Heteroclinics for some third order differential equations

D. Bonheure¹, <u>J. A. Cid²</u>, C. De Coster³ and L. Sanchez⁴

 ¹Université libre de Bruxelles, dbonheur@ulb.ac.be
 ²Universidade de Vigo, angelcid@uvigo.es
 ³Université de Valenciennes et du Hainaut Cambrésis, Colette.DeCoster@univ-valenciennes.fr
 ⁴Universidade de Lisboa, sanchez@ptmat.fc.ul.pt

Workshop on Differential Equations 2014 March 27–30, 2014, Malá Morávka, Czech Republic.

< < >> < </p>

This talk is based on this paper:

D. Bonheure, J. A. Cid, C. De Coster and L. Sanchez, Heteroclinics for some non autonomous third order differential equations, *to appear in Topol. Methods Nonlinear Anal.*

< □ > < 同 > < 三 > <

.⊒...>

The existence of heteroclinic orbits for the third order problem

$$u'''=f(u), \quad u(-\infty)=u_-, \quad u(+\infty)=u_+,$$

arises for instance in the study of regularization of the Cauchy problem for the one-dimensional hyperbolic conservation law

< ロ > < 同 > < 三 > .

.⊒...>

The existence of heteroclinic orbits for the third order problem

$$u''' = f(u), \quad u(-\infty) = u_-, \quad u(+\infty) = u_+,$$

arises for instance in the study of regularization of the Cauchy problem for the one-dimensional hyperbolic conservation law

$$u_t + g(u)_x = 0$$
, $u(0, x) = \overline{u}(x)$.

It is known that the single shock wave joining the two states u_- (on the left) and u_+ (on the right)

$$u(t,x) := \begin{cases} u_{-} & \text{for } x < \lambda t, \\ u_{+} & \text{for } x > \lambda t, \end{cases}$$

イロト イポト イヨト イヨト

is a weak solution if and only if its speed λ satisfies the Rankine-Hugoniot equation

It is known that the single shock wave joining the two states u_- (on the left) and u_+ (on the right)

$$u(t,x) := \left\{ egin{array}{cc} u_- & {\it for}\ x < \lambda\ t, \ u_+ & {\it for}\ x > \lambda\ t, \end{array}
ight.$$

is a weak solution if and only if its speed λ satisfies the Rankine-Hugoniot equation

$$g(u_+)-g(u_-)=\lambda (u_+-u_-).$$

イロト イヨト イヨト イ

ъ

However weak solutions are in general not unique. A way to regularize the problem is to search for weak solutions which are limits as $\varepsilon \to 0^+$ of solutions of

$$u_t^{\varepsilon} + g(u^{\varepsilon})_x = \varepsilon A(u^{\varepsilon}), \quad u^{\varepsilon}(0,x) = \overline{u}(x),$$

イロト イポト イヨト イヨト

where A is a differential operator of higher order in x (the viscosity).

A choice of *A* is admissible, in the sense of Gelfand, if shock wave solutions can be obtained as limits of solutions of

$$u_t^{\varepsilon} + g(u^{\varepsilon})_x = \varepsilon A(u^{\varepsilon}), \quad u^{\varepsilon}(0,x) = \overline{u}(x).$$

イロン 不得 とくほ とくほとう

A choice of *A* is admissible, in the sense of Gelfand, if shock wave solutions can be obtained as limits of solutions of

$$u_t^{\varepsilon} + g(u^{\varepsilon})_x = \varepsilon A(u^{\varepsilon}), \quad u^{\varepsilon}(0,x) = \overline{u}(x).$$

イロン 不得 とくほ とくほとう

A choice of *A* is admissible, in the sense of Gelfand, if shock wave solutions can be obtained as limits of solutions of

$$u_t^{\varepsilon} + g(u^{\varepsilon})_x = \varepsilon A(u^{\varepsilon}), \quad u^{\varepsilon}(0,x) = \overline{u}(x).$$

When A is a perfect derivative the admissibility is equivalent to the existence of a heteroclinic connection between u_{-} and u_{+} .

