GODEs: recent results and some applications

Rodolfo Collegari, Márcia Federson and Miguel Frasson
Universidade de São Paulo, Brazil

The Kurzweil integral

Example:

Consider $F:[0,1] \rightarrow \mathbb{R}$ given by

$$
F(t)=\left\{\begin{array}{l}
t^{2} \sin \frac{1}{t^{2}}, \quad 0<t \leq 1 \\
0, \quad t=0
\end{array}\right.
$$

Assertion:

$$
\exists F^{\prime}(t), \forall t \in[0,1] .
$$

Example:

Consider $F:[0,1] \rightarrow \mathbb{R}$ given by

$$
F(t)=\left\{\begin{array}{l}
t^{2} \sin \frac{1}{t^{2}}, \quad 0<t \leq 1 \\
0, \quad t=0
\end{array}\right.
$$

Assertion:

$$
\exists F^{\prime}(t), \forall t \in[0,1] .
$$

Let $f=F^{\prime}$.

Example:

Consider $F:[0,1] \rightarrow \mathbb{R}$ given by

$$
F(t)=\left\{\begin{array}{l}
t^{2} \sin \frac{1}{t^{2}}, \quad 0<t \leq 1 \\
0, \quad t=0
\end{array}\right.
$$

Assertion:

$$
\exists F^{\prime}(t), \forall t \in[0,1] .
$$

Let $f=F^{\prime}$. Then

- f IS NOT Lebesgue integrable.

Example:

Consider $F:[0,1] \rightarrow \mathbb{R}$ given by

$$
F(t)=\left\{\begin{array}{l}
t^{2} \sin \frac{1}{t^{2}}, \quad 0<t \leq 1 \\
0, \quad t=0
\end{array}\right.
$$

Assertion:

$$
\exists F^{\prime}(t), \forall t \in[0,1] .
$$

Let $f=F^{\prime}$. Then

- f IS NOT Lebesgue integrable.
- f IS Kurzweil-Henstock integrable (= Perron integrable)

Tagged Divisions

A tagged division of $[a, b] \subset \mathbb{R}$ is a finite collection of point-interval pairs $\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$, with

$$
a=s_{0} \leq s_{1} \leq \ldots \leq s_{k}=b \quad \text { and } \quad \tau_{i} \in\left[s_{i-1}, s_{i}\right],
$$

for $i=1,2, \ldots,|D|$.

Tagged Divisions

A tagged division of $[a, b] \subset \mathbb{R}$ is a finite collection of point-interval pairs $\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$, with

$$
a=s_{0} \leq s_{1} \leq \ldots \leq s_{k}=b \quad \text { and } \quad \tau_{i} \in\left[s_{i-1}, s_{i}\right]
$$

for $i=1,2, \ldots,|D|$.

Gauges
Given a function $\delta:[a, b] \rightarrow(0,+\infty)$ (called gauge of $[a, b])$, a tagged division $D=\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$ is δ-fine, whenever

$$
\left[s_{i-1}, s_{i}\right] \subset\left(\tau_{i}-\delta\left(\tau_{i}\right), \tau_{i}+\delta\left(\tau_{i}\right)\right)
$$

for $i=1,2, \ldots,|D|$.

The Kurzweil Integral
A function $U(\tau, t):[a, b] \times[a, b] \rightarrow X$ is Kurzweil integrable over [a, b], if $\exists!I \in X$ such that $\forall \varepsilon>0, \exists$ a gauge δ of $[a, b]$ such that $\forall \delta$-fina tagged division $d=\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$ of $[a, b]$,

$$
\left\|\sum_{i}\left[U\left(\tau_{i}, s_{i}\right)-U\left(\tau_{i}, s_{i-1}\right)\right]-I\right\|<\varepsilon .
$$

In this case, $I=\int_{a}^{b} D U(\tau, t)$.

The Kurzweil Integral
A function $U(\tau, t):[a, b] \times[a, b] \rightarrow X$ is Kurzweil integrable over [a, b], if $\exists!I \in X$ such that $\forall \varepsilon>0, \exists$ a gauge δ of $[a, b]$ such that $\forall \delta$-fina tagged division $d=\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$ of $[a, b]$,

$$
\left\|\sum_{i}\left[U\left(\tau_{i}, s_{i}\right)-U\left(\tau_{i}, s_{i-1}\right)\right]-I\right\|<\varepsilon .
$$

In this case, $I=\int_{a}^{b} D U(\tau, t)$.

Cousin Lemma

Given a gauge δ of $[a, b]$, there exists a δ-fine tagged division of $[a, b]$.

