is the following:
(a) If α buys the product at time t_{0} for the price $q\left(t_{0}\right)$, he keeps it until the relative price decrease with respect to the maximum at times $t>t_{0}$ attains the value r. The selling time t_{1} is thus defined by

$$
t_{1}=\min \left\{t>t_{0}: \frac{q(t)}{\max \left\{q(\tau): t_{0} \leq \tau \leq t\right\}} \leq 1-r\right\}
$$

Trading strategy

The reaction on small price fluctuations is not instantaneous, but each trader has a different risk threshold. They have in common, however, the way to evaluate the market tendencies.
We say that a trader $\alpha \in A$ belongs to the class A_{r}, if his market strategy is the following:
(a) If α buys the product at time t_{0} for the price $q\left(t_{0}\right)$, he keeps it until the relative price decrease with respect to the maximum at times $t>t_{0}$ attains the value r. The selling time t_{1} is thus defined by

$$
t_{1}=\min \left\{t>t_{0}: \frac{q(t)}{\max \left\{q(\tau): t_{0} \leq \tau \leq t\right\}} \leq 1-r\right\}
$$

(b) If α sells the product at time t_{1} for the price $q\left(t_{1}\right)$, he does not buy it back until the relative price increase with respect to the minimum at times $t>t_{1}$ attains the value r. The buying time t_{2} is thus defined by

$$
t_{2}=\min \left\{t>t_{1}: \frac{q(t)}{\min \left\{q(\tau): t_{1} \leq \tau \leq t\right\}} \geq 1+r\right\} .
$$

Logarithmic prices
We define the \log-prices $v(t)=\log p(t), w(t)=\log q(t)$ and logarithmic market sentiment $\sigma(t)=\log \varrho(t)$. The are related through the equation

$$
w(t)=\sigma(t)+\kappa v(t)
$$

Logarithmic prices

We define the \log-prices $v(t)=\log p(t), w(t)=\log q(t)$ and logarithmic market sentiment $\sigma(t)=\log \varrho(t)$. The are related through the equation

$$
w(t)=\sigma(t)+\kappa v(t)
$$

In terms of log-prices, the market strategy of a trader $\alpha \in A_{r}$ can be described in the following way:

Logarithmic prices

We define the \log-prices $v(t)=\log p(t), w(t)=\log q(t)$ and logarithmic market sentiment $\sigma(t)=\log \varrho(t)$. The are related through the equation

$$
w(t)=\sigma(t)+\kappa v(t)
$$

In terms of log-prices, the market strategy of a trader $\alpha \in A_{r}$ can be described in the following way:
(a^{\prime}) If α buys the product at time t_{0} for the log-price $w\left(t_{0}\right)$, the next selling time t_{1} is the nearest $t>t_{0}$ such that

$$
w(t)-\max \left\{w(\tau): t_{0} \leq \tau \leq t\right\} \leq \log (1-r) \approx-r .
$$

Logarithmic prices

We define the \log-prices $v(t)=\log p(t), w(t)=\log q(t)$ and logarithmic market sentiment $\sigma(t)=\log \varrho(t)$. The are related through the equation

$$
w(t)=\sigma(t)+\kappa v(t)
$$

In terms of log-prices, the market strategy of a trader $\alpha \in A_{r}$ can be described in the following way:
(a') If α buys the product at time t_{0} for the log-price $w\left(t_{0}\right)$, the next selling time t_{1} is the nearest $t>t_{0}$ such that

$$
w(t)-\max \left\{w(\tau): t_{0} \leq \tau \leq t\right\} \leq \log (1-r) \approx-r
$$

(b') If α seels the product at time t_{1} for the log-price $w\left(t_{1}\right)$, the next buying time t_{2} is the nearest $t>t_{1}$ such that

$$
w(t)-\min \left\{w(\tau): t_{1} \leq \tau \leq t\right\} \geq \log (1+r) \approx r
$$

Market sentiment

Market sentiment

All traders from A_{r} have the same strategy. Hence, all of them simultaneously are or are not in possession of the product. The state of possession will be described by a function $S_{r}(t)$ which can only take values 1 (traders from A_{r} possess the product at time t) or 0 (do not possess).