In particular, the question of the admissibility of operator $A(u) = -u_{xxxx}$ leads to problem

$$u''' = f(u), \quad u(-\infty) = u_-, \quad u(+\infty) = u_+,$$

イロト イポト イヨト イヨト

$$u''' = f(u) + p(t)u', \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

 $0 \leq p(t) \leq M$

ヘロン 人間と 人間と 人間と

f(*u*)

Solvability for

$$u''' = u^2 - 1$$
, $u(-\infty) = -1$, $u(+\infty) = 1$.

Solvability for

$$u''' = u^2 - 1$$
, $u(-\infty) = -1$, $u(+\infty) = 1$.

N. Kopell and L.N. Howard, *Bifurcations and trajectories joining critical points*, Advances in Math. **18** (1975), 306-358.

▲ロト▲聞ト▲臣ト▲臣ト 臣 のなぐ

Solvability for

$$u''' = u^2 - 1$$
, $u(-\infty) = -1$, $u(+\infty) = 1$.

- N. Kopell and L.N. Howard, *Bifurcations and trajectories joining critical points*, Advances in Math. **18** (1975), 306-358.
- C. Conley, *Isolated invariant sets and the Morse index*, C.B.M.S. **38**, Amer. Math. Soc., Providence 1978.

Solvability for

$$u''' = f(u), \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

(日) (四) (三) (三) (三) (三) (○)

Solvability for

$$u''' = f(u), \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

M.S. Mock, On fourth-order dissipation and single conservation laws, Comm. Pure Appl. Mathem. 29 (1976), 383-388.

Solvability for

$$u''' = f(u), \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

- M.S. Mock, On fourth-order dissipation and single conservation laws, Comm. Pure Appl. Mathem. 29 (1976), 383-388.
- M.S. Mock, *The half-line boundary value problem for* $u_{xxx} = f(u)$, J. Differential Equations **32** (1979), 258-273.

Solvability for

$$u''' = f(u) + \beta u', \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

Solvability for

$$u''' = f(u) + \beta u', \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

V. Manukian and S. Schecter, *Travelling waves for a thin liquid film with surfactant on an inclined plane*, Nonlinearity 22 (2009), 85–122.

Uniqueness for

$$u''' = u^2 - 1$$
, $u(-\infty) = -1$, $u(+\infty) = 1$.

Uniqueness for

$$u''' = u^2 - 1$$
, $u(-\infty) = -1$, $u(+\infty) = 1$.

Ch.K. McCord, Uniqueness of connecting orbits in the equation $Y^{(3)} = Y^2 - 1$, J. Math. Anal. Appl. **114** (1986), 584-592.

Uniqueness for

$$u''' = f(u) + \beta u', \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

・ロト ・聞ト ・ヨト ・ヨト

E 990

Uniqueness for

$$u''' = f(u) + \beta u', \quad u(-\infty) = -1, \quad u(+\infty) = 1.$$

J.F. Toland, *Existence and uniqueness of heteroclinic orbits* for the equation $\lambda u''' + u' = f(u)$, Proc. Royal Soc. Edinburgh **109A** (1988), 23-36.

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0.

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0.

(*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$.

イロト イポト イヨト イヨト

= 990

Proposition

Assume the conditions (f1), (p) and f has only isolated zeros.

Proposition

Assume the conditions (f1), (p) and f has only isolated zeros.

 If u is a solution in ℝ, bounded together with pu', then, for *i* ∈ {1,2,3}, u⁽ⁱ⁾(±∞) = 0, u(+∞) = a⁺ and u(-∞) = a⁻ with f(a[±]) = 0.

Proposition

Assume the conditions (f1), (p) and f has only isolated zeros.

 If u is a solution in ℝ, bounded together with pu', then, for *i* ∈ {1,2,3}, u⁽ⁱ⁾(±∞) = 0, u(+∞) = a⁺ and u(-∞) = a⁻ with f(a[±]) = 0.

