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Observation:

Simple 1D mathematical models can model complex human behavior.

Examples:
Traffic flow problem: Drivers behave like compressible fluid.
Financial markets: Traders behave like a 1D deformable solid.

Difference between them:
Solids remember their shape, fluids have no memory.
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Madelung’s memory laws

The shape of a monotone
magnetization curve does not
depend on the rate of change.
The local shape of a curve
starting from a turning point
does not depend on the previous
history.
After second turn the curve
returns back to its starting
point.
As soon as the minor loop is
closed, the process continues as
if no turn had taken place.

¾h

m

Erwin Madelung: Über Magnetisierung
durch schnell verlaufende Ströme und
die Wirkungsweise des Rutherford-
Marconischen Magnetdetektors. Ann.
Phys. 17 (1905), 861–890.
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Prandtl’s (Berliner’s) elastoplastic experiment

æçèéêëìσ

ε

σ . . . stress

ε . . . strain

S. Berliner: Über das Verhalten des Gußeisens bei langsamen
Belastungswechseln. Ann. Phys. 20 (1906), 527–562.

L. Prandtl: Ein Gedankenmodell zur kinetischen Theorie der festen Körper.
Z. Ang. Math. Mech. 8 (1928), 85–106.
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Analogical models


spring

friction

Phase diagram of a parallel combination of one elastic spring and one
friction term with yield point r :

�0 forcer
−r

deformation
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Variational inequalities
In a parallel combination of a spring with elasticity modulus E and a
friction element with yield point r , the relation between a time dependent
stress σ(t) and time dependent strain ε(t) is given by the variational
inequality

|σ(t)− Eε(t)| ≤ r ∀t ∈ [0,T ]
ε(0) = ε0

ε̇(t)(σ(t)− Eε(t)− y) ≥ 0 a.e. ∀|y | ≤ r

If σ is absolutely continuous, then there exists a unique absolutely
continuous solution ε .

We thus can define a mapping pr called the Prandtl operator which with
every input function σ and with every initial condition ε0 associates the
solution Eε = pr [ε

0, σ] . It is Lipschitz continuous in the space of
absolutely continuous functions and admits a Lipschitz continuous
extension to the space of continuous functions.

Pavel Krejčí (Matematický ústav AV ČR) Financial markets 29.3. 2014 10 / 29



Variational inequalities
In a parallel combination of a spring with elasticity modulus E and a
friction element with yield point r , the relation between a time dependent
stress σ(t) and time dependent strain ε(t) is given by the variational
inequality

|σ(t)− Eε(t)| ≤ r ∀t ∈ [0,T ]
ε(0) = ε0

ε̇(t)(σ(t)− Eε(t)− y) ≥ 0 a.e. ∀|y | ≤ r

If σ is absolutely continuous, then there exists a unique absolutely
continuous solution ε .

We thus can define a mapping pr called the Prandtl operator which with
every input function σ and with every initial condition ε0 associates the
solution Eε = pr [ε

0, σ] . It is Lipschitz continuous in the space of
absolutely continuous functions and admits a Lipschitz continuous
extension to the space of continuous functions.

Pavel Krejčí (Matematický ústav AV ČR) Financial markets 29.3. 2014 10 / 29



Variational inequalities
In a parallel combination of a spring with elasticity modulus E and a
friction element with yield point r , the relation between a time dependent
stress σ(t) and time dependent strain ε(t) is given by the variational
inequality

|σ(t)− Eε(t)| ≤ r ∀t ∈ [0,T ]
ε(0) = ε0

ε̇(t)(σ(t)− Eε(t)− y) ≥ 0 a.e. ∀|y | ≤ r

If σ is absolutely continuous, then there exists a unique absolutely
continuous solution ε .

We thus can define a mapping pr called the Prandtl operator which with
every input function σ and with every initial condition ε0 associates the
solution Eε = pr [ε

0, σ] .

It is Lipschitz continuous in the space of
absolutely continuous functions and admits a Lipschitz continuous
extension to the space of continuous functions.

