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Abstract

It considered to be absolutely impossible to achieve exponential stability of
second order delay differential equations without damping term. In this
talk we try to refute this delusion. Nonoscillation for second order delay
differential equations with non-tending to zero coefficients and without
damping term are obtained. The exponential stability results for second
order delay differential equations without damping term are proven. Our
approach is based on solutions’ representation formulas and positivity of
fundamental functions (Cauchy functions) of functional differential
equations. Theorems about positivity of the Cauchy functions are
proposed in the form of assertions about differential inequalities.
Corresponding choice of test functions leads to results on nonoscillation
and exponential stability. On a basis of the obtained results, simple tests
for stabilization by feedback delay control are proposed.
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1. Introduction

Model for motion of a single mass point

X
′′

(t) = f (t), t ∈ [0,+∞), (1.1)

where X (t) = col {x1(t), x2(t), x3(t)} , f (t) = col {f1(t), f2(t), f3(t)} .
Instability of this system implies that small mistakes in f and in the values
X (t0) and X ′(t0) can imply very essential mistakes in calculation of
X (t0 + ω) and X ′(t0 + ω) for sufficiently large ω.
Let us assume that the trajectory Y (t) = col {y1(t), y2(t), y3(t)}, which
we want to ”hold”, is known, and we wish to hold our object ”close” to
this trajectory. Although we know this trajectory, it is impossible to
”achieve” this proximity on semiaxis, because of instability of system
(1.1). As a result, we have to make corrections permanently for
localization of the single mass point in the space. Our purpose is to
construct a control which makes this correction automatically.

A. Domoshnitsky (Ariel University) Asymptotic Properties 3 / 68



1. Introduction (cont.)

A standard trick: to set an additional force which depends on the state
and/or on the velocity of the single mass point as a control u(t) in the
right hand side. Wishing to stay in a linear case, we can choose, for
example,

u(t) = −Q
{
X ′(t)− Y ′(t)

}
− P {X (t)− Y (t)} , (1.2)

where P and Q are constant 3× 3 matrices, and to analyze the
exponential stability of the system

X
′′

(t) + QX ′(t) + PX (t) = g(t), t ∈ [0,+∞),

where g(t) = f (t) + QY ′(t) + PY (t) is a known vector function.
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1. Introduction (cont.)

Remarks on Mathematical Model

1) Usually it is essentially technically easier to locate only the state X (t)
and not the velocity X ′(t), i.e. Q is the zero 3× 3 matrix. In the simplest
case of a diagonal matrix P we get three separate equations with pure
imaginary roots of the characteristic equations. Thus each of these
equations is Lyapunov’s stable, but not exponentially stable and, as a
result, there is no stability with respect to right hand side.

2) One of the basic properties of the feedback control is appearance of a
delay τ in real systems in receiving signal and in reaction on this signal.
Thus in real systems the control is choosen in the form

u(t) = −
m∑
i=1

Pi (t){X (t − τ i (t))− Y (t − τ i (t))}, t ∈ [0,+∞), (1.3)
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1. Introduction (cont.)

where P(t) is an 3×3 matrix. Adding this control u(t) into the equation
of the motion, we get

X ′′(t) +
m∑
i=1

Pi (t)X (t − τ i (t)) = g(t), t ∈ [0,+∞), (1.4)

where

g(t) = f (t) +
m∑
i=1

Pi (t)Y (t − τ i (t))}, t ∈ [0,+∞),

is the known right hand side. We have to study the exponential stability of
system (1.4).
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1. Introduction (cont.)

In this talk we limit ourselves by the diagonal matrices Pi (i = 1, ...,m) in
order to be concentrated on the scalar second order equation

x ′′(t) + px(t − τ) = 0, t ∈ [0,+∞), (1.5)

and its natural generalizations

x ′′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0,+∞), (1.6)

and

x ′′(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = 0, t ∈ [0,+∞) (1.7)

where
x(ξ) = 0 for ξ < 0. (1.8)
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1. Introduction (cont.)

The idea of the stabilization by feedback control was efficiently realized in
various applications.

K.Pyragas. Control of chaos via an unstable delayed feedback controller, Phys. Rev.
Lett., vol.86, No 11, March 2001, pp.2265-2268.

E.Ott, C.Grebogi, J.A.Yorke. Controlling chaos. Phys. Rev. Lett. 64,1196 (1990).

J.E.S.Socolar, D.W.Sukow and D.J.Gauthier. Stabilizing unstable periodic orbits in fast
dynamical systems. Phys. Rev. E50, 3245 (1994).