Market sentiment

All traders from A_{r} have the same strategy. Hence, all of them simultaneously are or are not in possession of the product. The state of possession will be described by a function $S_{r}(t)$ which can only take values 1 (traders from A_{r} possess the product at time t) or 0 (do not possess).

Consider first a simplified model in which all traders have the same market sentiment $\sigma(t)$ depending on the relative "market power" of the individual class A_{r}.

Market sentiment

All traders from A_{r} have the same strategy. Hence, all of them simultaneously are or are not in possession of the product. The state of possession will be described by a function $S_{r}(t)$ which can only take values 1 (traders from A_{r} possess the product at time t) or 0 (do not possess).

Consider first a simplified model in which all traders have the same market sentiment $\sigma(t)$ depending on the relative "market power" of the individual class A_{r}.
In other words, we assume that there exists a nonnegative measurable function $\mu(r)$ characterizing the relative weight of the opinion of the traders from A_{r}, and such that

$$
\sigma(t)=\int_{0}^{1} \mu(r) S_{r}(t) \mathrm{d} r
$$

Typically, μ has a small compact support in the interval $(0,1)$, $\int_{0}^{1} \mu(r) \mathrm{d} r=M$.

Financial markets and Prandtl's variational inequality

Financial markets and Prandtl's variational inequality

Let p_{0} be some smallest admissible trading amount in referential currency unit, and let $v_{0}=\log p_{0}$.
The initial condition is chosen such as if all traders from A_{r} had sold their assets at some time prior to $t=0$ for the log-price v_{0}, that is, $S_{r}(0-)=0$, with the next buying log-price $v_{0}+r$ for each $r>0$.

Financial markets and Prandtl's variational inequality

Let p_{0} be some smallest admissible trading amount in referential currency unit, and let $v_{0}=\log p_{0}$.
The initial condition is chosen such as if all traders from A_{r} had sold their assets at some time prior to $t=0$ for the log-price v_{0}, that is, $S_{r}(0-)=0$, with the next buying log-price $v_{0}+r$ for each $r>0$.

Let $\mathfrak{p}_{r}[\lambda(r), \cdot]$ be the solution operator of the Prandtl variational inequality with initial condition $\lambda(r)$. We have the following crucial result:

Financial markets and Prandtl's variational inequality

Let p_{0} be some smallest admissible trading amount in referential currency unit, and let $v_{0}=\log p_{0}$.
The initial condition is chosen such as if all traders from A_{r} had sold their assets at some time prior to $t=0$ for the \log-price v_{0}, that is, $S_{r}(0-)=0$, with the next buying log-price $v_{0}+r$ for each $r>0$.

Let $\mathfrak{p}_{r}[\lambda(r), \cdot]$ be the solution operator of the Prandtl variational inequality with initial condition $\lambda(r)$. We have the following crucial result:

Theorem. The initial memory state $\lambda(r)$ can be chosen in such a way that for each regulated log-price $w(t)$, the possession function $S_{r}(t)$ defined by the trading strategy (a^{\prime}), (b^{\prime}) is represented by the formula

$$
S_{r}(t)=\frac{1}{2}\left(1-\frac{\partial}{\partial r} \mathfrak{p}_{r}[\lambda(r), 2 w](t)\right) .
$$

Mathematical consequences

Mathematical consequences

Theorem The logarithmic market sentiment $\sigma(t)$ can be rewritten in terms of the Prandtl-Ishlinskii operator \mathcal{P} with primary response curve

$$
\phi(x)=\int_{0}^{x} \mu(\xi) \mathrm{d} \xi
$$

as the sum $\sigma(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))$.

