EQUATIONS WITH INVOLUTIONS

Alberto Cabada and Adrián F. Tojo

University of Santiago de Compostela, Santiago de Compostela, Galicia Spain

Workshop on Differential Equations 2014 Malá Morávka, Czech Republic, March, 28, 2014

Devoted to our friend Milan Tvrdý

Parts of the Talk

Alberto Cabada and Adrián F. Tojo
Equations with Involution

Parts of the Talk

- Motivation and Historical Notes

Alberto Cabada and Adrián F. Tojo
Equations with Involution

Parts of The Talk

- Motivation and Historical Notes
- Differential equations with Involutions

Parts of the Talk

- Motivation and Historical Notes
- Differential equations with Involutions
- Construction of the Green’s Function

Parts of the Talk

- Motivation and Historical Notes
- Differential equations with Involutions
- Construction of the Green’s Function
- Constant Sign Green’s Functions

Part I

Motivation and Historical Notes

It is clear that, given $a, b \in \mathbb{R}$, the straight line $x(t)=a t+b$ satisfies the equation

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}
$$

However we do not impose that the derivative must be constant. So our natural question is:

Are the straight lines the only solutions of this equation?

To answer this question we take into account the very well known result that any $f: \mathbb{R} \rightarrow \mathbb{R}$ can be expressed in a unique way as $f=f_{e}+f_{o}$, with

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2} \quad \text { and } \quad f_{o}(x):=\frac{f(x)-f(-x)}{2} \quad x \in \mathbb{R} .
$$

To answer this question we take into account the very well known result that any $f: \mathbb{R} \rightarrow \mathbb{R}$ can be expressed in a unique way as $f=f_{e}+f_{o}$, with

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2} \quad \text { and } \quad f_{o}(x):=\frac{f(x)-f(-x)}{2} \quad x \in \mathbb{R} .
$$

f_{e} is known as the even part of f and f_{o} is its odd part.

To answer this question we take into account the very well known result that any $f: \mathbb{R} \rightarrow \mathbb{R}$ can be expressed in a unique way as $f=f_{e}+f_{o}$, with

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2} \quad \text { and } \quad f_{o}(x):=\frac{f(x)-f(-x)}{2} \quad x \in \mathbb{R} .
$$

f_{e} is known as the even part of f and f_{o} is its odd part.
It is not difficult to verify the following properties:
(1) $\left(f^{\prime}\right)_{o}=f^{\prime} \Longleftrightarrow f=f_{e}$,

To answer this question we take into account the very well known result that any $f: \mathbb{R} \rightarrow \mathbb{R}$ can be expressed in a unique way as $f=f_{e}+f_{o}$, with

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2} \quad \text { and } \quad f_{o}(x):=\frac{f(x)-f(-x)}{2} \quad x \in \mathbb{R} .
$$

f_{e} is known as the even part of f and f_{o} is its odd part.
It is not difficult to verify the following properties:
(1) $\left(f^{\prime}\right)_{o}=f^{\prime} \Longleftrightarrow f=f_{e}$,
(2) $\left(f^{\prime}\right)_{e}=f^{\prime} \Longleftrightarrow f=f_{o}+c, c \in \mathbb{R}$.

Returning to our problem, we can rewrite it as

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}=\frac{x_{0}(t)}{t}
$$

Returning to our problem, we can rewrite it as

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}=\frac{x_{0}(t)}{t}
$$

Since $\frac{x_{0}(t)}{t}$ is even, we know that x^{\prime} is even too. So $x(t)=x_{0}(t)+c$, for some $c \in \mathbb{R}$.