If in addition u is non constant and

 $\forall x \in [-\|u\|_{\infty}, \|u\|_{\infty}] \setminus \{\pm 1\}, \quad f(x)(x^2-1) > 0,$

イロト イポト イヨト イヨト

then $u(-\infty) = -1$ and $u(+\infty) = 1$.

Solvability under symmetry

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0.

(*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$.

(日) (四) (日) (日) (日)

Solvability under symmetry

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0. (*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$. (*h*1) There exists $N_0 > 1$ such that

$$\forall u \in [0, N_0] \setminus \{1\}, f(u)(u-1) > 0 \quad \text{and} \quad \int_0^{N_0} f(u) du \ge 0.$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Solvability under symmetry

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0. (*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$. (*h*1) There exists $N_0 > 1$ such that

$$\forall u \in [0, N_0] \setminus \{1\}, f(u)(u-1) > 0 \quad \text{and} \quad \int_0^{N_0} f(u) du \ge 0.$$

イロト イポト イヨト イヨト

(s) f is even.

Solvability under symmetry

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0. (*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$. (*h*1) There exists $N_0 > 1$ such that

$$\forall u \in [0, N_0] \setminus \{1\}, f(u)(u-1) > 0 \quad \text{and} \quad \int_0^{N_0} f(u) du \ge 0.$$

イロト イポト イヨト イヨト

(s) f is even.

(s') *p* is even.

STRATEGY to solve the problem

$$u''' = f(u) + p(t)u', \quad u(-\infty) = -1, \quad u(+\infty) = 1$$

E 990

under SYMMETRY.

Solve the following problem in the half-line

イロト イポト イヨト イヨト

Solve the following problem in the half-line

イロト イポト イヨト イヨト
Solve the following problem in the half-line

and take the ODD extension.

Theorem

Assume that hypotheses (f1), (p), (h1), (s) and (s') hold. Then

$$u''' = f(u) + p(t)u', \quad u(-\infty) = -1, \quad u(+\infty) = 1,$$

has a odd solution $u \in CB^3(\mathbb{R})$ which is nonnegative in $]0, +\infty[$ and satisfies

$$u'(\pm\infty)=u''(\pm\infty)=u'''(\pm\infty)=0.$$

▲ロト ▲聞 と ▲ 臣 と ▲ 臣 と ○臣 ・ のへ()

Proof.

Claim 1. The BVP has a solution u_n for each $n \in \mathbb{N}$:

 $u''' = f(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$

イロン イボン イヨン イヨン

ъ

Proof.

Step 1.- The modified problem.

We define the function $f^* : \mathbb{R} \to \mathbb{R}$ as

$$f^*(u) = \begin{cases} f(N_0), & \text{if } u > N_0, \\ f(u), & \text{if } u \in [0, N_0], \\ f(0), & \text{if } u < 0, \end{cases}$$

and consider the modified problem

$$u''' = f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$$

Proof.

Step 2.- Reduction to a fixed point problem.

For each $h \in C([0, n])$, the linear problem

 $u''' - p(t)u' = h(t), \quad u(0) = u''(0) = 0, \quad u'(n) = 0,$ (1)

has a unique solution Ku.

Proof.

Step 2.- Reduction to a fixed point problem.

Then let $S : C([0, n]) \rightarrow C([0, n])$ be given by

 $Su = K(f^*(u)).$

We consider the homotopy

$$u = K(\lambda f^*(u)), \quad \lambda \in [0, 1],$$

which is equivalent to the problem

$$u''' = \lambda f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$$

Proof.

Step 3.- A priori estimates. For all $\lambda \in [0, 1]$, any solution of

 $u''' = \lambda f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$

イロト イポト イヨト イヨト

E 900

is nonnegative on [0, n].

Proof.

Step 3.- A priori estimates. For all $\lambda \in [0, 1]$, any solution of

 $u''' = \lambda f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$

イロト イポト イヨト イヨト

E 900

is nonnegative on [0, n].

Proof.