Pavel Krejčí (Matematický ústav AV ČR) Financial markets 29.3. 2014 10 / 29



Variational inequalities
In a parallel combination of a spring with elasticity modulus E and a
friction element with yield point r , the relation between a time dependent
stress σ(t) and time dependent strain ε(t) is given by the variational
inequality

|σ(t)− Eε(t)| ≤ r ∀t ∈ [0,T ]
ε(0) = ε0

ε̇(t)(σ(t)− Eε(t)− y) ≥ 0 a.e. ∀|y | ≤ r

If σ is absolutely continuous, then there exists a unique absolutely
continuous solution ε .

We thus can define a mapping pr called the Prandtl operator which with
every input function σ and with every initial condition ε0 associates the
solution Eε = pr [ε

0, σ] . It is Lipschitz continuous in the space of
absolutely continuous functions and admits a Lipschitz continuous
extension to the space of continuous functions.

Pavel Krejčí (Matematický ústav AV ČR) Financial markets 29.3. 2014 10 / 29



Discontinuous processes
Prandtl’s variational inequality can be solved also for discontinuous inputs
σ , but it is necessary to extend the solution concept.

A function σ is said to be regulated on [0,T ] , if at each point t ∈ [0,T ]
it admits both one-sided finite limits σ(t+), σ(t−) , with the convention
σ(0−) = σ(0) , σ(T+) = σ(T ) .
Let σ be a regulated left continuous function on [0,T ] . We say that ε is
a Kurzweil solution of the Prandtl variational inequality if it has bounded
variation on [0,T ] , and we have

|σ(t)− Eε(t)| ≤ r ∀t ∈ [0,T ]
ε(0) = ε0∫ T

0
(σ(t+)− Eε(t+)− y(t))dε(t) ≥ 0

for each regulated function y : [0,T ] → [−r , r ],

the integral being understood in the Kurzweil sense.

Theorem. There exists a unique solution Eε = pr [ε
0, σ] in BVL(0,T ) .
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Kurzweil integral: Partitions and gauges
For a given interval [a, b] ⊂ R we denote by Da,b the set of divisions of
the form

d = {t0, . . . , tm} , a = t0 < t1 < · · · < tm = b .

With a division d = {t0, . . . , tm} ∈ Da,b we associate a partition D by
adding tags τj , that is,

D = {(τj , [tj−1, tj ]) ; j = 1, . . . ,m} ; τj ∈ [tj−1, tj ] ∀j = 1, . . . ,m .

We define the set

Γ(a, b) := {δ : [a, b] → R ; δ(t) > 0 for all t ∈ [a, b]} .

An element δ ∈ Γ(a, b) is called a gauge. We say that a partition D is
δ -fine, if for every j = 1, . . . ,m we have

τj ∈ [tj−1, tj ] ⊂ ]τj − δ(τj), τj + δ(τj)[

with τj = tj−1 only if j = 1 and τj = tj only if j = m .
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Kurzweil integral (Kurzweil 1957, Henstock 1963)
For given functions f , g : [a, b] → R and a given partition D we define the
Kurzweil sum KD(f , g) by the formula

KD(f , g) =
m∑

j=1

f (τj) (g(tj)− g(tj−1)) .

we say that J ∈ R is the Kurzweil integral of f with respect to g over
[a, b] and denote

J =

∫ b

a
f (t) dg(t) ,

if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every δ -fine
partition D we have

|J − KD(f , g)| ≤ ε .

The Kurzweil integral is linear with respect to both f , g , and additive with
respect to the integration domain.
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General properties

(i)
∫ b

a
f (t) dg(t) exists if f ∈ G (a, b) (= set of regulated functions)

and g ∈ BV (a, b) or vice versa.

(ii) The integration by parts formula has the form∫ b

a
f (t) dg(t) +

∫ b

a
g(t) df (t) = f (b) g(b)− f (a) g(a)

+
∑

t∈[a,b]

(
(f (t)− f (t−))(g(t)− g(t−))− (f (t+)− f (t))(g(t+)− g(t))

)
.

