Heteroclinics for some third order differential equations

D. Bonheure ${ }^{1}$, J. A. Cid ${ }^{2}$, C. De Coster ${ }^{3}$ and L. Sanchez ${ }^{4}$
${ }^{1}$ Université libre de Bruxelles, dbonheur@ulb.ac.be
${ }^{2}$ Universidade de Vigo, angelcid@uvigo.es
${ }^{3}$ Université de Valenciennes et du Hainaut Cambrésis, Colette.DeCoster@univ-valenciennes.fr
${ }^{4}$ Universidade de Lisboa, sanchez@ptmat.fc.ul.pt

Workshop on Differential Equations 2014 March 27-30, 2014, Malá Morávka, Czech Republic.

This talk is based on this paper:

E
D. Bonheure, J. A. Cid, C. De Coster and L. Sanchez, Heteroclinics for some non autonomous third order differential equations, to appear in Topol. Methods Nonlinear Anal.

The existence of heteroclinic orbits for the third order problem

$$
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=u_{-}, \quad u(+\infty)=u_{+},
$$

arises for instance in the study of regularization of the Cauchy problem for the one-dimensional hyperbolic conservation law

The existence of heteroclinic orbits for the third order problem

$$
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=u_{-}, \quad u(+\infty)=u_{+},
$$

arises for instance in the study of regularization of the Cauchy problem for the one-dimensional hyperbolic conservation law

$$
u_{t}+g(u)_{x}=0, \quad u(0, x)=\bar{u}(x)
$$

It is known that the single shock wave joining the two states u_{-} (on the left) and u_{+}(on the right)

$$
u(t, x):= \begin{cases}u_{-} & \text {for } x<\lambda t \\ u_{+} & \text {for } x>\lambda t\end{cases}
$$

is a weak solution if and only if its speed λ satisfies the Rankine-Hugoniot equation

It is known that the single shock wave joining the two states u_{-} (on the left) and u_{+}(on the right)

$$
u(t, x):= \begin{cases}u_{-} & \text {for } x<\lambda t \\ u_{+} & \text {for } x>\lambda t\end{cases}
$$

is a weak solution if and only if its speed λ satisfies the Rankine-Hugoniot equation

$$
g\left(u_{+}\right)-g\left(u_{-}\right)=\lambda\left(u_{+}-u_{-}\right)
$$

However weak solutions are in general not unique. A way to regularize the problem is to search for weak solutions which are limits as $\varepsilon \rightarrow 0^{+}$of solutions of

$$
u_{t}^{\varepsilon}+g\left(u^{\varepsilon}\right)_{x}=\varepsilon A\left(u^{\varepsilon}\right), \quad u^{\varepsilon}(0, x)=\bar{u}(x)
$$

where A is a differential operator of higher order in x (the viscosity).

A choice of A is admissible, in the sense of Gelfand, if shock wave solutions can be obtained as limits of solutions of

$$
u_{t}^{\varepsilon}+g\left(u^{\varepsilon}\right)_{x}=\varepsilon A\left(u^{\varepsilon}\right), \quad u^{\varepsilon}(0, x)=\bar{u}(x)
$$

A choice of A is admissible, in the sense of Gelfand, if shock wave solutions can be obtained as limits of solutions of

$$
u_{t}^{\varepsilon}+g\left(u^{\varepsilon}\right)_{x}=\varepsilon A\left(u^{\varepsilon}\right), \quad u^{\varepsilon}(0, x)=\bar{u}(x)
$$

A choice of A is admissible, in the sense of Gelfand, if shock wave solutions can be obtained as limits of solutions of

$$
u_{t}^{\varepsilon}+g\left(u^{\varepsilon}\right)_{x}=\varepsilon A\left(u^{\varepsilon}\right), \quad u^{\varepsilon}(0, x)=\bar{u}(x)
$$

When A is a perfect derivative the admissibility is equivalent to the existence of a heteroclinic connection between u_{-}and u_{+}.