Step 3.- A priori estimates. For all $\lambda \in [0, 1]$, any solution of $u''' = \lambda f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$

is nonnegative on [0, n].

For any $n \in \mathbb{N}$, $\lambda \in [0, 1]$ and any solution u of

 $u''' = \lambda f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$

we have,

for all
$$t \in [0, n]$$
, $|u(t)| \leq N_0$.

Proof.

Step 4.- Conclusion.

By standard results of Leray-Schauder degree theory the equation has a solution for $\lambda = 1$, that is, there exists a solution of

$$u''' = f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$$

Proof.

Step 4.- Conclusion.

By standard results of Leray-Schauder degree theory the equation has a solution for $\lambda = 1$, that is, there exists a solution of

$$u''' = f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$$

Proof.

Step 4.- Conclusion.

By standard results of Leray-Schauder degree theory the equation has a solution for $\lambda = 1$, that is, there exists a solution of

$$u''' = f^*(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0.$$

Moreover we have that $0 \leq u \leq N_0$ and hence it is also a solution of

$$u''' = f(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u'(n) = 0,$$

Proof.

Claim 2. There exists a number K > 0 with the property that, for all $n \in \mathbb{N}$,

 $\|u_n\|_{\mathcal{C}^3([0,n])}\leq K.$

ヘロト 人間 とくほとくほとう

₹ 990

Proof.

Claim 2. There exists a number K > 0 with the property that, for all $n \in \mathbb{N}$,

 $\|u_n\|_{\mathcal{C}^3([0,n])}\leq K.$

ヘロト 人間 とくほとくほとう

₹ 990

Proof.

Claim 2. There exists a number K > 0 with the property that, for all $n \in \mathbb{N}$,

 $\|u_n\|_{\mathcal{C}^3([0,n])}\leq K.$

We first show that $||u''_n||_{L^2(0,n)}$ is bounded independently of n. Multiplying the equation by u'_n and integrating by parts between

$$\int_0^n u_n''^2(s) ds = -\int_0^n f(u_n(s)) u_n'(s) ds - \int_0^n p(s) u_n'^2(s) ds$$

 $\leq -\min_{[0,N_0]} F.$

▲ロト▲御と▲臣と▲臣と 臣 のへぐ

Proof.

Let us extend u_n to $[0, +\infty[$ with the constant value $u_n(n)$ in $[n, +\infty[$, and define v_n as the odd extension of u_n to \mathbb{R} .

イロト イポト イヨト イヨト

= 990

Proof.

Let us extend u_n to $[0, +\infty[$ with the constant value $u_n(n)$ in $[n, +\infty[$, and define v_n as the odd extension of u_n to \mathbb{R} .

イロト イポト イヨト イヨト

= 990

Proof.

Let us extend u_n to $[0, +\infty[$ with the constant value $u_n(n)$ in $[n, +\infty[$, and define v_n as the odd extension of u_n to \mathbb{R} .

Then $v_n \in C^1(\mathbb{R})$ and by the Gagliardo-Nirenberg's interpolation inequality, there is a constant C such that

$$\|v_n'\|_{\mathcal{C}(\mathbb{R})} \leq C \|v_n''\|_{L^2(\mathbb{R})}^{2/3} \|v_n\|_{\mathcal{C}(\mathbb{R})}^{1/3}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Solvability under symmetry Solvability without symmetry

Proof. *Since*

$$\|v_n'\|_{\mathcal{C}(\mathbb{R})} = \|u_n'\|_{\mathcal{C}([0,n])}, \quad \|v_n''\|_{L^2(\mathbb{R})} = 2\|u_n''\|_{L^2(0,n)},$$
$$\|v_n\|_{\mathcal{C}(\mathbb{R})} = \|u_n\|_{\mathcal{C}([0,n])},$$