The finite spectrum assignment techique was originated, for example, in
the work

Z. Artstein, Linear systems with delayed controls: a reduction, IEEE Trans. Automat.
Control 27:4 (1982), 869–879.
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1. Introduction (cont.)

Our approach to the study of stability is based on oscillation properties of
solutions. Various aspects of oscillation and asymptotic behavior of second
order delay equations were considered in the known monographs by

A. D. Myshkis. Linear differential equations with delayed argument. Moscow, Nauka,
1972.

S.B.Norkin, Differential equations of the second order with retarded argument. Transl.
Math. Monographs, vol. 31, Amer. Math. Soc., Providence, 1972.

I.Gyori and G.Ladas. Oscillation theory of delay differential equations. Clarendon,
Oxford, 1991.

R.G.Koplatadze. On oscillatory properties of solutions of functional differential
equations. Memoirs on Differential Equations and Mathematical Physics, vol.3, Tbilisi,
1994.

L.N.Erbe, Q.Kong and B.G.Zhang. Oscillation theory for functional differential
equations, Dekker, New York/Basel, 1995.

G.S.Ladde, V.Lakshmikantham and B.G.Zhang. Oscillation theory of differential
equations with deviating argument. Dekker, New York/Basel, 1987.
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1. Introduction (cont.)

Several specific properties of second order delay equations.

Solutions x of the delay equation

x ′′(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = 0, t ∈ [0,+∞) (1.7)

for pi (t) ≤ 0 can change its sign. For example, the function
x(t) = (t − 1)(t − 2) is a solution of the equation

x ′′(t)− x(0) = 0, t ∈ [0,+∞), (1.8)

changing the sign.
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1. Introduction (cont.)

The equation
x ′′(t)− x(t − τ(t)) = 0, t ∈ [0,+∞), (1.9)

with

τ(t) =

{
t, t ∈ [0, 4),
t − 2, t ∈ (4, 8),

τ(t + 8) = τ(t),

possesses oscillating solution

x(t) =

{
(t − 1)(t − 3), t ∈ [0, 4],
−(t − 4)2 + 4(t − 4) + 3, t ∈ (4, 8),

x(t + 8) = x(t),

Another group of solutions y(t) of equation (1.9) satisfying the conditions

y(0) = 0, y ′(0) = β > 0,

possesses the property y ′′(t) ≥ 0, y ′(t) > 0 for t ∈ [0,+∞) that implies
y(t) > 0 for t ∈ [0,+∞), and y(t)→ +∞. We see that, in contrast with
ODEs, delay equations can possess together oscillating and nonoscillating
solutions.
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1. Introduction (cont.)

Several possible types of solutions’ behavior of this equation in case p(t)

and τ(t) are bounded functions on semiaxis and
∞∫
0

|p(t)| dt =∞, can be

only as following :

a) |x(t)| → ∞ for t →∞; b) x(t) oscillates; c) x(t)→ 0, x ′(t)→ 0 for t →∞.
(1.10)

Existence and uniqueness of solutions of each of these types were
obtained in

A.L.Skubachevskii. Oscillating solutions of a second order homogeneous linear
differential equation with time-lag. Differentsialnye uravnenia, 11, 462-469 (1975).

R.G.Koplatadze. On oscillatory properties of solutions of functional differential
equations. Memoirs on Differential Equations and Mathematical Physics, vol.3, Tbilisi,
1994.

M.G.Shmul’yan. On the oscillating solutions of a linear second order differential
equation with retarding argument. Differentsial’nye uravnenia, v.31, 1995, 622-629.
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1. Introduction (cont.)

Assertions on existence of bounded solutions, their uniqueness and
oscillation were obtained in the monograph

G.S.Ladde, V.Lakshmikantham and B.G.Zhang. Oscillation theory of differential
equations with deviating argument. Dekker, New York/Basel, 1987.

Solutions tending to zero were considered in the paper

T.A.Burton and J.R.Haddock. On solution tending to zero for the equation
x”(t) + a(t)x(t − r(t)) = 0. Arch.Math. (Basel), 27 (1976), pp. 48-51.
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1. Introduction (cont.)

For the case pi (t) ≥ 0 various results on oscillation of all solutions can be
found in the book by Koplatadze, results on validity of Sturm’s theorem
for delay differential equations (between two adjacent zeros of every
solution there are one and only one zero of each other non-proportional
solution), estimates of distances between zeros from below and above were
obtained in

N.V.Azbelev. About zeros of solutions of linear differential equations of the second order
with delayed argument. Differentsialnye Uravnenia, 1971, V. 7, No. 7, pp. 1147–1157.