In particular, the question of the admissibility of operator $A(u)=-u_{x x x x}$ leads to problem

$$
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=u_{-}, \quad u(+\infty)=u_{+},
$$

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

$f(u)$

$0 \leq p(t) \leq M$

Solvability for

$$
u^{\prime \prime \prime}=u^{2}-1, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

Solvability for

$$
u^{\prime \prime \prime}=u^{2}-1, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

嘈
N. Kopell and L.N. Howard, Bifurcations and trajectories joining critical points, Advances in Math. 18 (1975), 306-358.

Solvability for

$$
u^{\prime \prime \prime}=u^{2}-1, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

囦 N. Kopell and L.N. Howard, Bifurcations and trajectories joining critical points, Advances in Math. 18 (1975), 306-358.
嗇 C. Conley, Isolated invariant sets and the Morse index, C.B.M.S. 38, Amer. Math. Soc., Providence 1978.

Solvability for

$$
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=-1, \quad u(+\infty)=1 .
$$

Solvability for

$$
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

目 M.S. Mock, On fourth-order dissipation and single conservation laws, Comm. Pure Appl. Mathem. 29 (1976), 383-388.

Solvability for

$$
u^{\prime \prime \prime}=f(u), \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

目 M.S. Mock, On fourth-order dissipation and single conservation laws, Comm. Pure Appl. Mathem. 29 (1976), 383-388.
䍰 M.S. Mock, The half-line boundary value problem for $u_{x x x}=f(u)$, J. Differential Equations 32 (1979), 258-273.

Solvability for

$$
u^{\prime \prime \prime}=f(u)+\beta u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

Solvability for

$$
u^{\prime \prime \prime}=f(u)+\beta u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

婁 V. Manukian and S. Schecter, Travelling waves for a thin liquid film with surfactant on an inclined plane, Nonlinearity 22 (2009), 85-122.

Uniqueness for

$$
u^{\prime \prime \prime}=u^{2}-1, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

Uniqueness for

$$
u^{\prime \prime \prime}=u^{2}-1, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

Eh.K. McCord, Uniqueness of connecting orbits in the equation $Y^{(3)}=Y^{2}-1$, J. Math. Anal. Appl. 114 (1986), 584-592.

Uniqueness for

$$
u^{\prime \prime \prime}=f(u)+\beta u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

Uniqueness for

$$
u^{\prime \prime \prime}=f(u)+\beta u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

图 J.F. Toland, Existence and uniqueness of heteroclinic orbits for the equation $\lambda u^{\prime \prime \prime}+u^{\prime}=f(u)$, Proc. Royal Soc. Edinburgh 109A (1988), 23-36.
$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.

Proposition

Assume the conditions ($f 1$), (p) and f has only isolated zeros.

Proposition

Assume the conditions ($f 1$), (p) and f has only isolated zeros.
(1) If u is a solution in \mathbb{R}, bounded together with $p u^{\prime}$, then, for $i \in\{1,2,3\}, u^{(i)}(\pm \infty)=0, u(+\infty)=a^{+}$and $u(-\infty)=a^{-}$ with $f\left(a^{ \pm}\right)=0$.

Proposition

Assume the conditions ($f 1$), (p) and f has only isolated zeros.
(1) If u is a solution in \mathbb{R}, bounded together with $p u^{\prime}$, then, for $i \in\{1,2,3\}, u^{(i)}(\pm \infty)=0, u(+\infty)=a^{+}$and $u(-\infty)=a^{-}$ with $f\left(a^{ \pm}\right)=0$.
(2) If in addition u is non constant and

$$
\forall x \in\left[-\|u\|_{\infty},\|u\|_{\infty}\right] \backslash\{ \pm 1\}, \quad f(x)\left(x^{2}-1\right)>0
$$

then $u(-\infty)=-1$ and $u(+\infty)=1$.

Solvability under symmetry

($f 1$) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.