The Perron-Stieltjes integral
Let X be a Banach space and let $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$ be s.t.

$$
U(\tau, t)=F(t) g(\tau)
$$

The Perron-Stieltjes integral

Let X be a Banach space and let $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$ be s.t.

$$
U(\tau, t)=F(t) g(\tau)
$$

Then the integral

$$
\int_{a}^{b} D U(\tau, t)=\int_{a}^{b} D[F(t) g(\tau)]
$$

which is defined by means of sums of the form

$$
\sum\left[F\left(t_{i}\right)-F\left(t_{i-1}\right)\right] g\left(\tau_{i}\right)
$$

The Perron-Stieltjes integral

Let X be a Banach space and let $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$ be s.t.

$$
U(\tau, t)=F(t) g(\tau)
$$

Then the integral

$$
\int_{a}^{b} D U(\tau, t)=\int_{a}^{b} D[F(t) g(\tau)]
$$

which is defined by means of sums of the form

$$
\sum\left[F\left(t_{i}\right)-F\left(t_{i-1}\right)\right] g\left(\tau_{i}\right)
$$

can be rewritten as

$$
\int_{a}^{b} d[F(s)] g(s)
$$

The Kurzweil-Cauchy Integral

A function $U:[a, b] \times[a, b] \rightarrow X$ is Kurzweil-Cauchy integrable over $[a, b]$, if $\exists I \in X$ s.t. $\forall \epsilon>0, \exists$ a left continuous gauge δ of [a, b] s.t. for every δ-fine tagged division $D=\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$ of $[a, b]$,

$$
\left\|\sum_{i=1}^{|D|}\left[U\left(\tau_{i}, t_{i}\right)-U\left(\tau_{i}, t_{i-1}\right)\right]-I\right\|<\epsilon .
$$

We write $I=\int_{a}^{b} D U(\tau, t)$.

The Kurzweil-Cauchy Integral

A function $U:[a, b] \times[a, b] \rightarrow X$ is Kurzweil-Cauchy integrable over $[a, b]$, if $\exists I \in X$ s.t. $\forall \epsilon>0, \exists$ a left continuous gauge δ of $[a, b]$ s.t. for every δ-fine tagged division $D=\left(\tau_{i},\left[s_{i-1}, s_{i}\right]\right)$ of $[a, b]$,

$$
\left\|\sum_{i=1}^{|D|}\left[U\left(\tau_{i}, t_{i}\right)-U\left(\tau_{i}, t_{i-1}\right)\right]-I\right\|<\epsilon .
$$

We write $I=\int_{a}^{b} D U(\tau, t)$.

Cousin Lemma
Given a left continuous gauge of δ de $[a, b]$, there exists a δ-fine left tagged division of $[a, b]$.

Regulated Functions

A function $f:[a, b] \rightarrow X$ is regulated, whenever the lateral limits

$$
\lim _{s \rightarrow t^{-}} f(s), \quad t \in(a, b], \quad \text { and } \quad \lim _{s \rightarrow t^{+}} f(s), \quad t \in[a, b)
$$

exist. We write $f \in G([a, b], X)$.

Regulated Functions

A function $f:[a, b] \rightarrow X$ is regulated, whenever the lateral limits

$$
\lim _{s \rightarrow t^{-}} f(s), \quad t \in(a, b], \quad \text { and } \quad \lim _{s \rightarrow t^{+}} f(s), \quad t \in[a, b)
$$

exist. We write $f \in G([a, b], X)$.

We have:

- $G([a, b], X)$ with the supremum norm is a Banach space.

Regulated Functions

A function $f:[a, b] \rightarrow X$ is regulated, whenever the lateral limits

$$
\lim _{s \rightarrow t^{-}} f(s), \quad t \in(a, b], \quad \text { and } \quad \lim _{s \rightarrow t^{+}} f(s), \quad t \in[a, b)
$$

exist. We write $f \in G([a, b], X)$.

We have:

- $G([a, b], X)$ with the supremum norm is a Banach space.
- $B V([a, b], X) \subset G([a, b], X)$.

Regulated Functions

A function $f:[a, b] \rightarrow X$ is regulated, whenever the lateral limits

$$
\lim _{s \rightarrow t^{-}} f(s), \quad t \in(a, b], \quad \text { and } \quad \lim _{s \rightarrow t^{+}} f(s), \quad t \in[a, b)
$$

exist. We write $f \in G([a, b], X)$.

We have:

- $G([a, b], X)$ with the supremum norm is a Banach space.
- $B V([a, b], X) \subset G([a, b], X)$.
- Any $f \in G([a, b], X)$ can be approximated by step functions.

Regulated Functions

A function $f:[a, b] \rightarrow X$ is regulated, whenever the lateral limits

$$
\lim _{s \rightarrow t^{-}} f(s), \quad t \in(a, b], \quad \text { and } \quad \lim _{s \rightarrow t^{+}} f(s), \quad t \in[a, b)
$$

exist. We write $f \in G([a, b], X)$.