Returning to our problem, we can rewrite it as

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}=\frac{x_{0}(t)}{t}
$$

Since $\frac{x_{0}(t)}{t}$ is even, we know that x^{\prime} is even too. So $x(t)=x_{0}(t)+c$, for some $c \in \mathbb{R}$.
Thus

$$
\left(x_{o}\right)^{\prime}(t)+0=x^{\prime}(t)=
$$

Returning to our problem, we can rewrite it as

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}=\frac{x_{0}(t)}{t}
$$

Since $\frac{x_{0}(t)}{t}$ is even, we know that x^{\prime} is even too. So $x(t)=x_{0}(t)+c$, for some $c \in \mathbb{R}$.
Thus

$$
\left(x_{0}\right)^{\prime}(t)+0=x^{\prime}(t)=\left(x_{0}\right)^{\prime}(t)+\left(x_{e}\right)^{\prime}(t) .
$$

or, which is the same:

$$
\left(x_{e}\right)^{\prime}(t)=0, \quad\left(x_{0}\right)^{\prime}(t)=\frac{x_{0}(t)}{t} .
$$

A Simple Example

Returning to our problem, we can rewrite it as

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}=\frac{x_{0}(t)}{t}
$$

Since $\frac{x_{0}(t)}{t}$ is even, we know that x^{\prime} is even too. So $x(t)=x_{0}(t)+c$, for some $c \in \mathbb{R}$.
Thus

$$
\left(x_{0}\right)^{\prime}(t)+0=x^{\prime}(t)=\left(x_{0}\right)^{\prime}(t)+\left(x_{e}\right)^{\prime}(t) .
$$

or, which is the same:

$$
\left(x_{e}\right)^{\prime}(t)=0, \quad\left(x_{o}\right)^{\prime}(t)=\frac{x_{o}(t)}{t}
$$

As consequence, $x_{e}(t)=c, x_{o}(t)=k t$ with $c, k \in \mathbb{R}$, i.e.,

$$
x(t)=k t+c .
$$

A Simple Example

Returning to our problem, we can rewrite it as

$$
x^{\prime}(t)=\frac{x(t)-x(-t)}{2 t}=\frac{x_{0}(t)}{t} .
$$

Since $\frac{x_{0}(t)}{t}$ is even, we know that x^{\prime} is even too. So $x(t)=x_{0}(t)+c$, for some $c \in \mathbb{R}$.
Thus

$$
\left(x_{o}\right)^{\prime}(t)+0=x^{\prime}(t)=\left(x_{o}\right)^{\prime}(t)+\left(x_{e}\right)^{\prime}(t) .
$$

or, which is the same:

$$
\left(x_{e}\right)^{\prime}(t)=0, \quad\left(x_{o}\right)^{\prime}(t)=\frac{x_{o}(t)}{t} .
$$

As consequence, $x_{e}(t)=c, x_{0}(t)=k t$ with $c, k \in \mathbb{R}$, i.e.,

$$
x(t)=k t+c .
$$

So we conclude that the set of solutions of this problem are the straight lines.
R. Figueroa and R. L. Pouso, Minimal and maximal solutions to second-order boundary value problems with state-dependent deviating arguments, Bull. Lond. Math. Soc., 43 (2011), 164-174.
© R. Figueroa and R. L. Pouso, Minimal and maximal solutions to second-order boundary value problems with state-dependent deviating arguments, Bull. Lond. Math. Soc., 43 (2011), 164-174.

Consider a metal wire around a thin sheet of insulating material in a way that some parts overlap some others as in the figure.

Assuming that the position $Y=0$ is the lowest of the wire, and the insulation goes up to the left at $-Y$ and to the right up to Y.