Solvability under symmetry

($f 1$) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.
(h1) There exists $N_{0}>1$ such that

$$
\forall u \in\left[0, N_{0}\right] \backslash\{1\}, f(u)(u-1)>0 \quad \text { and } \quad \int_{0}^{N_{0}} f(u) d u \geq 0 .
$$

Solvability under symmetry

($f 1$) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.
(h1) There exists $N_{0}>1$ such that

$$
\forall u \in\left[0, N_{0}\right] \backslash\{1\}, f(u)(u-1)>0 \quad \text { and } \quad \int_{0}^{N_{0}} f(u) d u \geq 0 .
$$

(s) f is even.

Solvability under symmetry

($f 1$) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.
(h1) There exists $N_{0}>1$ such that

$$
\forall u \in\left[0, N_{0}\right] \backslash\{1\}, f(u)(u-1)>0 \quad \text { and } \quad \int_{0}^{N_{0}} f(u) d u \geq 0 .
$$

(s) f is even.
$\left(s^{\prime}\right) p$ is even.

STRATEGY to solve the problem

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

under SYMMETRY.

Solve the following problem in the half-line

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u(+\infty)=1
$$

Solve the following problem in the half-line

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u(+\infty)=1
$$

Solve the following problem in the half-line

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u(+\infty)=1
$$

Theorem

Assume that hypotheses (f1), (p), (h1), (s) and (s') hold. Then

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

has a odd solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ which is nonnegative in $] 0,+\infty[$ and satisfies

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0 .
$$

Proof.

Claim 1. The BVP has a solution u_{n} for each $n \in \mathbb{N}$:

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Proof.

Step 1.- The modified problem.
We define the function $f^{*}: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f^{*}(u)=\left\{\begin{array}{cc}
f\left(N_{0}\right), & \text { if } u>N_{0}, \\
f(u), & \text { if } u \in\left[0, N_{0}\right], \\
f(0), & \text { if } u<0,
\end{array}\right.
$$

and consider the modified problem

$$
u^{\prime \prime \prime}=f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Proof.

Step 2.- Reduction to a fixed point problem.
For each $h \in \mathcal{C}([0, n])$, the linear problem

$$
\begin{equation*}
u^{\prime \prime \prime}-p(t) u^{\prime}=h(t), \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 \tag{1}
\end{equation*}
$$

has a unique solution Ku.

Proof.

Step 2.- Reduction to a fixed point problem.
Then let $S: \mathcal{C}([0, n]) \rightarrow \mathcal{C}([0, n])$ be given by

$$
S u=K\left(f^{*}(u)\right) .
$$

We consider the homotopy

$$
u=K\left(\lambda f^{*}(u)\right), \quad \lambda \in[0,1]
$$

which is equivalent to the problem

$$
u^{\prime \prime \prime}=\lambda f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Proof.

Step 3.- A priori estimates.
For all $\lambda \in[0,1]$, any solution of

$$
u^{\prime \prime \prime}=\lambda f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 .
$$

is nonnegative on $[0, n]$.

Proof.

Step 3.- A priori estimates.
For all $\lambda \in[0,1]$, any solution of

$$
u^{\prime \prime \prime}=\lambda f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0 .
$$

is nonnegative on $[0, n]$.

Proof.

Step 3.- A priori estimates.
For all $\lambda \in[0,1]$, any solution of

$$
u^{\prime \prime \prime}=\lambda f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

is nonnegative on $[0, n]$.
For any $n \in \mathbb{N}, \lambda \in[0,1]$ and any solution u of

$$
u^{\prime \prime \prime}=\lambda f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

we have,

$$
\text { for all } t \in[0, n], \quad|u(t)| \leq N_{0} .
$$

Proof.

Step 4.- Conclusion.
By standard results of Leray-Schauder degree theory the equation has a solution for $\lambda=1$, that is, there exists a solution of

$$
u^{\prime \prime \prime}=f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Proof.

Step 4.- Conclusion.
By standard results of Leray-Schauder degree theory the equation has a solution for $\lambda=1$, that is, there exists a solution of

$$
u^{\prime \prime \prime}=f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Proof.

Step 4.- Conclusion.
By standard results of Leray-Schauder degree theory the equation has a solution for $\lambda=1$, that is, there exists a solution of

$$
u^{\prime \prime \prime}=f^{*}(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Moreover we have that $0 \leq u \leq N_{0}$ and hence it is also a solution of

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u^{\prime}(n)=0
$$

Proof.