Y.Domshlak. Comparison theorems of Sturm type for first and second order differential
equations with sign variable deviations of the argument. Ukraine Mat.Zh. 34, 158-163
(1982).

A.Domoshnitsky, Sturm’s theorem for equation with delayed argument, Georgian Math.
Journal, 1 , No. 3, 267-276 (1994).
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1. Introduction (cont.)

Note that delay equation

x ′′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0,+∞), (1.6)

usually inherits oscillation properties of corresponding ordinary differential
equation (ODE)

x ′′(t) + p(t)x(t) = 0. (1.11)

For example, it was proven by J. J. A. M. Brands [11] that for every
nonnegative p(t) and bounded delay τ(t) equation (1.6) is oscillatory if
and only if corresponding ordinary differential equation (1.11) is oscillatory.

The asymptotic behavior of ODE (1.11) is not inherited by

x ′′(t) + px(t − τ) = 0, t ∈ [0,+∞), (1.5)

A.D.Myshkis proved that there exists unbounded solution of equation (1.5)
for each couple of positive constants p and τ .
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1. Introduction (cont.)

The results on unboundedness of solutions in the case of variable
coefficients and delays were obtained on the basis of growth of the
Wronskians in

A.Domoshnitsky, Unboundedness of solutions and instability of differential equations of
the second order with delayed argument, Differential & Integral Equations, 14 (2001),
no.5, 559-576. MR 2002c:34117. Zbl 0884.34074

Theorem. If there exists a positive constant ε such that τ(t) > ε and
p(t) > ε, then there exist unbounded solution to equation

x ′′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0,+∞), (1.6)
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1. Introduction (cont.)

If ε = 0, then all solutions of the equations

x ′′(t) + t2x(t) + t3/2x
(
t − ε

t

)
= 0,

x ′′(t) + tαx
(
t − ε

tβ

)
= 0, α + 2 > 2β, α > 0,

x ′′(t) + x(t) +
1√
t
x

(
t − ε√

t

)
= 0,

x ′′(t) + etx(t − ε) = 0,

are bounded on (1,+∞).If ε > 0, then there exist unbounded solutions to
these equations. Note that the delays in the first three equations tend to
zero when t → +∞, but even these ”very small” delays totally change the
asymptotic behavior of solutions.
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1. Introduction (cont.)

x ′′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0,+∞), (1.6)

Theorem. All solutions of equation (1.6) with positive nondecreasing and
bounded coefficient p(t) and nondecreasing h(t) ≡ t − τ(t) are bounded
if and only if

∞∫
0

τ(t) dt <∞. (1.13)

A study of advanced equations (τ(t) ≤ 0) can be found in the paper [27]

Z.Dosla and I.T.Kiguradze. On boundedness and stability of solutions of second order
linear differential equations with advanced arguments. Advances in Mathematical
Sciences and Applications, Gakkotosho, Tokyo, vol.9, No.1 , 1-24 (1999),

in which results on boundedness, stability and asymptotic representations
of solutions are obtained.
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1. Introduction (cont.)

Summarizing, we can conclude that it looks impossible to obtain results
about exponential stability for one term equation (1.6). It means that the
control of the form

u(t) = −P(t){X (t − τ(t))− Y (t − τ(t))}, (1.15)

without damping term cannot help us in stabilization of system (1.1).
It should be stressed that there are no results about the exponential
stability of equation (1.7).
We demonstrate that the control of the form (1.3), where m ≥ 2 can
stabilize system (1.1) and achieve the exponential stability of equation
(1.7). We obtain results explaining how to achieve nonoscillation of delay
equations and positivity of their Cauchy (fundamental) functions. This will
open a way to analysis of asymptotic behavior of nonlinear delay
differential equations on the basis of the known schemes of upper and
lower functions.
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2. About Representation of Solutions for Second Order
Delay Differential Equations

The main object of this talk is the second order delay differential equation

x
′′

(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = f (t), t ∈ [0,+∞), (2.1)

x(ξ) = ϕ(ξ), for ξ < 0, (2.2)

with measurable essentially bounded f , pi , ϕ, τ i (i = 0, 1, ..., n − 1), and

τ i (t) ≥ 0 for t ≥ 0.

x
′′

(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = 0, t ∈ [0,+∞), (2.3)
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2. About Representation of Solutions for Second Order
Delay Differential Equations (cont.)