Assuming that the position $Y=0$ is the lowest of the wire, and the insulation goes up to the left at $-Y$ and to the right up to Y.
Traditional heat equation with respect to the $T(-Y) \prod_{T(-y)}^{T(Y)} T$

$$
\frac{\partial T}{\partial t}(t, y)=\alpha \frac{\partial^{2} T}{\partial y^{2}}(t, y)
$$

Assuming that the position $Y=0$ is the lowest of the wire, and the insulation goes up to the left at $-Y$ and to the right up to Y.
Traditional heat equation with respect to the $T(-Y)=T(Y)$ wire is

$$
\frac{\partial T}{\partial t}(t, y)=\alpha \frac{\partial^{2} T}{\partial y^{2}}(t, y) .
$$

However, given the proximity of the other section of wire, we can add another term to affect the equation:

$$
\frac{\partial T}{\partial t}(t, y)=\alpha \frac{\partial^{2} T}{\partial y^{2}}(t, y)+\beta \frac{\partial^{2} T}{\partial y^{2}}(t,-y) .
$$

After these two examples we are interested in to consider $n^{\text {th }}$-order differential equations that follows the expression

$$
x^{(n)}(t)=f(t, x(t), x(-t)), \quad t \in[-T, T] .
$$

After these two examples we are interested in to consider $n^{\text {th }}$-order differential equations that follows the expression

$$
x^{(n)}(t)=f(t, x(t), x(-t)), \quad t \in[-T, T] .
$$

It is important to note the following facts:

- They are functional equations.

After these two examples we are interested in to consider $n^{\text {th }}$-order differential equations that follows the expression

$$
x^{(n)}(t)=f(t, x(t), x(-t)), \quad t \in[-T, T] .
$$

It is important to note the following facts:

- They are functional equations.
- They are neither equations with delay nor advance.

The main characteristic of the operator $\varphi(t)=-t$ is that

$$
\varphi \neq I d \text { and } \varphi \circ \varphi=I d
$$

The main characteristic of the operator $\varphi(t)=-t$ is that

$$
\varphi \neq I d \text { and } \varphi \circ \varphi=I d
$$

DEFINITION

Let $A \subset \mathbb{R}$, a function $f: A \rightarrow A$ such that $f \circ f=\mathrm{Id}$ is called an involution.
(A. Cabada, G. Infante and F. A. F. Tojo, Nontrivial solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Preprint.

圊 A. Cabada, G. Infante and F. A. F. Tojo, Nontrivial solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Preprint.

Consider the model of a light bulb with a temperature regulating system (thermostat).

围 A. Cabada, G. Infante and F. A. F. Tojo, Nontrivial solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Preprint.

Consider the model of a light bulb with a temperature regulating system (thermostat). The model includes a bulb in which a metal filament, bended on itself, is inserted with only its two extremes outside of the bulb.

: A. Cabada, G. Infante and F. A. F. Tojo, Nontrivial solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Preprint.

Consider the model of a light bulb with a temperature regulating system (thermostat). The model includes a bulb in which a metal filament, bended on itself, is inserted with only its two extremes outside of the bulb.

$$
u^{\prime \prime}(t)+g(t) f(t, u(t), u(\varphi(t)))=0, t \in(0,1), \quad \varphi \circ \varphi=I d
$$

DEFINITION

Let $A \subset \mathbb{R}, f: A \rightarrow A, k \in \mathbb{N}, k \geq 2$. We say f is an involution of order n if
(1) $f^{n} \equiv f \circ \overbrace{}^{n}$ of $=\mathrm{ld}$,

DEFINITION

Let $A \subset \mathbb{R}, f: A \rightarrow A, k \in \mathbb{N}, k \geq 2$. We say f is an involution of order n if
(1) $f^{n} \equiv f \circ \overbrace{}^{n}$ of $=\mathrm{ld}$,
(2) $f^{k} \neq \mathrm{Id} \quad \forall k=1, \ldots, n-1$.
(1) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=-x$ is an involution known as reflection.
(1) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=-x$ is an involution known as reflection.
(2) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \backslash\{0\}, f(x)=1 / x$ known as inversion.
(1) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=-x$ is an involution known as reflection.
(2) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \backslash\{0\}, f(x)=1 / x$ known as inversion.
(3) Let $a, b, c \in \mathbb{R}, c b+a^{2} \neq 0, c \neq 0$,

$$
f: \mathbb{R} \backslash\left\{\frac{a}{c}\right\} \rightarrow \mathbb{R} \backslash\left\{\frac{a}{c}\right\}, f(x)=\frac{a x+b}{c x-a}
$$

is a family of involutions known as bilinear involutions.