2200

Solvability under symmetry Solvability without symmetry

Proof. *Since*

$$\|v_n'\|_{\mathcal{C}(\mathbb{R})} = \|u_n'\|_{\mathcal{C}([0,n])}, \quad \|v_n''\|_{L^2(\mathbb{R})} = 2\|u_n''\|_{L^2(0,n)},$$
$$\|v_n\|_{\mathcal{C}(\mathbb{R})} = \|u_n\|_{\mathcal{C}([0,n])},$$

2200

Solvability under symmetry Solvability without symmetry

Proof. *Since*

$$\begin{split} \|v_n'\|_{\mathcal{C}(\mathbb{R})} &= \|u_n'\|_{\mathcal{C}([0,n])}, \quad \|v_n''\|_{L^2(\mathbb{R})} = 2\|u_n''\|_{L^2(0,n)}, \\ &\|v_n\|_{\mathcal{C}(\mathbb{R})} = \|u_n\|_{\mathcal{C}([0,n])}, \end{split}$$

we infer

$$\sup_n \|u_n'\|_{\mathcal{C}([0,n])} < \infty$$

Proof.

Since

$$\begin{aligned} \|v'_n\|_{\mathcal{C}(\mathbb{R})} &= \|u'_n\|_{\mathcal{C}([0,n])}, \quad \|v''_n\|_{L^2(\mathbb{R})} = 2\|u''_n\|_{L^2(0,n)}, \\ \|v_n\|_{\mathcal{C}(\mathbb{R})} &= \|u_n\|_{\mathcal{C}([0,n])}, \end{aligned}$$

we infer

$$\sup_n \|u_n'\|_{\mathcal{C}([0,n])} < \infty$$

and the differential equation yields

$$\sup_n \|u_n'''\|_{\mathcal{C}([0,n])} < \infty.$$

So, the claim follows from standard interpolation.

Proof.

Claim 3. Passing to the limit, the boundary value problem

$$u''' = f(u) + p(t)u', \quad u(0) = u''(0) = 0, \quad u(+\infty) = 1$$

has a solution $u \in C^3([0, +\infty[)$ which is nonnegative on $[0, +\infty[$ and such that u', u'' and u''' are bounded in \mathbb{R}^+ .

Proof.

Claim 4. Extending the solution by symmetry we get an odd solution $u \in CB^3(\mathbb{R})$ which is nonnegative in $]0, +\infty[$ and satisfies

$$u'(\pm\infty)=u''(\pm\infty)=u'''(\pm\infty)=0.$$

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!

イロト イポト イヨト イヨト

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!

イロト イポト イヨト イヨト

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!

イロト イポト イヨト イヨト

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0.

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0.

(*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$.

イロト イポト イヨト イヨト

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Define
$$F(u) = \int_0^u f(s) ds$$

Define $F(u) = \int_0^u f(s) ds$ (*h*2) There exist $\alpha < -1$ and $\beta > 1$ such that,

$$\forall u \in [\alpha, \beta] \setminus \{-1, 1\}, \ f(u)(u^2 - 1) > 0, \\ F(\beta) = F(-1) \quad \text{and} \quad F(\alpha) = F(1);$$

イロン 不得 とくほ とくほとう

ъ

Define $F(u) = \int_0^u f(s) ds$ (*h*2) There exist $\alpha < -1$ and $\beta > 1$ such that,

$$orall u \in [lpha, eta] \setminus \{-1, 1\}, \ f(u)(u^2 - 1) > 0, \ F(eta) = F(-1) \quad ext{and} \quad F(lpha) = F(1);$$

Theorem

Assume that hypotheses (f1), (p) and (h2) hold. Then

$$u''' = f(u) + p(t)u', \quad u(-\infty) = -1, \quad u(+\infty) = 1,$$

has a solution $u \in CB^3(\mathbb{R})$ which satisfies

$$u'(\pm\infty) = u''(\pm\infty) = u'''(\pm\infty) = 0.$$

イロト イ理ト イヨト イヨト

3

Proof.