(iii) If fn ∈ G (a, b) and gn ∈ BV (a, b) satisfy the conditions
‖fn − f ‖∞ → 0 , ‖gn − g‖∞ → 0 for n →∞ and Var[a,b] gn ≤ C
independently of n , then

lim
n→∞

∫ b

a
fn(t) dgn(t) =

∫ b

a
f (t) dg(t) .
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Method of construction of the Kurzweil solution to the Prandtl
variational inequality
For a piecewise constant input σ(t) = σk for t ∈ (tk−1, tk ] with an
arbitrary choice of the division {t0, . . . , tm} , the Kurzweil solution can be
written explicitly and coincides with the classical Moreau time discrete
approximation. In the interval (tk−1, tk ] is the value εk determined as the
minimizer of the convex energy functional
ε 7→ E

2 |ε|
2 − σk ε+ r |ε− εk−1| .

Every regulated function σ can be uniformly approximated by piecewise
constant functions.
We prove that the piecewise constant solutions ε(n) corresponding to a
uniformly convergent sequence σ(n) of piecewise constant inputs have
uniformly bounded variation, and form a Cauchy sequence in the space
G (0,T ) of regulated functions, which enables us to pass to the limit in the
variational inequality.

Theorem. The Prandtl operator pr with a fixed initial condition maps the
space GL(a, b) into BVL(a, b) , and is Lipschitz continuous as mapping
GL(a, b) → GL(a, b) .
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Every regulated function σ can be uniformly approximated by piecewise
constant functions.
We prove that the piecewise constant solutions ε(n) corresponding to a
uniformly convergent sequence σ(n) of piecewise constant inputs have
uniformly bounded variation, and form a Cauchy sequence in the space
G (0,T ) of regulated functions, which enables us to pass to the limit in the
variational inequality.

Theorem. The Prandtl operator pr with a fixed initial condition maps the
space GL(a, b) into BVL(a, b) , and is Lipschitz continuous as mapping
GL(a, b) → GL(a, b) .
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Prandtl-Ishlinskii model

�

Consider a connection in series of Prandtl’s parallel combinations of elastic
springs with friction elements, with different yield points r > 0 and
different elasticity moduli E (r) > 0 . The total deformation ε is the given
by the sum (integral) of individual deformations

εr (t) =
1

E (r)
pr [ε

0
r , σ](t) ,

that is
ε(t) =

1
E (0)

σ +

∫ ∞

0

1
E (r)

pr [ε
0
r , σ](t) dr .

The variable r determines the level (depth) of memory.
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Primary response curve

�	�0 ε

σ

We define the primary response curve

g(σ) =
r

E (0)
+

∫ σ

0
(σ − %)

1
E (%)

d%

and rewrite the Prandtl-Ishlinskii constitutive law in the form

ε(t) = −
∫ ∞

0

∂

∂r
pr [ε

0
r , σ](t)dg(r) .

All secondary branches have the form g∗(σ) = σ∗ ± 2g(1
2 |ε− ε∗|) .
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Properties of the Prandtl-Ishlinskii operator

Brokate Theorem. Every memory operator satisfying Madelung’s memory
rules can be represented by a functional on the system {pr : r ≥ 0} of
Prandtl operators.

Linear functionals generate Prandtl-Ishlinskii operators.

Theorem. A superposition of two Prandtl-Ishlinskii operators with
continuous primary response curves g1, g2 is the Prandtl-Ishlinskii operator
with primary response curve g1 ◦ g2 .

The function r 7→ ∂
∂r pr [ε

0
r , σ](t) is regulated on every interval

[a, b] ⊂ (0,∞) . The formula

ε(t) = −
∫ ∞

0

∂

∂r
pr [ε

0
r , σ](t) dg(r)

is therefore meaningful for arbitrary nondecreasing primary response
curve g if the integral is interpreted in the Kurzweil sense!
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A Substitution Theorem
Let f : [0, b] → R be a bounded function and let f

∣∣
[a,b]

∈ G (a, b) for all
a ∈ (0, b) . Let ϕ : [0, b] → [0,B] be a nondecreasing function, ϕ(0) = 0 ,
ϕ(b) = B , and let ψ : [0,B] → R be a right continuous function with
bounded variation. For s ∈ [0,B] put

ϕ−1(s) = inf{t ∈ [0, b] : s ≤ ϕ(t)}.