We have:

- $G([a, b], X)$ with the supremum norm is a Banach space.
- $B V([a, b], X) \subset G([a, b], X)$.
- Any $f \in G([a, b], X)$ can be approximated by step functions.
- $G^{+}([a, b], X)=\{f \in G([a, b], X) ; f$ is left continuous $\}$.

Semivariation

Let $F:[a, b] \rightarrow L(X), D=\left\{t_{0}, t_{1}, \ldots, t_{|D|}\right\}$ be a division of $[a, b]$.
We define

$$
S V(F, D)=\sup \left\{\left\|\sum_{i=1}^{|D|}\left[F\left(t_{i}\right)-F\left(t_{i-1}\right)\right] x_{i}\right\|, x_{i} \in X,\left\|x_{i}\right\| \leq 1\right\}
$$

Then

$$
(\mathrm{s}) \operatorname{var}_{[a, b]} F=\sup _{D \in \mathcal{D}[a, b]} \operatorname{SV}(F, D)
$$

is the semivariation of F in $[a, b]$.

Functions of Bounded Semivariation

A function $F:[a, b] \rightarrow L(X)$ is of bounded semivariation in $[a, b]$, whenever

$$
(\mathrm{s}) \operatorname{var}_{[a, b]} F<\infty .
$$

We write $F \in S V([a, b], L(X))$.

Functions of Bounded Semivariation

A function $F:[a, b] \rightarrow L(X)$ is of bounded semivariation in $[a, b]$, whenever

$$
\text { (s) } \operatorname{var}_{[a, b]} F<\infty \text {. }
$$

We write $F \in S V([a, b], L(X))$.

We have:

- $S V([a, b], L(X))$ with the norm

$$
\|F\|_{S V}=\|F(c)\|_{L(X)}+(\mathrm{s}) \operatorname{var}_{a}^{b} F
$$

for $c \in[a, b]$, is a Banach space.

Functions of Bounded Semivariation

A function $F:[a, b] \rightarrow L(X)$ is of bounded semivariation in $[a, b]$, whenever

$$
\text { (s) } \operatorname{var}_{[a, b]} F<\infty \text {. }
$$

We write $F \in S V([a, b], L(X))$.

We have:

- $S V([a, b], L(X))$ with the norm

$$
\|F\|_{S V}=\|F(c)\|_{L(X)}+(\mathrm{s}) \operatorname{var}_{a}^{b} F
$$

for $c \in[a, b]$, is a Banach space.

- $B V([a, b], L(X)) \subset S V([a, b], L(X))$.

Lemma

Let $\alpha \in S V_{b}([a, b], L(X)), \tau \in[a, b)$ and $x \in X$. Then

$$
\int_{a}^{b} d[\alpha(t)] \chi_{[\tau, b)}(t) x=-\alpha(\tau) x
$$

where the integral is in the sense of Kurzweil-Cauchy.

Riesz Representation Theorem

An operator $F: G^{+}([a, b], X) \rightarrow X$ is a linear bounded operator if and only if $\exists \alpha \in S V_{b}([a, b], L(X))$ s.t. $\forall f \in G^{+}([a, b], X)$,

$$
F(f)=\int_{a}^{b} d[\alpha(t)] f(t)
$$

where the integral is in the sense of Kurzweil-Cauchy.

Generalized ODEs

Let X be a Banach space, $\mathcal{O} \subset X$ be open $[\alpha, \beta] \subset[a,+\infty)$ and $\Omega=\mathcal{O} \times[\alpha, \beta]$.

Definition

A function $x:[\alpha, \beta] \rightarrow X$ is a solution on $[\alpha, \beta]$ of the GODE

$$
\frac{d x}{d \tau}=D F(x, t)
$$

whenever $(x(t), t) \in \Omega \forall t \in[\alpha, \beta]$ and

$$
x(v)=x(\gamma)+\int_{\gamma}^{v} D F(x(\tau), t), \quad \gamma, v \in[\alpha, \beta]
$$

Example

Let $r:[0,1] \rightarrow \mathbb{R}$ be a continuous function which is nowhere differentiable in $[0,1]$ and $G(x, t)=r(t)$.

Example

Let $r:[0,1] \rightarrow \mathbb{R}$ be a continuous function which is nowhere differentiable in $[0,1]$ and $G(x, t)=r(t)$. Then

$$
\int_{s_{1}}^{s_{2}} D G(x(\tau), t)=\int_{s_{1}}^{s_{2}} D r(t)=r\left(s_{2}\right)-r\left(s_{1}\right)
$$

Example

Let $r:[0,1] \rightarrow \mathbb{R}$ be a continuous function which is nowhere differentiable in $[0,1]$ and $G(x, t)=r(t)$. Then

$$
\int_{s_{1}}^{s_{2}} D G(x(\tau), t)=\int_{s_{1}}^{s_{2}} D r(t)=r\left(s_{2}\right)-r\left(s_{1}\right) .
$$

Moreover, $x:[0,1] \rightarrow \mathbb{R}$ defined by

$$
x(s)=r(s), \quad s \in[0,1]
$$

is a solution of the GODE

$$
\frac{d x}{d \tau}=D G(x, t)=\operatorname{Dr}(t)
$$

Linear GODEs

Suppose

- $A:[a, b] \rightarrow L(X)$ is $B V$ in $[a, b]$.