We consider the zero initial functions

x(ξ) = 0, for ξ < 0. (2.4)

In this case the space of the solutions of the second order equation
(2.3),(2.4) becomes two-dimensional and the key notions of the classical
theory of ODEs can be used. The main concepts of these approach are
presented in

N.V.Azbelev, V.P.Maksimov and L.F.Rakhmatullina. Introduction to theory of
functional-differential equations, Nauka, Moscow, 1991.
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2. About Representation of Solutions for Second Order
Delay Differential Equations (cont.)

The general solution of equation (2.1),(2.4) can be represented in the form
[4]

x(t) =

t∫
0

C (t, s)f (s)ds + x1(t)x(0) + x2(t)x ′(0), (2.5)

where x1(t), x2(t) are two solutions of homogeneous equation (2.3),(2.4)
satisfying the conditions

x1(0) = 1, x ′1(0) = 0, x2(0) = 0, x ′2(0) = 1, (2.6)

and the kernel in this representation is called the Cauchy function C (t, s)
of equation (2.1).
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2. About Representation of Solutions for Second Order
Delay Differential Equations (cont.)

For every fixed s the function C (t, s) as a function of the variable t
satisfies the equation

x
′′

(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = 0, t ∈ [s,+∞), (2.7)

x(ξ) = 0, for ξ < s, (2.8)

and C (s, s) = 0, C ′t(s, s) = 1. Behavior of the fundamental system of
solutions of (2.3),(2.4) determines existence and uniqueness of solutions of
boundary value problems for this equation. Positivity of the Cauchy
function C (t, s) of equation (2.1),(2.4) is a basis of various theorems
about differential inequalities (under corresponding conditions, solution of
an inequality is greater than solution of an equation).
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2. About Representation of Solutions for Second Order
Delay Differential Equations (cont.)

Definition 2.1. Equation (2.3) is uniformly exponentially stable if there
exist N > 0 and α > 0, such that the solution of (2.3), (2.2), where

x(t) = ϕ(t), t < t0, x(t0) = x0, x
′(t0) = x ′0 , (2.9)

satisfies the estimate

|x(t)| ≤ Ne−α(t−t0), 0 ≤ t < +∞, (2.10)

where N and α do not depend on t0.
Definition 2.2. We say that the Cauchy function C (t, s) of equation (2.1)
satisfies the exponential estimate if there exist positive N and α such that

|C (t, s)| ≤ Ne−α(t−s), 0 ≤ s ≤ t < +∞. (2.11)

It is known that for equation (2.1) with bounded delays these two
definitions are equivalent [3].
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3.Tests of Positivity of the Cauchy Functions and Stability

We will demonstrate that, although the ordinary differential equation

x
′′

(t) +

{
m∑
i=1

pi (t)

}
x(t) = 0, t ∈ [0,+∞), (3.1)

can be oscillatiting and asymptoticaly unstable, the delay equation

x
′′

(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = 0, t ∈ [0,+∞), (2.3)

x(ξ) = 0, for ξ < 0. (2.4)

under corresponding conditions on the coefficients pi (t) and delays τ i (t) is
nonoscillating and exponentially stable.
The basic idea of our approach is to avoid the condition on nonnegativity
of the coefficients pi (t) for all i = 1, ...,m, and to allow terms with positive
and terms with negative coefficients pi (t) to compensate each other.
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Let us consider the equation

x
′′

(t) + a(t)x(t − τ(t))− b(t)x(t − θ(t)) = 0, t ∈ [0,+∞), (3.2)

x(ξ) = 0, for ξ < 0, (3.3)

where a(t), b(t), τ(t) and θ(t) are measurable essentially bounded
nonnegative functions. Denote

q∗ = essinft≥0q(t), q∗ = esssupt≥0q(t). (3.4)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Theorem 3.1. Assume that 0 ≤ τ(t) ≤ θ(t), 0 ≤ b(t) ≤ a(t),

4 {a(t)− b(t)} ≤ [b(θ − τ)]2∗ , t ∈ [0,+∞), (3.5)

0 < [b(θ − τ)]∗ θ∗ ≤ 1

e
. (3.6)

Then
1) the Cauchy function C (t, s) of equation (3.2) is positive for
0 ≤ s < t < +∞;
2) if there exists such positive ε that

a(t)− b(t) ≥ ε, (3.7)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

then the Cauchy function C (t, s) of equation (3.2) satisfies the
exponential estimate, i.e. there exist positive N and α such that

|C (t, s)| ≤ Ne−α(t−s), 0 ≤ s ≤ t < +∞.

and the integral estimate

sup
t≥0

t∫
0

C (t, s)ds ≤ 1

ε
; (3.8)