- Involutions are invertible.

Alberto Cabada and Adrián F. Tojo
EqUATIONS WITH INVOLUTION

- Involutions are invertible.
- If $A \subset \mathbb{R}$ is connected and $f: A \rightarrow A$ is a continuous involution, then f is decreasing and has a unique fixed point.
- Involutions are invertible.
- If $A \subset \mathbb{R}$ is connected and $f: A \rightarrow A$ is a continuous involution, then f is decreasing and has a unique fixed point.
- The only continuous involutions defined in connected subsets of \mathbb{R} are of order 2 .

The study of functional differential equations with involutions can be traced back to the solution of the inversion equation $x^{\prime}(t)=x(1 / t)$ by Silberstein in 1940.
围 Silberstein, Ludwik. Solution of the Equation $f^{\prime}(x)=f(1 / x)$. Philos. Mag. 7:30 (1940), pp 185-186.

The study of functional differential equations with involutions can be traced back to the solution of the inversion equation $x^{\prime}(t)=x(1 / t)$ by Silberstein in 1940.

雷 Silberstein, Ludwik.
Solution of the Equation $f^{\prime}(x)=f(1 / x)$. Philos. Mag. 7:30 (1940), pp 185-186.

Wiener proves that the solutions of the Silberstein equation solve the second order singular ordinary differential equation $t^{2} x^{\prime \prime}(t)+x(t)=0$.

目 Wiener, Joseph.
Differential equations with involutions.
Differensial'nye Uravneniya, 5, (1969), 1131-1137.

On the other hand, by defining $y(t)=x\left(e^{t}\right)$, we conclude that x is a solution of the inversion Silberstein equation if and only if y solves the reflection equation $y^{\prime}(t)=e^{-t} y(-t)$.

Šarkovskiĭ shows that they have some applications to the stability of differential - difference equations.
國 Šarkovskiĭ, Alexander N.
Functional-differential equations with a finite group of argument transformations. (Russian) Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 157, (1978), 118-142.

Moreover this kind of equations has some interesting properties by itself.

Moreover this kind of equations has some interesting properties by itself. In fact it is not difficult to verify that the unique solution of the homogeneous harmonic oscillator

$$
x^{\prime \prime}(t)+m^{2} x(t)=0,
$$

coupled with the initial conditions

$$
x(0)=x_{0}, \quad x^{\prime}(0)=-m x_{0},
$$

for any $x_{0} \in \mathbb{R}$, is the unique solution of the first order equation with reflection

$$
x^{\prime}(t)+m x(-t)=0, \quad x(0)=x_{0}
$$

and vice-versa.

Wiener and Watkins study the solution of the equation $x^{\prime}(t)-a x(-t)=0$ with initial conditions.

曷
Wiener Joseph; Watkins, Will.
A Glimpse into the Wonderland of Involutions. Missouri J. Math. Sci. 14 (2002), 3, 175-185.

Wiener and Watkins study the solution of the equation $x^{\prime}(t)-a x(-t)=0$ with initial conditions．

围 Wiener Joseph；Watkins，Will．
A Glimpse into the Wonderland of Involutions．
Missouri J．Math．Sci． 14 （2002），3，175－185．
Equation $x^{\prime}(t)+a x(t)+b x(-t)=g(t)$ has been treated in
圊 Piao，Daxiong
Pseudo almost periodic solutions for differential equations involving reflection of the argument．
J．Korean Math．Soc． 41 （2004），4，747－754．
囯 Piao，Daxiong
Periodic and almost periodic solutions for differential equations with reflection of the argument．
Nonlinear Anal． 57 （2004），4，633－637．

In the following papers some results are introduced to transform this kind of problems with involutions and initial conditions into second order ordinary differential equations with initial conditions or first order two dimensional systems, granting that the solution of the last will be a solution to the first.