Suppose

- $A:[a, b] \rightarrow L(X)$ is $B V$ in $[a, b]$.
- $G(x, t)=A(t) x,(x, t) \in X \times[a, b]$.

Suppose

- $A:[a, b] \rightarrow L(X)$ is $B V$ in $[a, b]$.
- $G(x, t)=A(t) x,(x, t) \in X \times[a, b]$.
- $\left(\widetilde{x}, t_{0}\right) \in X \times[a, b]$.

Suppose

- $A:[a, b] \rightarrow L(X)$ is $B V$ in $[a, b]$.
- $G(x, t)=A(t) x,(x, t) \in X \times[a, b]$.
- $\left(\widetilde{x}, t_{0}\right) \in X \times[a, b]$.

Linear GODEs

A function $x:[a, b] \rightarrow X$ is a solution of the linear GODE

$$
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x]
$$

on $[a, b]$, with initial condition $x\left(t_{0}\right)=\widetilde{x}$, if

$$
x(t)=\widetilde{x}+\int_{t_{0}}^{t} d[A(r)] x(r), \quad t \in[a, b]
$$

Suppose

$$
\begin{align*}
& (I+[A(t+)-A(t)])^{-1}=\left[I+\Delta^{+} A(t)\right]^{-1} \in L(X), \quad t \in[a, b) \\
& (I-[A(t)-A(t-)])^{-1}=\left[I-\Delta^{-} A(t)\right]^{-1} \in L(X), \quad t \in(a, b]
\end{align*}
$$

Suppose

$$
\begin{array}{ll}
(I+[A(t+)-A(t)])^{-1}=\left[I+\Delta^{+} A(t)\right]^{-1} \in L(X), & t \in[a, b) \\
(I-[A(t)-A(t-)])^{-1}=\left[I-\Delta^{-} A(t)\right]^{-1} \in L(X), & t \in(a, b]
\end{array}
$$

Existence and Uniqueness - Š. Schwabik
Let $A \in B V([a, b], L(X))$ fulfill (Δ). Then the initial value problem

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

admits a unique solution on $[a, b]$.

Fundamental Operator

Let $A \in B V([a, b], L(X))$ fulfill (Δ). Then \exists a unique operator $U:[a, b] \times[a, b] \rightarrow L(X)$, called the fundamental operator, s.t.

$$
U(t, s)=I+\int_{s}^{t} d[A(r)] U(r, s), \quad t, s \in[a, b],
$$

where I denotes the identity operator.

Fundamental Operator

Let $A \in B V([a, b], L(X))$ fulfill (Δ). Then \exists a unique operator
$U:[a, b] \times[a, b] \rightarrow L(X)$, called the fundamental operator, s.t.

$$
U(t, s)=I+\int_{s}^{t} d[A(r)] U(r, s), \quad t, s \in[a, b],
$$

where I denotes the identity operator.

Then the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x] \\
x(s)=\tilde{x}
\end{array}\right.
$$

has solution given by the relation

$$
x(t)=U(t, s) \widetilde{x}, \quad t \in[a, b] .
$$

Dirichlet's Formula

Let $A, K \in B V([a, b], L(X))$, A fulfill (Δ) and $U:[a, b] \times[a, b] \rightarrow L(X)$ be the fundamental operator of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

Then

$$
\begin{gathered}
\int_{t_{0}}^{t} d[K(r)]\left(\int_{t_{0}}^{r} d_{s}[U(r, s)] \varphi(s)\right) \\
=\int_{t_{0}}^{t} d[K(s)] \varphi(s)+\int_{t_{0}}^{t} d_{s}\left[\int_{s}^{t} d_{r}[K(r)] U(r, s)\right] \varphi(s)
\end{gathered}
$$

$\forall t_{0}, t \in[a, b]$ and $\forall \varphi \in G([a, b], X)$.