3) if there exists limt→∞ {a(t)− b(t)} = k , with k > 0, then

lim
t→∞

t∫
0

C (t, s)ds =
1

k
. (3.9)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Corollary 3.1. Assume that the delays τ(t) ≡ τ , θ(t) ≡ θ are constants
and

0 < ε ≤ 4 {a(t)− b(t)} ≤ b2∗(θ − τ)2, t ∈ [0,+∞), (3.10)

0 < b∗(θ − τ)θ ≤ 1

e
. (3.11)

Then assertions of Theorem 3.1 are true.
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Consider the unstable equation

x
′′

(t) + a(t)x(t − τ) = f (t), t ∈ [0,+∞), (3.12)

with chaos in solutions’ behavior. To stabilize its solution to the given
”trajectory” y(t) satisfying this equation, we choose the control in the
form

u(t) = b(t)[x(t − θ)− y(t − θ))]. (3.13)

A possible algorithm to construct this stabilizing control is clear now: first
of all to choose the delay θ close to τ such that condition (3.11) is fulfilled,
then we choose b(t) close to a(t) such that condition (3.10) is fulfilled.
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Example 3.1. Stabilizing equation (3.12), where a(t) ≡ a, let us choose
the control in the form (3.13) with constant coefficient b(t) ≡ b. We
come to study of the exponential stability of the equation

x
′′

(t) + ax(t − τ)− bx(t − θ) = g(t), t ∈ [0,+∞), (3.14)

with constant coefficient and delays and g(t) = f (t) + by(t − θ). We can
choose θ − τ = 1

ebθ from (3.11), then from (3.10) we get the following
condition of the exponential stability

0 < 4 {a− b} ≤ 1

e2θ2
, τ < θ. (3.15)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Example 3.2. The equation

x
′′

(t) + a(t)x(t − τ) = 0, a(t)→ +∞, t ∈ [0,+∞), τ = const, (3.16)

where a(t) ≥ a∗ > 0 possesses oscillating solutions with amplitudes tending to
infinity [21] that leads to the chaos in behavior of its solutions. This equation can
be also stabilized by the control in form

u(t) = b(t)[x(t − θ)− y(t − θ))]. (3.13)

Consider, for example, the equation

x
′′

(t) + tx(t − τ) = 0, t ∈ [1,+∞), τ = const, (3.17)

if we choose b(t) = t −∆, θ(t) = τ + γ
t , then the stabilization can be achieved

by the control (3.13) with the parameters satisfying the inequalities

0 < 2
√

∆ < γ <
1

τe
, (3.18)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

In the following assertion we assume the smallness of the difference of the
delays θ − τ instead of the smallness of the delay θ.
Consider for simplicity the equation

x
′′

(t) + a(t)x(t − τ)− b(t)x(t − θ) = 0, t ∈ [0,+∞), (3.19)

x(ξ) = 0, for ξ < 0, (3.20)

with constant delays τ and θ and positive coefficients a(t) and b(t).
Theorem 3.2. Assume that 0 < τ < θ ≤ 2τ , there exists a positive
ε such that

ε ≤ {a(t)− b(t)} ≤ 1

4
[b(θ − τ)]2∗ , t ∈ [0,+∞), (3.21)

and
1

√
a∗ exp

{
b∗(θ−τ)2

4

}arctg b∗(θ − τ)

2
√
a∗ exp

{
b∗(θ−τ)2

4

} > θ − τ (3.22)

are fulfilled.
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Then
1) the Cauchy function C (t, s) of equation (3.19) is positive for
0 ≤ s < t < +∞;
2) the solutions x1(t), x2(t) of equation (3.19), satisfying initial conditions
(2.6), are positive for 0 < t < +∞.
3) the Cauchy function C (t, s) of equation (3.19) satisfies the exponential
estimate, i.e. there exist positive N and α such that

|C (t, s)| ≤ Ne−α(t−s), 0 ≤ s ≤ t < +∞,

and the integral estimate

sup
t≥0

t∫
0

C (t, s)ds ≤ 1

ε
; (3.8)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

4) if there exists limt→∞ {a(t)− b(t)} = k , then

lim
t→∞

t∫
0

C (t, s)ds =
1

k
. (3.9)
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3.Tests of Positivity of the Cauchy Functions and Stability
(cont.)

Example 3.3. Let us demonstrate that condition (3.6) is essential for
positivity of the Cauchy function C (t, s) and the solutions x1 and x2.
Consider the equation

x
′′

(t) + x(t)− bx(t − θ) = 0, t ∈ [0,+∞). (3.23)

x(ξ) = 0, ξ < 0, (3.24)

where all other conditions of Theorem 3.1 are fulfilled. If π < θ, then in
the triangle 0 ≤ s ≤ t < θ, its Cauchy function is C (t, s) = sin(t − s) and
changes the sign. If π

2 < θ, then the solution x1(t) = cos t changes the
sign on the interval [0, θ]. It is clear that the conditions 0 < τ < θ and
(3.22) are essential for positivity of C (t, s) and the solutions x1 and x2.

