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This talk is based on this paper:

D. Bonheure, J. A. Cid, C. De Coster and L. Sanchez,
Heteroclinics for some non autonomous third order
differential equations, to appear in Topol. Methods
Nonlinear Anal.
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The existence of heteroclinic orbits for the third order problem

u′′′ = f (u), u(−∞) = u−, u(+∞) = u+,

arises for instance in the study of regularization of the Cauchy
problem for the one-dimensional hyperbolic conservation law

ut + g(u)x = 0, u(0, x) = u(x).
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It is known that the single shock wave joining the two states u−
(on the left) and u+ (on the right)

u(t , x) :=

{
u− for x < λ t ,
u+ for x > λ t ,

is a weak solution if and only if its speed λ satisfies the
Rankine-Hugoniot equation

g(u+)− g(u−) = λ (u+ − u−).
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However weak solutions are in general not unique. A way to
regularize the problem is to search for weak solutions which are
limits as ε→ 0+ of solutions of

uεt + g(uε)x = εA(uε), uε(0, x) = u(x),

where A is a differential operator of higher order in x (the
viscosity).
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A choice of A is admissible, in the sense of Gelfand, if shock
wave solutions can be obtained as limits of solutions of

uεt + g(uε)x = εA(uε), uε(0, x) = u(x).

When A is a perfect derivative the admissibility is equivalent to
the existence of a heteroclinic connection between u− and u+.
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In particular, the question of the admissibility of operator
A(u) = −uxxxx leads to problem

u′′′ = f (u), u(−∞) = u−, u(+∞) = u+,
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u′′′ = f (u) + p(t)u′, u(−∞) = −1, u(+∞) = 1.

−1 1

f (u) 0 ≤ p(t) ≤ M
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Solvability for

u′′′ = u2 − 1, u(−∞) = −1, u(+∞) = 1.

N. Kopell and L.N. Howard, Bifurcations and trajectories
joining critical points, Advances in Math. 18 (1975),
306-358.

C. Conley, Isolated invariant sets and the Morse index,
C.B.M.S. 38, Amer. Math. Soc., Providence 1978.
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u′′′ = f (u), u(−∞) = −1, u(+∞) = 1.

M.S. Mock, On fourth-order dissipation and single
conservation laws, Comm. Pure Appl. Mathem. 29 (1976),
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M.S. Mock, The half-line boundary value problem for
uxxx = f (u), J. Differential Equations 32 (1979), 258-273.
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Solvability for

u′′′ = f (u) + βu′, u(−∞) = −1, u(+∞) = 1.

V. Manukian and S. Schecter, Travelling waves for a thin
liquid film with surfactant on an inclined plane, Nonlinearity
22 (2009), 85–122.
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Uniqueness for

u′′′ = u2 − 1, u(−∞) = −1, u(+∞) = 1.

Ch.K. McCord, Uniqueness of connecting orbits in the
equation Y (3) = Y 2 − 1, J. Math. Anal. Appl. 114 (1986),
584-592.
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(f1) f : R→ R is continuous and f (−1) = f (1) = 0.

(p) p is continuous and ∃M > 0 such that 0 ≤ p(t) ≤ M.
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Proposition

Assume the conditions (f1), (p) and f has only isolated zeros.

1 If u is a solution in R, bounded together with pu′, then, for
i ∈ {1,2,3}, u(i)(±∞) = 0, u(+∞) = a+ and u(−∞) = a−

with f (a±) = 0.
2 If in addition u is non constant and

∀x ∈ [−‖u‖∞, ‖u‖∞] \ {±1}, f (x)(x2 − 1) > 0,

then u(−∞) = −1 and u(+∞) = 1.
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Solvability under symmetry

(f1) f : R→ R is continuous and f (−1) = f (1) = 0.

(p) p is continuous and ∃M > 0 such that 0 ≤ p(t) ≤ M.

(h1) There exists N0 > 1 such that

∀u ∈ [0,N0] \ {1}, f (u)(u − 1) > 0 and
∫ N0

0
f (u)du ≥ 0.

(s) f is even.
(s′) p is even.
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STRATEGY to solve the problem

u′′′ = f (u) + p(t)u′, u(−∞) = −1, u(+∞) = 1

under SYMMETRY.
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Solve the following problem in the half-line

u′′′ = f (u) + p(t)u′, u(0) = u′′(0) = 0, u(+∞) = 1,

1
u(t)

and take the ODD extension.
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Solve the following problem in the half-line
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1

−1
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Theorem

Assume that hypotheses (f1), (p), (h1), (s) and (s′) hold. Then

u′′′ = f (u) + p(t)u′, u(−∞) = −1, u(+∞) = 1,

has a odd solution u ∈ CB3(R) which is nonnegative in ]0,+∞[
and satisfies

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.
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Proof.
Claim 1. The BVP has a solution un for each n ∈ N:

u′′′ = f (u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

0 n

un(t)
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Proof.
Step 1.- The modified problem.