Corollary

Let $A \in B V([a, b], L(X))$ fulfill (Δ) and $U:[a, b] \times[a, b] \rightarrow L(X)$ be the fundamental operator of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

Then

$$
\begin{aligned}
& \int_{t_{0}}^{t} d[A(r)]\left(\int_{t_{0}}^{r} d_{s}[U(r, s)] \varphi(s)\right)=\int_{t_{0}}^{t} d[A(s)] \varphi(s)+\int_{t_{0}}^{t} d_{s}[U(t, s)] \varphi(s) \\
& \forall t_{0}, t \in[a, b] \text { and } \forall \varphi \in G([a, b], X) .
\end{aligned}
$$

Variation of Constants Formula

Let $A \in B V([a, b], L(X)), F: X \times[a, b] \rightarrow L(X),[\alpha, \beta] \subseteq[a, b]$,
$t_{0} \in[\alpha, \beta]$. If $x \in G([\alpha, \beta], X)$ is a solution of the perturbed problem

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

Variation of Constants Formula

Let $A \in B V([a, b], L(X)), F: X \times[a, b] \rightarrow L(X),[\alpha, \beta] \subseteq[a, b]$,
$t_{0} \in[\alpha, \beta]$. If $x \in G([\alpha, \beta], X)$ is a solution of the perturbed problem

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

then x can be rewritten as
$x(t)=U\left(t, t_{0}\right) \widetilde{x}+\int_{t_{0}}^{t} D F(x(\tau), s)-\int_{t_{0}}^{t} d_{\sigma}[U(t, \sigma)]\left(\int_{t_{0}}^{\sigma} D F(x(\tau), s)\right)$,
$\forall t \in[\alpha, \beta]$,

Variation of Constants Formula

Let $A \in B V([a, b], L(X)), F: X \times[a, b] \rightarrow L(X),[\alpha, \beta] \subseteq[a, b]$,
$t_{0} \in[\alpha, \beta]$. If $x \in G([\alpha, \beta], X)$ is a solution of the perturbed problem

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

then x can be rewritten as
$x(t)=U\left(t, t_{0}\right) \widetilde{x}+\int_{t_{0}}^{t} D F(x(\tau), s)-\int_{t_{0}}^{t} d_{\sigma}[U(t, \sigma)]\left(\int_{t_{0}}^{\sigma} D F(x(\tau), s)\right)$,
$\forall t \in[\alpha, \beta]$, where $U:[a, b] \times[a, b] \rightarrow L(X)$ is the fundamental operator of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

Linear FDEs as Linear GODEs

Let $r, \sigma>0$ and $t_{0} \in \mathbb{R}$. Given $y: \mathbb{R} \rightarrow \mathbb{R}^{n}$, let $y_{t}:[-r, 0] \rightarrow \mathbb{R}^{n}$ be given by

$$
y_{t}(\theta)=y(t+\theta), \quad \theta \in[-r, 0], \quad t \in \mathbb{R}
$$

Let $r, \sigma>0$ and $t_{0} \in \mathbb{R}$. Given $y: \mathbb{R} \rightarrow \mathbb{R}^{n}$, let $y_{t}:[-r, 0] \rightarrow \mathbb{R}^{n}$ be given by

$$
y_{t}(\theta)=y(t+\theta), \quad \theta \in[-r, 0], \quad t \in \mathbb{R}
$$

Linear FDEs

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

where $\phi \in G\left([-r, 0], \mathbb{R}^{n}\right)$ and $\mathcal{L}(t): G\left([-r, 0], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is linear and bounded $\forall t \in\left[t_{0}, t_{0}+\sigma\right]$.

Suppose

(Int) $\forall y \in G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$, the mapping

$$
t \mapsto \mathcal{L}(t) y_{t}
$$

is Kurzweil integrable over $\left[t_{0}, t_{0}+\sigma\right]$.

Suppose

(Int) $\forall y \in G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$, the mapping

$$
t \mapsto \mathcal{L}(t) y_{t}
$$

is Kurzweil integrable over $\left[t_{0}, t_{0}+\sigma\right]$.
(Lip) $\exists M:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}$ Lebesgue integrable s.t.

$$
\begin{array}{r}
\left|\int_{s_{1}}^{s_{2}} \mathcal{L}(s)\left(y_{s}-z_{s}\right) d s\right| \leq \int_{s_{1}}^{s_{2}} M(s)\left\|y_{s}-z_{s}\right\| d s \\
\forall s_{1}, s_{2} \in\left[t_{0}-r, t_{0}+\sigma\right] \text { and } y, z \in G\left(\left[t_{0}, t_{0}+\sigma\right], \mathbb{R}^{n}\right) .
\end{array}
$$

Consider

$$
[A(t) y](\vartheta)= \begin{cases}0, & t_{0}-r \leq \vartheta \leq t_{0} \\ \int_{t_{0}}^{\vartheta} \mathcal{L}(s) y_{s} d s, & t_{0} \leq \vartheta \leq t \leq t_{0}+\sigma \\ \int_{t_{0}}^{t} \mathcal{L}(s) y_{s} d s, & t_{0} \leq t \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