1
√
a∗ exp

{
b∗(θ−τ)2

4

}arctg b∗(θ − τ)

2
√
a∗ exp

{
b∗(θ−τ)2

4

} > θ − τ (3.22)
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5. Main Results

Let us consider the equation

(Mx)(t) ≡ x ′′(t) +
2m∑
i=1

pi (t)x(t − τ i (t)) = f (t), t ∈ [0,+∞), (5.1)

and the corresponding homogeneous equation

x ′′(t) +
2m∑
i=1

pi (t)x(t − τ i (t)) = 0, t ∈ [0,+∞), (5.2)

where
x(ξ) = 0 for ξ < 0.
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5. Main Results (cont.)

Theorem 5.1. Let
(−1)i+1pi (t) > 0, p2i−1(t) + p2i (t) ≥ 0, τ2i−1(t) ≤ τ2i (t) for
i = 1, ...,m, t ∈ [0,+∞) and the Cauchy function of the first order
equation

y ′(t) +
m∑
i=1

|p2i (t)|
t−τ2i−1(t)∫
t−τ2i (t)

y(s)ds = 0, t ∈ [0,+∞), (5.3)

where
y(ξ) = 0 for ξ < 0,

is positive for 0 ≤ s ≤ t < +∞, then the following assertions are
equivalent:

A. Domoshnitsky (Ariel University) Asymptotic Properties 38 / 68



5. Main Results (cont.)

1) there exists a bounded function v with absolutely continuous bounded
derivative v ′ and essentially bounded derivative v ′′ such that

v(t) > 0, v ′(t) ≤ 0, (Mv)(t) ≤ 0, t ∈ [0,+∞); (5.4)

2) there exists a bounded absolutely continuous function u with essentially
bounded derivative u′ such that

u(t) ≥ 0, u2(t)−u′(t)+
2m∑
i=1

pi (t)χ(t−τ i (t), 0) exp


t∫

t−τ i (t)

u(s)ds

 ≤ 0, t ∈ [0,+∞),

(5.5)

where

χ(t, s) =

{
1, t ≥ s,
0, t < s.

3) the Cauchy function C (t, s) of equation (5.1) is non-negative for
0 ≤ s < t < +∞, and solutions x1(t), x2(t) of equation (5.2), satisfying initial
conditions (2.6), x1(t) > 0, x2(t) ≥ 0 for 0 < t < +∞

A. Domoshnitsky (Ariel University) Asymptotic Properties 39 / 68



5. Main Results (cont.)

Denote H∗ =esssupt≥0τ ij(t).

Remark 5.1. The inequality∫ t

t−H∗

m∑
i=1

|p2i (s)| [τ 2i (s))− τ 2i−1(s))] ds ≤ 1

e
for t ≥ 0, (5.17)

where p2i (s) ≡ 0 for s < 0.

implies the positivity of the Cauchy function of first order equation (5.3) (see
Theorem 15.7, p. 358 in [1]).

Remark 5.2. In the intervals, where t − τ i (t) < 0, we set v(t) = 0 or u(t) = 0,
that leads to a corresponding inconvenience in construction of the test functions.
It is more convenient to construct the test functions v(t) and u(t) in the case
t − τ i (t) ≥ 0. In order to avoid this additional assumption, we can make the
following trik.
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5. Main Results (cont.)

Let us define the operator B : C[−H∗,+∞) → L∞[−H∗,+∞), where C[−H∗,+∞) and
L∞[−H∗,+∞) the spaces of continuous and of essentially bounded functions
respectively by the formula

(By) (t) =


βy(t), −H∗ ≤ t ≤ 0,

m∑
i=1

p2i (t)

t−τ 2i−1∫
t−τ 2i

y(s)ds, t ≥ 0
, (5.18)

where the parameter β will be defined below in the formulation of Theorem 5.2.

Consider the equation

(Mx)(t) ≡ x ′′(t)+(Bx ′)(t)+
m∑
i=1

{p2i−1(t) + p2i (t)} x(t−τ 2i−1(t)) = f (t), t ∈ [−H∗,+∞),

(5.19)

Non-negativity of the Cauchy function of (5.19) implies non-negativity of
the Cauchy function C (t, s) of the given equation (5.1).
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5. Main Results (cont.)