Claim 2. There exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$,

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([0, n])} \leq K .
$$

Proof.

Claim 2. There exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$,

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([0, n])} \leq K .
$$

Proof.

Claim 2. There exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$,

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([0, n])} \leq K
$$

We first show that $\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)}$ is bounded independently of n. Multiplying the equation by u_{n}^{\prime} and integrating by parts between

$$
\begin{gathered}
\int_{0}^{n} u_{n}^{\prime \prime 2}(s) d s=-\int_{0}^{n} f\left(u_{n}(s)\right) u_{n}^{\prime}(s) d s-\int_{0}^{n} p(s) u_{n}^{\prime 2}(s) d s \\
\leq-\min _{\left[0, N_{0}\right]} F .
\end{gathered}
$$

Proof.

Let us extend u_{n} to $\left[0,+\infty\left[\right.\right.$ with the constant value $u_{n}(n)$ in [$n,+\infty\left[\right.$, and define v_{n} as the odd extension of u_{n} to \mathbb{R}.

Proof.

Let us extend u_{n} to $\left[0,+\infty\left[\right.\right.$ with the constant value $u_{n}(n)$ in [$n,+\infty\left[\right.$, and define v_{n} as the odd extension of u_{n} to \mathbb{R}.

Proof.

Let us extend u_{n} to $\left[0,+\infty\left[\right.\right.$ with the constant value $u_{n}(n)$ in [$n,+\infty\left[\right.$, and define v_{n} as the odd extension of u_{n} to \mathbb{R}.
Then $v_{n} \in \mathcal{C}^{1}(\mathbb{R})$ and by the Gagliardo-Nirenberg's interpolation inequality, there is a constant C such that

$$
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})} \leq C\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}^{2 / 3}\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}^{1 / 3}
$$

Proof.

Since

$$
\begin{gathered}
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}, \quad\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}=2\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)} \\
\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}\right\|_{\mathcal{C}([0, n])}
\end{gathered}
$$

Proof.

Since

$$
\begin{gathered}
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}, \quad\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}=2\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)} \\
\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}\right\|_{\mathcal{C}([0, n])}
\end{gathered}
$$

Proof.

Since

$$
\begin{gathered}
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}, \quad\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}=2\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)} \\
\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}\right\|_{\mathcal{C}([0, n])}
\end{gathered}
$$

we infer

$$
\sup _{n}\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}<\infty
$$

Proof.

Since

$$
\begin{gathered}
\left\|v_{n}^{\prime}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}, \quad\left\|v_{n}^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}=2\left\|u_{n}^{\prime \prime}\right\|_{L^{2}(0, n)} \\
\left\|v_{n}\right\|_{\mathcal{C}(\mathbb{R})}=\left\|u_{n}\right\|_{\mathcal{C}([0, n])}
\end{gathered}
$$

we infer

$$
\sup _{n}\left\|u_{n}^{\prime}\right\|_{\mathcal{C}([0, n])}<\infty
$$

and the differential equation yields

$$
\sup _{n}\left\|u_{n}^{\prime \prime \prime}\right\|_{\mathcal{C}([0, n])}<\infty
$$

So, the claim follows from standard interpolation.

Proof.

Claim 3. Passing to the limit, the boundary value problem

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(0)=u^{\prime \prime}(0)=0, \quad u(+\infty)=1
$$

has a solution $u \in \mathcal{C}^{3}([0,+\infty[)$ which is nonnegative on $[0,+\infty[$ and such that $u^{\prime}, u^{\prime \prime}$ and $u^{\prime \prime \prime}$ are bounded in \mathbb{R}^{+}.

Proof.

Claim 4. Extending the solution by symmetry we get an odd solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ which is nonnegative in $] 0,+\infty[$ and satisfies

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!
$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.

Solvability without symmetry

Without symmetry the existence of heteroclinics becomes considerably more complicated!
$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.