We define the function f ∗ : R→ R as

f ∗(u) =


f (N0), if u > N0,
f (u), if u ∈ [0,N0],
f (0), if u < 0,

and consider the modified problem

u′′′ = f ∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.
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Proof.
Step 2.- Reduction to a fixed point problem.

For each h ∈ C([0,n]), the linear problem

u′′′ − p(t)u′ = h(t), u(0) = u′′(0) = 0, u′(n) = 0, (1)

has a unique solution Ku.
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Proof.
Step 2.- Reduction to a fixed point problem.

Then let S : C([0,n])→ C([0,n]) be given by

Su = K (f ∗(u)).

We consider the homotopy

u = K (λf ∗(u)), λ ∈ [0,1],

which is equivalent to the problem

u′′′ = λf ∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.
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Proof.
Step 3.- A priori estimates.

For all λ ∈ [0,1], any solution of

u′′′ = λf ∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

is nonnegative on [0,n].

For any n ∈ N, λ ∈ [0,1] and any solution u of

u′′′ = λf ∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

we have,
for all t ∈ [0,n], |u(t)| ≤ N0.
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Proof.
Step 4.- Conclusion.

By standard results of Leray-Schauder degree theory the
equation has a solution for λ = 1, that is, there exists a solution
of

u′′′ = f ∗(u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0.

Moreover we have that 0 ≤ u ≤ N0 and hence it is also a
solution of

u′′′ = f (u) + p(t)u′, u(0) = u′′(0) = 0, u′(n) = 0,
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Proof.
Claim 2. There exists a number K > 0 with the property that,
for all n ∈ N,

‖un‖C3([0,n]) ≤ K .

We first show that ‖u′′n‖L2(0,n) is bounded independently of n.
Multiplying the equation by u′n and integrating by parts between

∫ n

0
u′′2n (s)ds = −

∫ n

0
f (un(s))u′n(s)ds −

∫ n

0
p(s)u′2n (s) ds

≤ − min
[0,N0]

F .
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Proof.

Let us extend un to [0,+∞[ with the constant value un(n) in
[n,+∞[, and define vn as the odd extension of un to R.

Then vn ∈ C1(R) and by the Gagliardo-Nirenberg’s interpolation
inequality, there is a constant C such that

‖v ′n‖C(R) ≤ C‖v ′′n ‖
2/3
L2(R)‖vn‖1/3

C(R).
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Proof.
Since

‖v ′n‖C(R) = ‖u′n‖C([0,n]), ‖v ′′n ‖L2(R) = 2‖u′′n‖L2(0,n),

‖vn‖C(R) = ‖un‖C([0,n]),

we infer
sup

n
‖u′n‖C([0,n]) <∞

and the differential equation yields

sup
n
‖u′′′n ‖C([0,n]) <∞.

So, the claim follows from standard interpolation.
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sup
n
‖u′′′n ‖C([0,n]) <∞.

So, the claim follows from standard interpolation.
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Proof.
Claim 3. Passing to the limit, the boundary value problem

u′′′ = f (u) + p(t)u′, u(0) = u′′(0) = 0, u(+∞) = 1

has a solution u ∈ C3([0,+∞[) which is nonnegative on [0,+∞[
and such that u′, u′′ and u′′′ are bounded in R+.

1
u(t)
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Proof.
Claim 4. Extending the solution by symmetry we get an odd
solution u ∈ CB3(R) which is nonnegative in ]0,+∞[ and
satisfies

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.

1

−1

u(t)
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Solvability without symmetry

Without symmetry the existence of heteroclinics becomes
considerably more complicated!

(f1) f : R→ R is continuous and f (−1) = f (1) = 0.

(p) p is continuous and ∃M > 0 such that 0 ≤ p(t) ≤ M.
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Solvability without symmetry

Without symmetry the existence of heteroclinics becomes
considerably more complicated!

(f1) f : R→ R is continuous and f (−1) = f (1) = 0.

(p) p is continuous and ∃M > 0 such that 0 ≤ p(t) ≤ M.
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Define F (u) =

∫ u

0
f (s)ds

(h2) There exist α < −1 and β > 1 such that,

∀u ∈ [α, β] \ {−1,1}, f (u)(u2 − 1) > 0,
F (β) = F (−1) and F (α) = F (1);

−1 1α β

f (u)

−1 1α β

F (u)
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Define F (u) =

∫ u

0
f (s)ds

(h2) There exist α < −1 and β > 1 such that,

∀u ∈ [α, β] \ {−1,1}, f (u)(u2 − 1) > 0,
F (β) = F (−1) and F (α) = F (1);

−1 1α β

f (u)

−1 1α β

F (u)
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Theorem

Assume that hypotheses (f1), (p) and (h2) hold. Then

u′′′ = f (u) + p(t)u′, u(−∞) = −1, u(+∞) = 1,

has a solution u ∈ CB3(R) which satisfies

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.
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Proof.
Step 1. The BVP has a solution un for each n ∈ N:

u′′′ = f (u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0.