Theorem 5.2. Assume that
(−1)i+1pi (t) > 0, p2i−1(t) + p2i (t) ≥ 0, τ2i−1(t) ≤ τ2i (t) for
t ∈ [0,+∞) and there exists a real number α such that
a) ‖B‖H∗ ≤ 1

e , where β = α in formula (5.18) defining the operator B;
b) the inequality

α2 +
2m∑
i=1

pi (t) exp {ατ i (t)} ≤ 0, t ∈ [0,+∞). (5.20)

is fulfilled.

Then
1) the Cauchy function C (t, s) of equation (5.1) is non-negative for
0 ≤ s < t < +∞;
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5. Main Results (cont.)

2) if in addition there exists a positive ε such that

2m∑
i=1

pi (t) ≥ ε, (5.21)

then the Cauchy function C (t, s) of equation (5.1) satisfies the
exponential estimate (2.11) and the integral estimate

sup
t≥0

t∫
0

C (t, s)ds ≤ 1

ε
. (5.22)
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5. Main Results (cont.)

Corollary 5.1. If under the conditions of Theorem 5.2 there exists a
positive limit

lim
t→∞

2m∑
i=1

pi (t) = k , (5.44)

then

lim
t→∞

t∫
0

C (t, s)ds =
1

k
. (5.45)
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5. Main Results (cont.)

Remark 5.3. The positivity of ε in condition (5.21) is essential as the
following example demonstrates. Consider the equation

x ′′(t) + x

(
t −

∣∣∣∣sin
1

2
t

∣∣∣∣)− x

(
t − 2

∣∣∣∣sin
1

2
t

∣∣∣∣) = 0, t ∈ [0,+∞), (5.46)

Here ε = 0 and one of solutions is a constant and does not tend to zero
when t → +∞.
Consider the equation

(Mx)(t) ≡ x ′′(t) +
2m∑
i=1

pi (t)x(t − τ i (t)) +
n∑

j=1

qj(t)x(t − θj(t)) = f (t), t ∈ [0,+∞),

(5.61)
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5. Main Results (cont.)

and the corresponding homogeneous equation

x ′′(t) +
2m∑
i=1

pi (t)x(t − τ i (t)) +
n∑

j=1

qj(t)x(t − θj(t)) = 0, t ∈ [0,+∞),

(5.62)
where

x(ξ) = 0 for ξ < 0. (5.63)
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5. Main Results (cont.)

Theorem 5.3. Let all assumption of Theorem 5.2 be fulfilled.
Then
1) if qj(t) ≤ 0 for t ∈ [0,+∞), then the Cauchy function C (t, s) of
equation (5.61) is positive for 0 ≤ s < t < +∞;
2) if there exists positive ε0 and ε such that

2m∑
i=1

pi (t) ≥ ε, ε− ε0 ≥
n∑

j=1

|qj(t)| , t ∈ [0,+∞), (5.64)

then the Cauchy function C (t, s) of equation (5.61) satisfies the
exponential estimate (2.11) and the integral estimate

sup
t≥0

t∫
0

|C (t, s)| ds ≤ 1

ε0
. (5.65)
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6. Open Problems

1. To obtain results on the exponential stability stability of the equation

x ′′(t) +
n∑

j=1

qj(t)x ′(t− θj(t)) +
m∑
i=1

pi (t)x(t− τ i (t)) = f (t), t ∈ [0,+∞),

(6.1)
where qj(t) ≤ 0 for t ∈ [0,+∞). Results of this type were considered as
impossible. It was assumed in previous works [5, 9, 13, 14, 20] that
qj(t) > 0, and in the presented paper qj(t) ≡ 0 for
t ∈ [0,+∞), j = 1, ...,m.
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6. Open Problems (cont.)

2. To obtain results about stabilization of the equation x (n)(t) = f (t),
where n > 2, to the trajectory y(t) by the control of the form

u(t) = −
m∑
i=1

pi (t){x(t − τ i (t))− y(t − τ i (t))}, t ∈ [0,+∞), (6.2)

without derivatives, i.e. to obtain results about the exponential stability of
the equation

x (n)(t) +
m∑
i=1

pi (t)x(t − τ i (t)) = f (t), t ∈ [0,+∞). (6.3)

Results of this type were considered as impossible.
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6. Open Problems (cont.)