Step 1. The BVP has a solution u_n for each $n \in \mathbb{N}$:

E 990

・ロン・西方・ ・ ヨン・ ヨン・

Proof. (Step 1.1. The modified problem)

We define the functions f_+ , $f_- : [-n, n] \times \mathbb{R} \to \mathbb{R}$ by

$$f_{+}(u) = \begin{cases} f(\beta), & \text{if } u > \beta, \\ f(u), & \text{if } u \in [-1, \beta], \\ 0, & \text{if } u < -1, \end{cases}$$

▲□▶▲@▶▲≧▶▲≧▶ 差 のへの

Proof. (Step 1.1. The modified problem)

We define the functions f_+ , f_- : $[-n, n] \times \mathbb{R} \to \mathbb{R}$ by

$$f_{-}(u) = \begin{cases} 0, & \text{if } u > 1, \\ f(u), & \text{if } u \in [\alpha, 1], \\ f(\alpha), & \text{if } u < \alpha. \end{cases}$$

▲□▶▲@▶▲≧▶▲≧▶ 差 のへの

Proof. (Step 1.1. The modified problem)

Then we set

$$f^*(t,u) = \begin{cases} f_+(u), & \text{if } t \ge 0, \\ f_-(u), & \text{if } t < 0. \end{cases}$$

and we consider then the modified problem

$$u''' = f^*(t, u) + p(t)u', \quad u'(-n) = 0, \quad u(0) = 0, \quad u'(n) = 0.$$
Proof. (Step 1.2. Reduction to a fixed point problem)

For each $h \in C([-n, n])$, the linear problem

$$u''' - p(t)u' = h(t), \quad u'(-n) = 0, \quad u(0) = 0, \quad u'(n) = 0,$$

イロト イポト イヨト イヨト

3

has a unique solution K(h).

Proof. (Step 1.2. Reduction to a fixed point problem)

Define the open and bounded set

$$\Omega = \{ u \in \mathcal{C}([-n, n]) \mid u(-n) < 1 \text{ and } u(n) > -1 \\ and \alpha < u(t) < \beta \quad \forall t \in [-n, n] \}.$$

イロン 不得 とくほ とくほとう

ъ

Proof. (Step 1.2. Reduction to a fixed point problem)

Define the open and bounded set

$$\Omega = \{ u \in \mathcal{C}([-n, n]) \mid u(-n) < 1 \text{ and } u(n) > -1 \\ and \alpha < u(t) < \beta \quad \forall t \in [-n, n] \}.$$

and let $S:\overline{\Omega} \to \mathcal{C}([-n,n])$ be given by

 $Su = K(f^*(t, u)).$

イロト イポト イヨト イヨト

3

Proof. (Step 1.2. Reduction to a fixed point problem)

In order to obtain a fixed point we consider the homotopy

$$u = K(\lambda f^*(t, u)), \quad \lambda \in [0, 1],$$

which is equivalent to the problem

$$u''' = \lambda f^*(t, u) + p(t)u', \quad u'(-n) = 0, \quad u(0) = 0, \quad u'(n) = 0.$$

イロト イポト イヨト イヨト

Proof. (Step 1.3. A priori estimates)

Proof. (Step 1.3. A priori estimates)

() For $\lambda = 0$, the solution u is in Ω .

イロト イポト イヨト イヨト

■ のへの

Proof. (Step 1.3. A priori estimates)

1 For $\lambda = 0$, the solution u is in Ω .

For λ ∈]0, 1] and u a solution with u(−n) < 1 and u(n) > −1, we have, $\forall t \in [0, n], -1 < u(t) < \beta$ and, $\forall t \in [-n, 0], \alpha < u(t) < 1.$

イロト イポト イヨト イヨト

э.

Proof. (Step 1.3. A priori estimates)

1 For $\lambda = 0$, the solution u is in Ω .

- For λ ∈]0, 1] and u a solution with u(−n) < 1 and u(n) > −1, we have, ∀t ∈ [0, n], −1 < u(t) < β and, ∀t ∈ [−n, 0], α < u(t) < 1.</p>
- **③** For $\lambda \in [0, 1]$, there is no solution on $\partial \Omega$.