葍 Kuller, Robert G.
On the differential equation $f^{\prime}=f \circ g$, where $g \circ g=l$. Math. Mag. 421969 195-200.

國 Shah, S. M.; Wiener, Joseph.
Reducible functional-differential equations.
Internat. J. Math. Math. Sci. 8 (1985), 1-27.

In the following papers some results are introduced to transform this kind of problems with involutions and initial conditions into second order ordinary differential equations with initial conditions or first order two dimensional systems, granting that the solution of the last will be a solution to the first.

嵩
Wiener, Joseph.
Generalized solutions of functional-differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1993.

圊 Watkins, Will.
Modified Wiener Equations.
Int. J. Math. Math. Sci. 27:6 (2001), pp 347-356.

Second order boundary value problems have been considered for Dirichlet and Sturm－Liouville boundary value conditions in
固 Gupta，Chaitan P．
Existence and uniqueness theorems for boundary value problems involving reflection of the argument．
Nonlinear Anal． 11 （1987），9，1075－1083．
國 Gupta，Chaitan P．
Two－point boundary value problems involving reflection of the argument．
Internat．J．Math．Math．Sci． 10 （1987），2，361－371．
围 O＇Regan，Donal；Zima，Miroslawa．
Leggett－Williams norm－type fixed point theorems for multivalued mappings．
Appl．Math．Comput． 187 （2007），2，1238－1249．

Higher order equations has been studied in
國 O'Regan, Donal.
Existence results for differential equations with reflection of the argument.
J. Austral. Math. Soc. Ser. A 57 (1994), 2, 237-260.

Part II

DIFFERENTIAL EQUATIONS WITH INVOLUTIONS

Despite all this progression of studies and to the best of our knowledge, the case of first order differential equations with involution and periodic boundary value conditions has been disregarded so far.

In this talk we will present some of the results obtained in
圊 F. A. F. Tojo, A. C.
Comparison results for first order linear operators with reflection and periodic boundary value conditions, Nonlinear Anal., 78 (2013), 32-46.

In this talk we will present some of the results obtained in
固 F. A. F. Tojo, A. C.
Comparison results for first order linear operators with reflection and periodic boundary value conditions, Nonlinear Anal., 78 (2013), 32-46.

國 F. A. F. Tojo, A. C.
Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions.
J. Math. Anal. Appl. 412 (2014), 529-546.

Let us consider the first order equation with involution

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(c)=x_{c}, \tag{1}
\end{equation*}
$$

and the second order ordinary differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right) . \tag{2}
\end{equation*}
$$

Let us consider the first order equation with involution

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(c)=x_{C} \tag{1}
\end{equation*}
$$

and the second order ordinary differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right) \tag{2}
\end{equation*}
$$

LEmMA

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a diffeomorphism.

Let us consider the first order equation with involution

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(c)=x_{c} \tag{1}
\end{equation*}
$$

and the second order ordinary differential equation
$x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right)$.

LEMMA

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a diffeomorphism. Let $\varphi \in \mathcal{C}^{1}((a, b))$ be an involution and c be a fixed point of φ.

Let us consider the first order equation with involution

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(c)=x_{c} \tag{1}
\end{equation*}
$$

and the second order ordinary differential equation
$x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right)$.

LEMMA

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a diffeomorphism. Let $\varphi \in \mathcal{C}^{1}((a, b))$ be an involution and c be a fixed point of φ. Then x is a solution of (1) if and only if x is a solution of (2).

Proof. That those solutions of (1) are solutions of (2) is almost trivial.

Proof. That those solutions of (1) are solutions of (2) is almost trivial.

The boundary conditions are justified by the fact that $\varphi(c)=c$.

Proof. That those solutions of (1) are solutions of (2) is almost trivial.