Then for all a ∈ [0, b) we have∫ b

a
f (t)d(ψ ◦ ϕ)(t) =

∫ ϕ(b)

ϕ(a)
f (ϕ−1(s))dψ(s) .

This result enables us to consider inversions and superpositions of
Prandtl-Ishlinskii operators also in case of discontinuous primary response
curves.
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Financial markets

Consider trading in a time interval t ∈ [0,T ] with a particular commodity.
We denote by p(t) > 0 a basic price at time t for one unit in a referential
currency. It may depend on changing production costs, traffic problems,
political situation, etc. The market price is given by

q(t) = %(t)pκ(t) ,

where %(t) > 0 is the market sentiment at time t , and κ > 0 is an
empirical exponent.

Let A be the set of traders who buy and sell the product. The traders are
divided into classes Ar ⊂ A according to their trading strategy
parameterized by a number 0 < r < 1 characterizing their risk
susceptibility.
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Trading strategy

The reaction on small price fluctuations is not instantaneous, but each
trader has a different risk threshold. They have in common, however, the
way to evaluate the market tendencies.

We say that a trader α ∈ A belongs to the class Ar , if his market strategy
is the following:
(a) If α buys the product at time t0 for the price q(t0) , he keeps it until

the relative price decrease with respect to the maximum at times
t > t0 attains the value r . The selling time t1 is thus defined by

t1 = min
{

t > t0 :
q(t)

max{q(τ) : t0 ≤ τ ≤ t}
≤ 1− r

}
.

(b) If α sells the product at time t1 for the price q(t1) , he does not buy
it back until the relative price increase with respect to the minimum at
times t > t1 attains the value r . The buying time t2 is thus defined
by

t2 = min
{

t > t1 :
q(t)

min{q(τ) : t1 ≤ τ ≤ t}
≥ 1 + r

}
.
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Logarithmic prices
We define the log-prices v(t) = log p(t) , w(t) = log q(t) and logarithmic
market sentiment σ(t) = log %(t) . The are related through the equation

w(t) = σ(t) + κv(t) .

In terms of log-prices, the market strategy of a trader α ∈ Ar can be
described in the following way:
(a’) If α buys the product at time t0 for the log-price w(t0) , the next

selling time t1 is the nearest t > t0 such that

w(t)−max{w(τ) : t0 ≤ τ ≤ t} ≤ log(1− r) ≈ −r .

(b’) If α seels the product at time t1 for the log-price w(t1) , the next
buying time t2 is the nearest t > t1 such that

w(t)−min{w(τ) : t1 ≤ τ ≤ t} ≥ log(1 + r) ≈ r .
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Market sentiment

All traders from Ar have the same strategy. Hence, all of them
simultaneously are or are not in possession of the product. The state of
possession will be described by a function Sr (t) which can only take values
1 (traders from Ar possess the product at time t ) or 0 (do not possess).

Consider first a simplified model in which all traders have the same market
sentiment σ(t) depending on the relative “market power” of the individual
class Ar .
In other words, we assume that there exists a nonnegative measurable
function µ(r) characterizing the relative weight of the opinion of the
traders from Ar , and such that

σ(t) =

∫ 1

0
µ(r)Sr (t)dr .

Typically, µ has a small compact support in the interval (0, 1) ,∫ 1
0 µ(r) dr = M .
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Consider first a simplified model in which all traders have the same market
sentiment σ(t) depending on the relative “market power” of the individual
class Ar .
In other words, we assume that there exists a nonnegative measurable
function µ(r) characterizing the relative weight of the opinion of the
traders from Ar , and such that

σ(t) =

∫ 1

0
µ(r)Sr (t)dr .