Define $F(u)=\int_{0}^{u} f(s) d s$

Define $F(u)=\int_{0}^{u} f(s) d s$
(h2) There exist $\alpha<-1$ and $\beta>1$ such that,

$$
\begin{gathered}
\forall u \in[\alpha, \beta] \backslash\{-1,1\}, f(u)\left(u^{2}-1\right)>0 \\
F(\beta)=F(-1) \quad \text { and } \quad F(\alpha)=F(1)
\end{gathered}
$$

Define $F(u)=\int_{0}^{u} f(s) d s$
(h2) There exist $\alpha<-1$ and $\beta>1$ such that,

$$
\begin{gathered}
\forall u \in[\alpha, \beta] \backslash\{-1,1\}, f(u)\left(u^{2}-1\right)>0 \\
F(\beta)=F(-1) \quad \text { and } \quad F(\alpha)=F(1)
\end{gathered}
$$

Theorem

Assume that hypotheses (f1), (p) and (h2) hold. Then

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

has a solution $u \in \mathcal{C B}^{3}(\mathbb{R})$ which satisfies

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Proof.

Step 1. The BVP has a solution u_{n} for each $n \in \mathbb{N}$:

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0
$$

Proof. (Step 1.1. The modified problem)

We define the functions $f_{+}, f_{-}:[-n, n] \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{+}(u)=\left\{\begin{array}{cc}
f(\beta), & \text { if } u>\beta \\
f(u), & \text { if } u \in[-1, \beta] \\
0, & \text { if } u<-1
\end{array}\right.
$$

Proof. (Step 1.1. The modified problem)

We define the functions $f_{+}, f_{-}:[-n, n] \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{-}(u)=\left\{\begin{array}{cc}
0, & \text { if } u>1, \\
f(u), & \text { if } u \in[\alpha, 1], \\
f(\alpha), & \text { if } u<\alpha .
\end{array}\right.
$$

Proof. (Step 1.1. The modified problem)

Then we set

$$
f^{*}(t, u)= \begin{cases}f_{+}(u), & \text { if } t \geq 0 \\ f_{-}(u), & \text { if } t<0\end{cases}
$$

and we consider then the modified problem

$$
u^{\prime \prime \prime}=f^{*}(t, u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0
$$

Proof. (Step 1.2. Reduction to a fixed point problem)

For each $h \in \mathcal{C}([-n, n])$, the linear problem

$$
u^{\prime \prime \prime}-p(t) u^{\prime}=h(t), \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0
$$

has a unique solution $K(h)$.

Proof. (Step 1.2. Reduction to a fixed point problem)

Define the open and bounded set

$$
\begin{gathered}
\Omega=\{u \in \mathcal{C}([-n, n]) \mid u(-n)<1 \text { and } u(n)>-1 \\
\text { and } \alpha<u(t)<\beta \quad \forall t \in[-n, n]\} .
\end{gathered}
$$

Proof. (Step 1.2. Reduction to a fixed point problem)

Define the open and bounded set

$$
\begin{gathered}
\Omega=\{u \in \mathcal{C}([-n, n]) \mid u(-n)<1 \text { and } u(n)>-1 \\
\text { and } \alpha<u(t)<\beta \quad \forall t \in[-n, n]\} .
\end{gathered}
$$

and let $S: \bar{\Omega} \rightarrow \mathcal{C}([-n, n])$ be given by

$$
S u=K\left(f^{*}(t, u)\right) .
$$

Proof. (Step 1.2. Reduction to a fixed point problem)

In order to obtain a fixed point we consider the homotopy

$$
u=K\left(\lambda f^{*}(t, u)\right), \quad \lambda \in[0,1],
$$

which is equivalent to the problem

$$
u^{\prime \prime \prime}=\lambda f^{*}(t, u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0 .
$$

Proof. (Step 1.3. A priori estimates)

Proof. (Step 1.3. A priori estimates)

(1) For $\lambda=0$, the solution u is in Ω.

Proof. (Step 1.3. A priori estimates)

(1) For $\lambda=0$, the solution u is in Ω.
(2) For $\lambda \in] 0,1]$ and u a solution with $u(-n)<1$ and $u(n)>-1$, we have, $\forall t \in[0, n],-1<u(t)<\beta$ and, $\forall t \in[-n, 0], \alpha<u(t)<1$.