The boundary conditions are justified by the fact that $\varphi(c)=c$.
Since differentiating (1) we get

$$
x^{\prime \prime}(t)=f^{\prime}(x(\varphi(t))) x^{\prime}(\varphi(t)) \varphi^{\prime}(t)
$$

and taking into account that $x^{\prime}(\varphi(t))=f(x(t))$ by (1), we obtain (2).

Proof.

Conversely, let x be a solution of (2).

Proof.

Conversely, let x be a solution of (2).
The equation implies that

$$
\left(f^{-1}\right)^{\prime}\left(x^{\prime}(t)\right) x^{\prime \prime}(t)=f(x(t)) \varphi^{\prime}(t) .
$$

Proof.

Conversely, let x be a solution of (2).
The equation implies that

$$
\left(f^{-1}\right)^{\prime}\left(x^{\prime}(t)\right) x^{\prime \prime}(t)=f(x(t)) \varphi^{\prime}(t) .
$$

Integrating from c to t we have,

$$
f^{-1}\left(x^{\prime}(t)\right)-x_{c}=f^{-1}\left(x^{\prime}(t)\right)-f^{-1}\left(x^{\prime}(c)\right)=\int_{c}^{t} f(x(s)) \varphi^{\prime}(s) d s
$$

Reducible Nonlinear Functional Differential Equations

Proof.
Defining $g(s):=f(x(\varphi(s)))-x^{\prime}(s)$, we conclude that

$$
\begin{aligned}
x^{\prime}(t) & =f\left(x_{c}+\int_{c}^{t} f(x(s)) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{t}\left(f(x(s))-x^{\prime}(\varphi(s))\right) \varphi^{\prime}(s) d s\right)
\end{aligned}
$$

Reducible Nonlinear Functional Differential Equations

Proof.
Defining $g(s):=f(x(\varphi(s)))-x^{\prime}(s)$, we conclude that

$$
\begin{aligned}
x^{\prime}(t) & =f\left(x_{c}+\int_{c}^{t} f(x(s)) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{t}\left(f(x(s))-x^{\prime}(\varphi(s))\right) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)}\left(f(x(\varphi(s)))-x^{\prime}(s)\right) d s\right)
\end{aligned}
$$

Reducible Nonlinear Functional Differential Equations

Proof.

Defining $g(s):=f(x(\varphi(s)))-x^{\prime}(s)$, we conclude that

$$
\begin{aligned}
x^{\prime}(t) & =f\left(x_{c}+\int_{c}^{t} f(x(s)) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{t}\left(f(x(s))-x^{\prime}(\varphi(s))\right) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)}\left(f(x(\varphi(s)))-x^{\prime}(s)\right) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)} g(s) d s\right) .
\end{aligned}
$$

Reducible Nonlinear Functional Differential Equations

Proof.

Defining $g(s):=f(x(\varphi(s)))-x^{\prime}(s)$, we conclude that

$$
\begin{aligned}
x^{\prime}(t) & =f\left(x_{c}+\int_{c}^{t} f(x(s)) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{t}\left(f(x(s))-x^{\prime}(\varphi(s))\right) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)}\left(f(x(\varphi(s)))-x^{\prime}(s)\right) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)} g(s) d s\right) .
\end{aligned}
$$

Reducible Nonlinear Functional Differential Equations

Proof.
Defining $g(s):=f(x(\varphi(s)))-x^{\prime}(s)$, we conclude that

$$
\begin{aligned}
x^{\prime}(t) & =f\left(x_{c}+\int_{c}^{t} f(x(s)) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{t}\left(f(x(s))-x^{\prime}(\varphi(s))\right) \varphi^{\prime}(s) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)}\left(f(x(\varphi(s)))-x^{\prime}(s)\right) d s\right) \\
& =f\left(x(\varphi(t))+\int_{c}^{\varphi(t)} g(s) d s\right) .
\end{aligned}
$$

One can verify, by Grönwall's Lemma, that $g(t)=0$ and hence
(1) is satisfied.