Mathematical consequences

Theorem The logarithmic market sentiment $\sigma(t)$ can be rewritten in terms of the Prandtl-Ishlinskii operator \mathcal{P} with primary response curve

$$
\phi(x)=\int_{0}^{x} \mu(\xi) \mathrm{d} \xi
$$

as the sum $\sigma(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))$.

Mathematical consequences

Theorem The logarithmic market sentiment $\sigma(t)$ can be rewritten in terms of the Prandtl-Ishlinskii operator \mathcal{P} with primary response curve

$$
\phi(x)=\int_{0}^{x} \mu(\xi) \mathrm{d} \xi
$$

as the sum $\sigma(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))$.

Mathematical consequences

Theorem The logarithmic market sentiment $\sigma(t)$ can be rewritten in terms of the Prandtl-Ishlinskii operator \mathcal{P} with primary response curve

$$
\phi(x)=\int_{0}^{x} \mu(\xi) \mathrm{d} \xi
$$

as the sum $\sigma(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))$.

The market log-price $w(t)$ is thus the solution of the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

Inversion of Prandtl-Ishlinskii operators

Inversion of Prandtl-Ishlinskii operators
For each continuous/regulated function $v(t)$, the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

admits a unique continuous/regulated solution $w(t)=\frac{1}{2}(I-\mathcal{P})^{-1}[M+2 \kappa v](t)$ if and only if the primary response curve $x-\phi(x)$ of the operator $I-\mathcal{P}$ is increasing, that is,

Inversion of Prandtl-Ishlinskii operators
For each continuous/regulated function $v(t)$, the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

admits a unique continuous/regulated solution $w(t)=\frac{1}{2}(I-\mathcal{P})^{-1}[M+2 \kappa v](t)$ if and only if the primary response curve $x-\phi(x)$ of the operator $I-\mathcal{P}$ is increasing, that is, $\mu(x)<1$ for a.e. x.

Inversion of Prandtl-Ishlinskii operators
For each continuous/regulated function $v(t)$, the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

admits a unique continuous/regulated solution $w(t)=\frac{1}{2}(I-\mathcal{P})^{-1}[M+2 \kappa v](t)$ if and only if the primary response curve $x-\phi(x)$ of the operator $I-\mathcal{P}$ is increasing, that is, $\mu(x)<1$ for a.e. x. Otherwise, a left-inverse operator $(I-\mathcal{P})^{-1}$ can also be defined in terms of the Kurzweil integral, but it is non-unique and discontinuous.

Inversion of Prandtl-Ishlinskii operators
For each continuous/regulated function $v(t)$, the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

admits a unique continuous/regulated solution
$w(t)=\frac{1}{2}(I-\mathcal{P})^{-1}[M+2 \kappa v](t)$ if and only if the primary response curve $x-\phi(x)$ of the operator $I-\mathcal{P}$ is increasing, that is, $\mu(x)<1$ for a.e. x.
Otherwise, a left-inverse operator $(I-\mathcal{P})^{-1}$ can also be defined in terms of the Kurzweil integral, but it is non-unique and discontinuous.

$$
w(t)
$$

Inversion of Prandtl-Ishlinskii operators
For each continuous/regulated function $v(t)$, the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

admits a unique continuous/regulated solution $w(t)=\frac{1}{2}(I-\mathcal{P})^{-1}[M+2 \kappa v](t)$ if and only if the primary response curve $x-\phi(x)$ of the operator $I-\mathcal{P}$ is increasing, that is, $\mu(x)<1$ for a.e. x.
Otherwise, a left-inverse operator $(I-\mathcal{P})^{-1}$ can also be defined in terms of the Kurzweil integral, but it is non-unique and discontinuous.

Backward jump
= Financial bubble !