3. To obtain results on oscillation/nonoscillation, existence of solutions
tending to zero or tending to infinity for second order equation (2.3)
without the assumption about nonnegativity of the coefficients.
Asymptotic properties of solutions of ODE (1.11) as well as delay
equations

x ′′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0,+∞), (1.6)

and (1.7) can be very different (concerning ODEs, see, for example,
Chapter 6 of the known book by R.Bellman[8]).
The problem of similar asymptotic behavior of all solutions to linear
second order equation has not yet been solved even with ordinary second
order equation.
For example, it was discovered in Milloux [52] that if p(t)→ +∞ for
t →∞, then there exists solution of ODE (1.11) tending to zero when
t →∞. There are also several examples of other solutions without tending
to zero.
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6. Open Problems (cont.)

The problem to find conditions under which all solutions tend to zero
remains one of highlighted in the qualitative theory of differential
equations (see, for example, the papers Elbert, Hatvani, Stacho
[28, 36, 37] ).
If p(t)→ +∞ monotonically, then all solutions of ODE (1.11) are
bounded [8].

If coefficient p(t)→ 0 for t → +∞, then there exist unbounded solutions
of ODE (1.11) ( see, the monograph by I.T.Kiguradze and T.A.Chanturia
[42]). The equation

x ′′(t) +
2

t2(t − 1)
x(t) = 0, t ∈ [2,+∞), (1.15)

is an example, when the second solution x(t) = t−1
t is bounded.
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6. Open Problems (cont.)

We can see a different asymptotic behavior also in the case of delay
differential equations. A function x =sin t is one of solutions of the
equation

x ′′(t) + x(t − τ(t)) = 0, t ∈ [0,+∞),

where

τ(t) =


0, 0 ≤ t ≤ π

2
,

2t − π, π

2
< t < π,

τ(t + π) = τ(t).

Other solutions are unbounded (see necessary and sufficient condition
(1.13) of boundedness of all solutions).
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6. Open Problems (cont.)

4. To obtain results about distance between adjacent zeros of oscillating
solution of equation (2.3), (2.4) and Sturm’s separation theorems without
the assumption about nonnegativity of the coefficients, which could be
analogs of the results obtained in [4, 18, 22, 24].

5. To obtain results on Lyapunov’s zones of stability for equation
(2.3),(2.4) without the assumption about nonnegativity of the coefficients
wich could be analogs of the classical assertions obtained in Krein,
Yakubovich, Zhukovski [47, 69, 72]. The idea to connect oscillation and
asymptotic properties of solutions of a second order ODE appeared in
Lyapunov’s investigation on stability. Note also that for ODE (1.11) with
ω−periodic coefficient p(t), the relation between nonoscillation of the
interval [0, ω] and asymptotic properties of solutions is well known ( see,
the classical results by N.E.Zhukovskii [72], M.G.Krein [47],
V.A.Yakubovich [69]): if the coefficient p(t) is not zero and has
nonnegative average on [0, ω] and for each t0 equation (1.11) is
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6. Open Problems (cont.)

nonoscillatory on [t0, t0 + ω], then all solutions are bounded on semiaxis
[0,+∞). The classical Lyapunov’s results claims that all solutions of
second order ordinary differential equation (1.11), where

p(t) = p(t + ω) ≥ c > 0,

with ω− periodic coefficient are bounded on semiaxis if ω is less than
distance between two adjacent zeros [72]. The classical estimate of
distance between two adjacent zeros in this case

ω∫
0

p(t)dt 6
4

ω
, (1.16)

implies that all the solutions are bounded.
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6. Open Problems (cont.)

It was obtained in [24] that in contrast with the ordinary differential
equation all the solutions of the delay equation with ω−periodic
coefficients p(t) and τ(t) are unbounded if distance between zeros of
solutions is different from 2ω. Coefficient tests based on this assertion
were proposed in [24].

6. To obtain results about stabilization of equation (3.12), where
a(t)→ 0, to the given ”trajectory” y(t) satisfying this equation, by the
control in the form

u(t) = b(t)[x(t − θ)− y(t − θ))]− c(t)[x(t − r)− y(t − r))], (6.4)

where b(t) ≥ 0, c(t) ≥ 0, θ > τ, r > τ.
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6. Open Problems (cont.)

7. To obtain results on stabilization of the system (1.1) to the trajectory
Y (t) by the control of the form

u(t) = −
m∑
i=1

Pi (t){X (t − τ i (t))− Y (t − τ i (t))}, t ∈ [0,+∞), (6.5)

in the case of more general than diagonal matrices Pi (t), i.e. to obtain
results on the exponential stability of the system

X ′′(t) +
m∑
i=1

Pi (t)X (t − τ i (t)) = g(t), t ∈ [0,+∞). (6.6)

8. To obtain results about the exponential stability of the system of
functional differential equations of different orders.
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