EXAMPLE

Notice that, as an immediate consequence of this result, we have that the unique solution of the equation

$$
x^{\prime \prime}(t)=-\sqrt{1+\left(x^{\prime}(t)\right)^{2}} \sinh x(t), \quad x(0)=x_{0}, x^{\prime}(0)=\sinh x_{0}
$$

coincide with the unique solution of

$$
x^{\prime}(t)=\sinh x(-t), \quad x(0)=x_{0}
$$

The second order ordinary differential equation (2) can be rewritten as the f^{-1} - laplacian equation

$$
\frac{d}{d t}\left(f^{-1}\left(x^{\prime}(t)\right)\right)=\varphi^{\prime}(t) f(x(t)), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right) .
$$

The second order ordinary differential equation (2) can be rewritten as the f^{-1} - laplacian equation

$$
\frac{d}{d t}\left(f^{-1}\left(x^{\prime}(t)\right)\right)=\varphi^{\prime}(t) f(x(t)), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right) .
$$

Recently, we have extended this result to a wider set of functions, not necessarily diffeomorphisms.

The second order ordinary differential equation (2) can be rewritten as the f^{-1} - laplacian equation

$$
\frac{d}{d t}\left(f^{-1}\left(x^{\prime}(t)\right)\right)=\varphi^{\prime}(t) f(x(t)), \quad x(c)=x_{c}, x^{\prime}(c)=f\left(x_{c}\right) .
$$

Recently, we have extended this result to a wider set of functions, not necessarily diffeomorphisms. In particular, the result is valid for the p - Laplacian operator

$$
f(x)=|x|^{p-2} x, \quad x \in \mathbb{R}, \quad p>1 .
$$

Previous Lemma can be extended, with a very similar proof, to the case with periodic boundary value conditions.

Reducible Nonlinear Functional Differential Equations

Previous Lemma can be extended, with a very similar proof, to the case with periodic boundary value conditions.
Let us consider the problems

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(a)=x(b) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(a)=x(b)=f\left(x^{\prime}(a)\right) . \tag{4}
\end{equation*}
$$

Previous Lemma can be extended, with a very similar proof, to the case with periodic boundary value conditions.
Let us consider the problems

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(a)=x(b) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(a)=x(b)=f\left(x^{\prime}(a)\right) . \tag{4}
\end{equation*}
$$

LEMMA

Let $[a, b] \subset \mathbb{R}$ and let $f \mathbb{R} \rightarrow \mathbb{R}$ be a diffeomorphism. Let $\varphi \in \mathcal{C}^{1}([a, b])$ be an involution such that $\varphi([a, b])=[a, b]$.

Previous Lemma can be extended, with a very similar proof, to the case with periodic boundary value conditions.

Let us consider the problems

$$
\begin{equation*}
x^{\prime}(t)=f(x(\varphi(t))), \quad x(a)=x(b) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime}(t)=f^{\prime}\left(f^{-1}\left(x^{\prime}(t)\right)\right) f(x(t)) \varphi^{\prime}(t), \quad x(a)=x(b)=f\left(x^{\prime}(a)\right) \tag{4}
\end{equation*}
$$

LEMMA

Let $[a, b] \subset \mathbb{R}$ and let $f \mathbb{R} \rightarrow \mathbb{R}$ be a diffeomorphism. Let $\varphi \in \mathcal{C}^{1}([a, b])$ be an involution such that $\varphi([a, b])=[a, b]$. Then x is a solution of the first order differential equation with involution (3) if and only if x is a solution of the second order ordinary differential equation (4).

LEMMA

Let φ and ψ be two differentiable involutions on the intervals I_{1} and I_{2} respectively. Let t_{0} and s_{0} be the unique fixed points of φ and ψ respectively.