Inversion of Prandtl-Ishlinskii operators
For each continuous/regulated function $v(t)$, the equation

$$
w(t)=\frac{1}{2}(M+\mathcal{P}[2 w](t))+\kappa v(t)
$$

admits a unique continuous/regulated solution $w(t)=\frac{1}{2}(I-\mathcal{P})^{-1}[M+2 \kappa v](t)$ if and only if the primary response curve $x-\phi(x)$ of the operator $I-\mathcal{P}$ is increasing, that is, $\mu(x)<1$ for a.e. x. Otherwise, a left-inverse operator $(I-\mathcal{P})^{-1}$ can also be defined in terms of the Kurzweil integral, but it is non-unique and discontinuous.

Backward jump
$=$ Financial bubble!

$$
w(t)
$$

Consequence. Financial bubbles may arise if a small group of strong traders has a dominant influence on the market sentiment.

More complex models

More complex models

Consider the case that the market price is not the same for all traders. Different traders may have different market sentiments. Let, for example, [0,1] be divided into disjoint subsets R_{1}, \ldots, R_{n}, let $\sigma_{i}(t)$ be the market sentiment of the traders from A_{r} for $r \in R_{i}$, and let $w_{i}(t)$ be their log-price. We have

$$
\sigma_{i}(t)=\int_{R_{i}} \mu_{i}(r) S_{r}(t) \mathrm{d} r=: M_{i}+\mathcal{P}_{i}\left[w_{i}\right]
$$

More complex models

Consider the case that the market price is not the same for all traders. Different traders may have different market sentiments. Let, for example, [0,1] be divided into disjoint subsets R_{1}, \ldots, R_{n}, let $\sigma_{i}(t)$ be the market sentiment of the traders from A_{r} for $r \in R_{i}$, and let $w_{i}(t)$ be their log-price. We have

$$
\sigma_{i}(t)=\int_{R_{i}} \mu_{i}(r) S_{r}(t) \mathrm{d} r=: M_{i}+\mathcal{P}_{i}\left[w_{i}\right]
$$

If w_{i} is influenced also by market sentiments of other traders, we have

$$
w_{i}(t)=\sum_{j=1}^{n} a_{i j} \sigma_{j}(t)+\kappa_{i} v(t)
$$

with interaction matrix $\mathbf{A}=\left(a_{i j}\right)$. Log-prices $w_{i}(t)$ satisfy

$$
w_{i}(t)=B_{i}+\sum_{j=1}^{n} a_{i j} \mathcal{P}_{j}\left[w_{j}\right](t)+\kappa_{i} v(t)
$$

More complex models

Consider the case that the market price is not the same for all traders. Different traders may have different market sentiments. Let, for example, [0,1] be divided into disjoint subsets R_{1}, \ldots, R_{n}, let $\sigma_{i}(t)$ be the market sentiment of the traders from A_{r} for $r \in R_{i}$, and let $w_{i}(t)$ be their log-price. We have

$$
\sigma_{i}(t)=\int_{R_{i}} \mu_{i}(r) S_{r}(t) \mathrm{d} r=: M_{i}+\mathcal{P}_{i}\left[w_{i}\right]
$$

If w_{i} is influenced also by market sentiments of other traders, we have

$$
w_{i}(t)=\sum_{j=1}^{n} a_{i j} \sigma_{j}(t)+\kappa_{i} v(t)
$$

with interaction matrix $\mathbf{A}=\left(a_{i j}\right)$. Log-prices $w_{i}(t)$ satisfy

$$
w_{i}(t)=B_{i}+\sum_{j=1}^{n} a_{i j} \mathcal{P}_{j}\left[w_{j}\right](t)+\kappa_{i} v(t)
$$

In such a way, we can model even more complex behavior of the market:

More complex models

Consider the case that the market price is not the same for all traders. Different traders may have different market sentiments. Let, for example, $[0,1]$ be divided into disjoint subsets R_{1}, \ldots, R_{n}, let $\sigma_{i}(t)$ be the market sentiment of the traders from A_{r} for $r \in R_{i}$, and let $w_{i}(t)$ be their log-price. We have

$$
\sigma_{i}(t)=\int_{R_{i}} \mu_{i}(r) S_{r}(t) \mathrm{d} r=: M_{i}+\mathcal{P}_{i}\left[w_{i}\right]
$$