Proof. (Step 1.3. A priori estimates)

(1) For $\lambda=0$, the solution u is in Ω.
(2) For $\lambda \in] 0,1]$ and u a solution with $u(-n)<1$ and $u(n)>-1$, we have, $\forall t \in[0, n],-1<u(t)<\beta$ and, $\forall t \in[-n, 0], \alpha<u(t)<1$.
(3) For $\lambda \in] 0,1]$, there is no solution on $\partial \Omega$.

Proof.

Step 2. There exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$ the solution u_{n} of

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0
$$

satisfies

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([-n, n])} \leq K
$$

Proof.

Step 2. There exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$ the solution u_{n} of

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0
$$

satisfies

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([-n, n])} \leq K
$$

Proof.

Step 2. There exists a number $K>0$ with the property that, for all $n \in \mathbb{N}$ the solution u_{n} of

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u^{\prime}(-n)=0, \quad u(0)=0, \quad u^{\prime}(n)=0
$$

satisfies

$$
\left\|u_{n}\right\|_{\mathcal{C}^{3}([-n, n])} \leq K
$$

Step 3. Passing to the limit, the boundary value problem

$$
u^{\prime \prime \prime}=f(u)+p(t) u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

has a solution $u \in \mathcal{C}^{3}(\mathbb{R})$ and such that $u^{\prime}, u^{\prime \prime}$ and $u^{\prime \prime \prime}$ are bounded in \mathbb{R}.
($f 1$) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.
(h2) There exist $\alpha<-1$ and $\beta>1$ such that,

$$
\begin{aligned}
& \forall u \in[\alpha, \beta] \backslash\{-1,1\}, \quad f(u)\left(u^{2}-1\right)>0, \\
& F(\beta)=F(-1) \quad \text { and } \quad F(\alpha)=F(1) ;
\end{aligned}
$$

$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.
(h2) There exist $\alpha<-1$ and $\beta>1$ such that,

$$
\begin{gathered}
\forall u \in[\alpha, \beta] \backslash\{-1,1\}, f(u)\left(u^{2}-1\right)>0 \\
F(\beta)=F(-1) \quad \text { and } \quad F(\alpha)=F(1)
\end{gathered}
$$

(h3) f is nondecreasing on $[0, \beta]$ and nonincreasing on $[\alpha, 0]$;
$(f 1) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(-1)=f(1)=0$.
(p) p is continuous and $\exists M>0$ such that $0 \leq p(t) \leq M$.
(h2) There exist $\alpha<-1$ and $\beta>1$ such that,

$$
\begin{gathered}
\forall u \in[\alpha, \beta] \backslash\{-1,1\}, f(u)\left(u^{2}-1\right)>0 \\
F(\beta)=F(-1) \quad \text { and } \quad F(\alpha)=F(1)
\end{gathered}
$$

$(h 3) f$ is nondecreasing on $[0, \beta]$ and nonincreasing on $[\alpha, 0]$;
(h4) f satisfies

$$
\int_{\alpha}^{0} F(s) d s>0 \quad \text { and } \quad \int_{0}^{\beta} F(s) d s<0
$$

Theorem

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz on $[\alpha, \beta]$ and satisfies ($f 1$), (h2), (h3) and (h4). In addition assume p is a nonnegative constant. Then

$$
u^{\prime \prime \prime}=f(u)+p u^{\prime}, \quad u(-\infty)=-1, \quad u(+\infty)=1
$$

has a unique (up to translations) solution $u \in \mathcal{C B}^{3}(\mathbb{R})$. Moreover u has a unique simple zero and

$$
u^{\prime}(\pm \infty)=u^{\prime \prime}(\pm \infty)=u^{\prime \prime \prime}(\pm \infty)=0
$$

Many thanks for your attention...

More information on: http://webs.uvigo.es/angelcid/ or sending an e-mail to: angelcid@uvigo.es

... AND CONGRATULATIONS MILAN!