Consider

$$
[A(t) y](\vartheta)= \begin{cases}0, & t_{0}-r \leq \vartheta \leq t_{0} \\ \int_{t_{0}}^{\vartheta} \mathcal{L}(s) y_{s} d s, & t_{0} \leq \vartheta \leq t \leq t_{0}+\sigma \\ \int_{t_{0}}^{t} \mathcal{L}(s) y_{s} d s, & t_{0} \leq t \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

and

$$
\widetilde{x}(\vartheta)= \begin{cases}\phi\left(\vartheta-t_{0}\right), & t_{0}-r \leq \vartheta \leq t_{0} \\ \phi(0)=x\left(t_{0}\right)\left(t_{0}\right), & t_{0} \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

Assume that, $\forall t \in\left[t_{0}, t_{0}+\sigma\right]$ and $\forall y \in G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$,

- $A(t) y$ is continuous on $\left[t_{0}-r, t_{0}+\sigma\right]$.
- $A(t)$ is a linear operator.
- $\|A(t) y\| \leq\|y\| \int_{t_{0}}^{t} M(s) d s$.

Assume that, $\forall t \in\left[t_{0}, t_{0}+\sigma\right]$ and $\forall y \in G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$,

- $A(t) y$ is continuous on $\left[t_{0}-r, t_{0}+\sigma\right]$.
- $A(t)$ is a linear operator.
- $\|A(t) y\| \leq\|y\| \int_{t_{0}}^{t} M(s) d s$.

Assume further that

- $\left\|A\left(s_{2}\right)-A\left(s_{1}\right)\right\| \leq \int_{s_{1}}^{s_{2}} M(s) d s, \forall s_{1}, s_{2} \in\left[t_{0}, t_{0}+\sigma\right], s_{1} \leq s_{2}$.

Assume that, $\forall t \in\left[t_{0}, t_{0}+\sigma\right]$ and $\forall y \in G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$,

- $A(t) y$ is continuous on $\left[t_{0}-r, t_{0}+\sigma\right]$.
- $A(t)$ is a linear operator.
- $\|A(t) y\| \leq\|y\| \int_{t_{0}}^{t} M(s) d s$.

Assume further that

- $\left\|A\left(s_{2}\right)-A\left(s_{1}\right)\right\| \leq \int_{s_{1}}^{s_{2}} M(s) d s, \forall s_{1}, s_{2} \in\left[t_{0}, t_{0}+\sigma\right], s_{1} \leq s_{2}$.

Hence

$$
A:\left[t_{0}, t_{0}+\sigma\right] \rightarrow L\left(G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)\right)
$$

is $B V$ in $\left[t_{0}, t_{0}+\sigma\right]$ and

$$
\operatorname{var}_{t_{0}}^{t_{0}+\sigma}(A) \leq \int_{t_{0}}^{t_{0}+\sigma} M(s) d s
$$

We have

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

We have

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

$$
\Longleftrightarrow
$$

We have

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } } \\
{ y _ { t _ { 0 } } = \phi }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.\right.
$$

We have

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } } \\
{ y _ { t _ { 0 } } = \phi }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.\right.
$$

where

$$
\widetilde{x}(\vartheta)= \begin{cases}\phi\left(\vartheta-t_{0}\right), & t_{0}-r \leq \vartheta \leq t_{0} \\ \phi(0)=x\left(t_{0}\right)\left(t_{0}\right), & t_{0} \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

Correspondence of Equations

Let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution on $\left[t_{0}, t_{0}+\sigma\right]$ of the linear FDE

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

Correspondence of Equations

Let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution on $\left[t_{0}, t_{0}+\sigma\right]$ of the linear FDE

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

For $t \in\left[t_{0}, t_{0}+\sigma\right]$, define

$$
x(t)(\vartheta)= \begin{cases}y(\vartheta), & \vartheta \in\left[t_{0}-r, t\right] \\ y(t), & \vartheta \in\left[t, t_{0}+\sigma\right]\end{cases}
$$

Correspondence of Equations

Let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution on $\left[t_{0}, t_{0}+\sigma\right]$ of the linear FDE

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

For $t \in\left[t_{0}, t_{0}+\sigma\right]$, define

$$
x(t)(\vartheta)= \begin{cases}y(\vartheta), & \vartheta \in\left[t_{0}-r, t\right] \\ y(t), & \vartheta \in\left[t, t_{0}+\sigma\right]\end{cases}
$$

Then $x:\left[t_{0}, t_{0}+\sigma\right] \rightarrow G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$ is a solution of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

Correspondence of Equations

Let $x:\left[t_{0}, t_{0}+\sigma\right] \rightarrow G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$ be a solution on $\left[t_{0}, t_{0}+\sigma\right]$ of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

Correspondence of Equations

Let $x:\left[t_{0}, t_{0}+\sigma\right] \rightarrow G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$ be a solution on $\left[t_{0}, t_{0}+\sigma\right]$ of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