Typically, µ has a small compact support in the interval (0, 1) ,∫ 1
0 µ(r) dr = M .
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Financial markets and Prandtl’s variational inequality

Let p0 be some smallest admissible trading amount in referential currency
unit, and let v0 = log p0 .
The initial condition is chosen such as if all traders from Ar had sold their
assets at some time prior to t = 0 for the log-price v0 , that is,
Sr (0−) = 0 , with the next buying log-price v0 + r for each r > 0 .

Let pr [λ(r), ·] be the solution operator of the Prandtl variational inequality
with initial condition λ(r) . We have the following crucial result:

Theorem. The initial memory state λ(r) can be chosen in such a way that
for each regulated log-price w(t) , the possession function Sr (t) defined by
the trading strategy (a’), (b’) is represented by the formula

Sr (t) =
1
2

(
1− ∂

∂r
pr [λ(r), 2w ](t)

)
.
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Mathematical consequences

Theorem The logarithmic market sentiment σ(t) can be rewritten in terms
of the Prandtl-Ishlinskii operator P with primary response curve

φ(x) =

∫ x

0
µ(ξ) dξ .

as the sum σ(t) = 1
2(M + P[2w ](t)) .

 !
y

x
y = µ(x)�
y = φ(x)

The market log-price w(t) is thus the solution of the equation

w(t) =
1
2
(M + P[2w ](t)) + κv(t).
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Inversion of Prandtl-Ishlinskii operators

For each continuous/regulated function v(t) , the equation

w(t) =
1
2
(M + P[2w ](t)) + κv(t)

admits a unique continuous/regulated solution
w(t) = 1

2(I − P)−1[M + 2κv ](t) if and only if the primary response curve
x − φ(x) of the operator I −P is increasing, that is, µ(x) < 1 for a.e. x .

Otherwise, a left-inverse operator (I − P)−1 can also be defined in terms
of the Kurzweil integral, but it is non-unique and discontinuous.

w(t)

v(t)

���
Backward jump
= Financial bubble !

Consequence. Financial bubbles may arise if a small group of strong traders
has a dominant influence on the market sentiment.
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More complex models

Consider the case that the market price is not the same for all traders.
Different traders may have different market sentiments. Let, for example,
[0, 1] be divided into disjoint subsets R1, . . . ,Rn , let σi (t) be the market
sentiment of the traders from Ar for r ∈ Ri , and let wi (t) be their
log-price. We have

σi (t) =

∫
Ri

µi (r)Sr (t) dr =: Mi + Pi [wi ] .

If wi is influenced also by market sentiments of other traders, we have

wi (t) =
n∑

j=1

aijσj(t) + κiv(t)

with interaction matrix A = (aij) . Log-prices wi (t) satisfy

wi (t) = Bi +
n∑

j=1

aijPj [wj ](t) + κiv(t).

In such a way, we can model even more complex behavior of the market:
local discontinuities, loss of memory, etc.
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Mechanical three-trader model

��
f1 = E1x1

f2 = E2x2

f3 = E3x3

f̂1 = Ê1(x − x1)

f̂2 = Ê2(x − x2)

f̂3 = Ê3(x − x3)

G23

G31G12

F

The quantity x = x(t) is ghe distance between tha plates, F = F (t) is
the applied force,

Ei , Êi are the spring rigidities, Gij are Prandtl’s friction
elements.

In financial terminology, F (t) = v(t) denotes the basic log-price, the ratio
κi = Êi/(Ei + Êi ) is the empirical price exponent of the i -th trader, the
forces Gij model the interactions between traders.

Amazingly, this trivial construction can model different types of
singularities on the global market!
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Conclusions

Financial market processes can be modelled by Prandtl and
Prandtl-Ishlinskii mechanical memory models;

Prandtl-Ishlinskii operators with non-convex and non-monotone
primary response curves can model the occurrence of financial bubbles;

In addition, memory erasure can be observed during the process;

The Prandtl-Ishlinskii hysteresis formalism is simple and robust; error
bound are easy to derive;

The concept of the Kurzweil-Stieltjes integration with respect to both
the time and the memory variable plays a crucial role.
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