−n 0 n

un(t)
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Proof. (Step 1.1. The modified problem)

We define the functions f+, f− : [−n,n]× R→ R by

f+(u) =


f (β), if u > β,
f (u), if u ∈ [−1, β],

0, if u < −1,
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Proof. (Step 1.1. The modified problem)

We define the functions f+, f− : [−n,n]× R→ R by

f−(u) =


0, if u > 1,

f (u), if u ∈ [α,1],
f (α), if u < α.
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Proof. (Step 1.1. The modified problem)
Then we set

f ∗(t ,u) =

{
f+(u), if t ≥ 0,
f−(u), if t < 0.

and we consider then the modified problem

u′′′ = f ∗(t ,u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0.
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Proof. (Step 1.2. Reduction to a fixed point problem)

For each h ∈ C([−n,n]), the linear problem

u′′′ − p(t)u′ = h(t), u′(−n) = 0, u(0) = 0, u′(n) = 0,

has a unique solution K(h).
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Proof. (Step 1.2. Reduction to a fixed point problem)
Define the open and bounded set

Ω = {u ∈ C([−n,n]) | u(−n) < 1 and u(n) > −1
and α < u(t) < β ∀t ∈ [−n,n]}.



Introduction
Bounded solutions

Solvability under symmetry
Solvability without symmetry

Uniqueness

Proof. (Step 1.2. Reduction to a fixed point problem)
Define the open and bounded set

Ω = {u ∈ C([−n,n]) | u(−n) < 1 and u(n) > −1
and α < u(t) < β ∀t ∈ [−n,n]}.

and let S : Ω→ C([−n,n]) be given by

Su = K (f ∗(t ,u)).
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Proof. (Step 1.2. Reduction to a fixed point problem)
In order to obtain a fixed point we consider the homotopy

u = K (λf ∗(t ,u)), λ ∈ [0,1],

which is equivalent to the problem

u′′′ = λf ∗(t ,u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0.
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Proof. (Step 1.3. A priori estimates)

1 For λ = 0, the solution u is in Ω.
2 For λ ∈ ]0,1] and u a solution with u(−n) < 1 and

u(n) > −1, we have, ∀t ∈ [0,n], −1 < u(t) < β and,
∀t ∈ [−n,0], α < u(t) < 1.

3 For λ ∈ ]0,1], there is no solution on ∂Ω.
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Proof. (Step 1.3. A priori estimates)
1 For λ = 0, the solution u is in Ω.
2 For λ ∈ ]0,1] and u a solution with u(−n) < 1 and

u(n) > −1, we have, ∀t ∈ [0,n], −1 < u(t) < β and,
∀t ∈ [−n,0], α < u(t) < 1.

3 For λ ∈ ]0,1], there is no solution on ∂Ω.
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Uniqueness

Proof.
Step 2. There exists a number K > 0 with the property that, for
all n ∈ N the solution un of

u′′′ = f (u) + p(t)u′, u′(−n) = 0, u(0) = 0, u′(n) = 0,

satisfies
‖un‖C3([−n,n]) ≤ K .

Step 3. Passing to the limit, the boundary value problem

u′′′ = f (u) + p(t)u′, u(−∞) = −1, u(+∞) = 1,

has a solution u ∈ C3(R) and such that u′, u′′ and u′′′ are
bounded in R.
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all n ∈ N the solution un of
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(f1) f : R→ R is continuous and f (−1) = f (1) = 0.

(p) p is continuous and ∃M > 0 such that 0 ≤ p(t) ≤ M.

(h2) There exist α < −1 and β > 1 such that,

∀u ∈ [α, β] \ {−1,1}, f (u)(u2 − 1) > 0,
F (β) = F (−1) and F (α) = F (1);

(h3) f is nondecreasing on [0, β] and nonincreasing on [α,0];

(h4) f satisfies∫ 0

α
F (s) ds > 0 and

∫ β

0
F (s) ds < 0.
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Theorem

Suppose that f : R→ R is locally Lipschitz on [α, β] and
satisfies (f1), (h2), (h3) and (h4). In addition assume p is a
nonnegative constant. Then

u′′′ = f (u) + p u′, u(−∞) = −1, u(+∞) = 1,

has a unique (up to translations) solution u ∈ CB3(R). Moreover
u has a unique simple zero and

u′(±∞) = u′′(±∞) = u′′′(±∞) = 0.
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MANY THANKS FOR YOUR ATTENTION...

More information on: http://webs.uvigo.es/angelcid/
or sending an e-mail to: angelcid@uvigo.es

http://webs.uvigo.es/angelcid/
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... AND CONGRATULATIONS MILAN!
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