(日) (四) (三) (三) (三) (三) (○)

Proof.

Step 2. There exists a number K > 0 with the property that, for all $n \in \mathbb{N}$ the solution u_n of

$$u''' = f(u) + p(t)u', \quad u'(-n) = 0, \quad u(0) = 0, \quad u'(n) = 0,$$

satisfies

$$\|u_n\|_{\mathcal{C}^3([-n,n])}\leq K.$$

Proof.

Step 2. There exists a number K > 0 with the property that, for all $n \in \mathbb{N}$ the solution u_n of

$$u''' = f(u) + p(t)u', \quad u'(-n) = 0, \quad u(0) = 0, \quad u'(n) = 0,$$

satisfies

$$\|u_n\|_{\mathcal{C}^3([-n,n])}\leq K.$$

Proof.

Step 2. There exists a number K > 0 with the property that, for all $n \in \mathbb{N}$ the solution u_n of

$$u''' = f(u) + p(t)u', \quad u'(-n) = 0, \quad u(0) = 0, \quad u'(n) = 0,$$

satisfies

$$\|u_n\|_{\mathcal{C}^3([-n,n])}\leq K.$$

Step 3. Passing to the limit, the boundary value problem

$$u''' = f(u) + p(t)u', \quad u(-\infty) = -1, \quad u(+\infty) = 1,$$

has a solution $u \in C^3(\mathbb{R})$ and such that u', u'' and u''' are bounded in \mathbb{R} .

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0. (*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$. (*h*2) There exist $\alpha < -1$ and $\beta > 1$ such that,

$$\forall u \in [\alpha, \beta] \setminus \{-1, 1\}, \ f(u)(u^2 - 1) > 0, \\ F(\beta) = F(-1) \quad \text{and} \quad F(\alpha) = F(1);$$

イロト イポト イヨト イヨト

э.

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0. (*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$. (*h*2) There exist $\alpha < -1$ and $\beta > 1$ such that,

$$\forall u \in [\alpha, \beta] \setminus \{-1, 1\}, \ f(u)(u^2 - 1) > 0, \\ F(\beta) = F(-1) \quad \text{and} \quad F(\alpha) = F(1);$$

(h3) *f* is nondecreasing on $[0, \beta]$ and nonincreasing on $[\alpha, 0]$;

(*f*1) $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(-1) = f(1) = 0. (*p*) *p* is continuous and $\exists M > 0$ such that $0 \le p(t) \le M$. (*h*2) There exist $\alpha < -1$ and $\beta > 1$ such that,

$$\forall u \in [\alpha, \beta] \setminus \{-1, 1\}, \ f(u)(u^2 - 1) > 0, \\ F(\beta) = F(-1) \quad \text{and} \quad F(\alpha) = F(1);$$

(h3) *f* is nondecreasing on $[0, \beta]$ and nonincreasing on $[\alpha, 0]$; (h4) *f* satisfies

$$\int_{\alpha}^{0}F(s)\,ds>0\qquad ext{and}\qquad \int_{0}^{\beta}F(s)\,ds<0.$$

・ロン・(理)・ ・ ヨン・

э.

Theorem

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is locally Lipschitz on $[\alpha, \beta]$ and satisfies (f1), (h2), (h3) and (h4). In addition assume p is a nonnegative constant. Then

$$u''' = f(u) + p u', \quad u(-\infty) = -1, \quad u(+\infty) = 1,$$

has a unique (up to translations) solution $u \in CB^3(\mathbb{R})$. Moreover u has a unique simple zero and

$$u'(\pm\infty)=u''(\pm\infty)=u'''(\pm\infty)=0.$$

・ロト・日本・日本・日本・日本・日本

MANY THANKS FOR YOUR ATTENTION...

More information on: http://webs.uvigo.es/angelcid/ or sending an e-mail to: angelcid@uvigo.es

< < >> < </>

... AND CONGRATULATIONS MILAN!

イロト イポト イヨト イヨト

ъ