If w_{i} is influenced also by market sentiments of other traders, we have

$$
w_{i}(t)=\sum_{j=1}^{n} a_{i j} \sigma_{j}(t)+\kappa_{i} v(t)
$$

with interaction matrix $\mathbf{A}=\left(a_{i j}\right)$. Log-prices $w_{i}(t)$ satisfy

$$
w_{i}(t)=B_{i}+\sum_{j=1}^{n} a_{i j} \mathcal{P}_{j}\left[w_{j}\right](t)+\kappa_{i} v(t)
$$

In such a way, we can model even more complex behavior of the market: local discontinuities, loss of memory, etc.

Mechanical three-trader model

The quantity $x=x(t)$ is ghe distance between tha plates, $F=F(t)$ is the applied force,

Mechanical three-trader model

The quantity $x=x(t)$ is ghe distance between tha plates, $F=F(t)$ is the applied force, E_{i}, \hat{E}_{i} are the spring rigidities, $G_{i j}$ are Prandtl's friction elements.

Mechanical three-trader model

The quantity $x=x(t)$ is ghe distance between tha plates, $F=F(t)$ is the applied force, E_{i}, \hat{E}_{i} are the spring rigidities, $G_{i j}$ are Prandtl's friction elements.

In financial terminology, $F(t)=v(t)$ denotes the basic log-price, the ratio $\kappa_{i}=\hat{E}_{i} /\left(E_{i}+\hat{E}_{i}\right)$ is the empirical price exponent of the i-th trader, the forces $G_{i j}$ model the interactions between traders.

The quantity $x=x(t)$ is ghe distance between tha plates, $F=F(t)$ is the applied force, E_{i}, \hat{E}_{i} are the spring rigidities, $G_{i j}$ are Prandtl's friction elements.

In financial terminology, $F(t)=v(t)$ denotes the basic log-price, the ratio $\kappa_{i}=\hat{E}_{i} /\left(E_{i}+\hat{E}_{i}\right)$ is the empirical price exponent of the i-th trader, the forces $G_{i j}$ model the interactions between traders.
Amazingly, this trivial construction can model different types of singularities on the global market!

Conclusions

Conclusions

- Financial market processes can be modelled by Prandtl and Prandtl-Ishlinskii mechanical memory models;

Conclusions

- Financial market processes can be modelled by Prandtl and Prandtl-Ishlinskii mechanical memory models;
- Prandtl-Ishlinskii operators with non-convex and non-monotone primary response curves can model the occurrence of financial bubbles;

Conclusions

- Financial market processes can be modelled by Prandtl and Prandtl-Ishlinskii mechanical memory models;
- Prandtl-Ishlinskii operators with non-convex and non-monotone primary response curves can model the occurrence of financial bubbles;
- In addition, memory erasure can be observed during the process;

Conclusions

- Financial market processes can be modelled by Prandtl and Prandtl-Ishlinskii mechanical memory models;
- Prandtl-Ishlinskii operators with non-convex and non-monotone primary response curves can model the occurrence of financial bubbles;
- In addition, memory erasure can be observed during the process;
- The Prandtl-Ishlinskii hysteresis formalism is simple and robust; error bound are easy to derive;

Conclusions

- Financial market processes can be modelled by Prandtl and Prandtl-Ishlinskii mechanical memory models;
- Prandtl-Ishlinskii operators with non-convex and non-monotone primary response curves can model the occurrence of financial bubbles;
- In addition, memory erasure can be observed during the process;
- The Prandtl-Ishlinskii hysteresis formalism is simple and robust; error bound are easy to derive;
- The concept of the Kurzweil-Stieltjes integration with respect to both the time and the memory variable plays a crucial role.