For $\vartheta \in\left[t_{0}-r, t_{0}+\sigma\right]$, define

$$
y(\vartheta)= \begin{cases}x\left(t_{0}\right)(\vartheta), & t_{0}-r \leq \vartheta \leq t_{0} \\ x(\vartheta)(\vartheta), & t_{0} \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

Correspondence of Equations

Let $x:\left[t_{0}, t_{0}+\sigma\right] \rightarrow G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right)$ be a solution on $\left[t_{0}, t_{0}+\sigma\right]$ of the linear GODE

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=D G(x, t)=D[A(t) x] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.
$$

For $\vartheta \in\left[t_{0}-r, t_{0}+\sigma\right]$, define

$$
y(\vartheta)= \begin{cases}x\left(t_{0}\right)(\vartheta), & t_{0}-r \leq \vartheta \leq t_{0} \\ x(\vartheta)(\vartheta), & t_{0} \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

Then $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ is a solution of the linear FDE

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t} \\
y_{t_{0}}=\phi
\end{array}\right.
$$

Variation of Constants Formula for FDEs

Solution Operator for Linear FDEs

Let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution of the linear FDE

$$
\dot{y}=\mathcal{L}(t) y_{t}
$$

with initial condition $y_{s}=\phi$.

Solution Operator for Linear FDEs

Let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution of the linear FDE

$$
\dot{y}=\mathcal{L}(t) y_{t}
$$

with initial condition $y_{s}=\phi$. For $t, s \in\left[t_{0}, t_{0}+\sigma\right], t \geq s$, the operator $T(t, s): G\left([-r, 0], \mathbb{R}^{n}\right) \rightarrow G\left([-r, 0], \mathbb{R}^{n}\right)$ defined by

$$
T(t, s) \phi=y_{t}, \quad t, s \in\left[t_{0}, t_{0}+\sigma\right], t \geq s
$$

is called solution operator of the linear FDE.

Let $g:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a given function. For
$s \in\left[t_{0}, t_{0}+\sigma\right]$, let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution of the linear FDE

$$
\dot{y}=\mathcal{L}(t) y_{t}
$$

with initial condition $y_{s}=g_{s}$.

Let $g:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a given function. For
$s \in\left[t_{0}, t_{0}+\sigma\right]$, let $y:\left[t_{0}-r, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ be a solution of the linear FDE

$$
\dot{y}=\mathcal{L}(t) y_{t}
$$

with initial condition $y_{s}=g_{s}$. For $t \in\left[t_{0}, t_{0}+\sigma\right], t \geq s$, define

$$
T(t, s): G\left(\left[t_{0}-r, t_{0}+\sigma\right], \mathbb{R}^{n}\right) \rightarrow G\left([-r, 0], \mathbb{R}^{n}\right)
$$

by

$$
T(t, s) g=y_{t}
$$

For the next two lemmas and the main theorem, consider

$$
h(w)(\vartheta)= \begin{cases}0, & t_{0}-r \leq \vartheta \leq t_{0} \\ \int_{t_{0}}^{\vartheta} f\left(y_{u}, u\right) d u, & t_{0} \leq \vartheta \leq w \\ \int_{t_{0}}^{w} f\left(y_{u}, u\right) d u, & w \leq \vartheta \leq t_{0}+\sigma\end{cases}
$$

where $\vartheta \in\left[t_{0}-r, t_{0}+\sigma\right], w \in\left[t_{0}, t_{0}+\sigma\right]$.

Lemma

Let y and x be, respectively, the corresponding solutions of the perturbed problems

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } + f (y _ { t } , t) , } \\
{ y _ { t _ { 0 } } = \phi , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.\right.
$$

Lemma

Let y and x be, respectively, the corresponding solutions of the perturbed problems

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } + f (y _ { t } , t) , } \\
{ y _ { t _ { 0 } } = \phi , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.\right.
$$

Let $T(t, s)$ and $U(t, s)$ be, respectively, the solution and fundamental operators of

$$
\dot{y}=\mathcal{L}(t) y_{t} \quad \text { and } \quad \frac{d x}{d \tau}=D[A(t) x]
$$

Lemma

Let y and x be, respectively, the corresponding solutions of the perturbed problems

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } + f (y _ { t } , t) , } \\
{ y _ { t _ { 0 } } = \phi , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x}
\end{array}\right.\right.
$$

Let $T(t, s)$ and $U(t, s)$ be, respectively, the solution and fundamental operators of

$$
\dot{y}=\mathcal{L}(t) y_{t} \quad \text { and } \quad \frac{d x}{d \tau}=D[A(t) x]
$$

Then, for $t_{0} \leq w \leq s \leq t \leq t_{0}+\sigma$, we have

$$
U(t, s)\left(\int_{t_{0}}^{w} D F(x(\tau), u)\right)(t)=T(t, s)\left(h(w)_{s}\right)(0) .
$$

Lemma

Let y and x be, respectively, the corresponding solutions of the perturbed problems

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } + f (y _ { t } , t) , } \\
{ y _ { t _ { 0 } } = \phi , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x},
\end{array}\right.\right.
$$

Lemma

Let y and x be, respectively, the corresponding solutions of the perturbed problems

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } + f (y _ { t } , t) , } \\
{ y _ { t _ { 0 } } = \phi , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x},
\end{array}\right.\right.
$$

Let $T(t, s)$ and $U(t, s)$ be, respectively, the solution and fundamental operators of

$$
\dot{y}=\mathcal{L}(t) y_{t} \text { and } \frac{d x}{d \tau}=D[A(t) x] .
$$

Lemma

Let y and x be, respectively, the corresponding solutions of the perturbed problems

$$
\left\{\begin{array} { l }
{ \dot { y } = \mathcal { L } (t) y _ { t } + f (y _ { t } , t) , } \\
{ y _ { t _ { 0 } } = \phi , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d x}{d \tau}=D[A(t) x+F(x, t)] \\
x\left(t_{0}\right)=\widetilde{x},
\end{array}\right.\right.
$$

Let $T(t, s)$ and $U(t, s)$ be, respectively, the solution and fundamental operators of

$$
\dot{y}=\mathcal{L}(t) y_{t} \text { and } \frac{d x}{d \tau}=D[A(t) x] .
$$

Then, for $t_{0} \leq t \leq t_{0}+\sigma$, we have

$$
\int_{t_{0}}^{t} d_{s}[U(t, s)]\left(\int_{t_{0}}^{s} D F(x(\tau), u)\right)(t)=\int_{t_{0}}^{t} d_{s}[T(t, s)] h(s)(0),
$$

where the integrals are in the sense of Kurzweil-Cauchy.

VCF for linear FDEs

Let y be a solution of the perturbed problem

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t}+f\left(y_{t}, t\right) \\
y_{t_{0}}=\phi
\end{array}\right.
$$

where $f: G\left([-r, 0], \mathbb{R}^{n}\right) \times\left[t_{0}, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ and
$\mathcal{L}(t): G\left([-r, 0], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ satisfy (Int) and (Lip) with integrals in the sense of Kurzweil-Cauchy.

VCF for linear FDEs

Let y be a solution of the perturbed problem

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t}+f\left(y_{t}, t\right) \\
y_{t_{0}}=\phi
\end{array}\right.
$$

where $f: G\left([-r, 0], \mathbb{R}^{n}\right) \times\left[t_{0}, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ and
$\mathcal{L}(t): G\left([-r, 0], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ satisfy (Int) and (Lip) with integrals in the sense of Kurzweil-Cauchy. Let $T(t, s)$ be the solution operator of the linear FDE $\dot{y}=\mathcal{L}(t) y_{t}$.

VCF for linear FDEs

Let y be a solution of the perturbed problem

$$
\left\{\begin{array}{l}
\dot{y}=\mathcal{L}(t) y_{t}+f\left(y_{t}, t\right) \\
y_{t_{0}}=\phi
\end{array}\right.
$$

where $f: G\left([-r, 0], \mathbb{R}^{n}\right) \times\left[t_{0}, t_{0}+\sigma\right] \rightarrow \mathbb{R}^{n}$ and
$\mathcal{L}(t): G\left([-r, 0], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ satisfy (Int) and (Lip) with integrals in the sense of Kurzweil-Cauchy. Let $T(t, s)$ be the solution operator of the linear FDE $\dot{y}=\mathcal{L}(t) y_{t}$. Then, for $t_{0} \leq t \leq t_{0}+\sigma$,

$$
y(t)=T\left(t, t_{0}\right) \phi(0)+\int_{t_{0}}^{t} f\left(y_{u}, u\right) d u-\int_{t_{0}}^{t} d_{s}[T(t, s)] h(s)(0)
$$

R. Collegari, M. Federson and M. Frasson, Linear FDEs in the frame of generalized ODEs. Submitted.
Š. Schwabik, Generalized Ordinary Differential Equations.
World Scientific, 1992.
图 Š. Schwabik, Abstract Perron-Stieltjes integrals. Math.
Bohem. 121 (1996), no. 4, 425-447.
囯 Š. Schwabik, Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), no. 4, 433-457.
(M . Tvrdý, Linear integral equations in the space of regulated functions. Math. Bohem. 123 (1998), no. 2, 177-212.

Prague, 2010

Prague, 2010

São Carlos, 2011

São Carlos, 2011

Happy birthday, Milan!

Thanks for your attention!