LEMMA

Let φ and ψ be two differentiable involutions on the intervals I_{1} and I_{2} respectively. Let t_{0} and s_{0} be the unique fixed points of φ and ψ respectively.
Then, there exists an orientation preserving diffeomorphism $f: I_{2} \rightarrow I_{1}$ such that $f(\psi(s))=\varphi(f(s)), \forall s \in I_{2}$.

LEMMA

Let φ and ψ be two differentiable involutions on the intervals I_{1} and I_{2} respectively. Let t_{0} and s_{0} be the unique fixed points of φ and ψ respectively.
Then, there exists an orientation preserving diffeomorphism $f: I_{2} \rightarrow I_{1}$ such that $f(\psi(s))=\varphi(f(s)), \forall s \in I_{2}$.

The f described in the lemma can be taken as follows:
Let $g:\left[\inf I_{2}, s_{0}\right] \rightarrow\left[\inf I_{1}, t_{0}\right]$ be an orientation preserving diffeomorphism, that is, $g\left(s_{0}\right)=t_{0}$.
Let us define

$$
f(s):= \begin{cases}g(s) & \text { if } s \in\left[\inf I_{2}, s_{0}\right] \\ (\varphi \circ g \circ \psi)(s) & \text { if } s \in\left(s_{0}, \sup I_{2}\right] .\end{cases}
$$

Alberto Cabada and Adrián F. Tojo

EQUATIONS WITH INVOLUTION

Corollary

Under the hypothesis of previous Lemma, the problem

$$
\begin{aligned}
d(t) x^{\prime}(t)+c(t) x^{\prime}(\varphi(t))+b(t) x(t)+a(t) x(\varphi(t)) & =h(t) \\
x\left(\inf I_{1}\right) & =x\left(\sup I_{1}\right)
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\frac{d(f(s))}{f^{\prime}(s)} y^{\prime}(s)+\frac{c(f(s))}{f^{\prime}(\psi(s))} y^{\prime}(\psi(s))+b(f(s)) y(s)+a(f(s)) y(\psi(s)) & =h(f(s)) \\
y\left(\inf I_{2}\right) & =y\left(\sup I_{2}\right) .
\end{aligned}
$$

Corollary

Under the hypothesis of previous Lemma, the problem

$$
\begin{aligned}
d(t) x^{\prime}(t)+c(t) x^{\prime}(\varphi(t))+b(t) x(t)+a(t) x(\varphi(t)) & =h(t) \\
x\left(\inf I_{1}\right) & =x\left(\sup I_{1}\right)
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\frac{d(f(s))}{f^{\prime}(s)} y^{\prime}(s)+\frac{c(f(s))}{f^{\prime}(\psi(s))} y^{\prime}(\psi(s))+b(f(s)) y(s)+a(f(s)) y(\psi(s)) & =h(f(s)), \\
y\left(\inf I_{2}\right) & =y\left(\sup I_{2}\right) .
\end{aligned}
$$

This result is clear by making the change of variables $t=f(s)$ and $y(s):=x(t)=x(f(s))$.

This correspondence allows us to study only one kind of
involutions and adapt the obtained results to the other cases.

This correspondence allows us to study only one kind of involutions and adapt the obtained results to the other cases.

So we will concentrate our attention on the reflection functional $\varphi(t)=-t$.

Part III

Construction of the Green's Function

We will start by finding the solution of the simplest first order reflection equation $L_{m} x(t)=x^{\prime}(t)+m x(-t)=h(t)$ with periodic boundary value conditions and then establish some properties of the solution.

We will start by finding the solution of the simplest first order reflection equation $L_{m} x(t)=x^{\prime}(t)+m x(-t)=h(t)$ with periodic boundary value conditions and then establish some properties of the solution.

On the contrary to the majority of the previous mentioned papers, our approach consists on to study directly the first order functional equation and obtain the expression of the related Green's function.

It is very well known that the second order operator $P_{m^{2}} x(t):=x^{\prime \prime}(t)+m^{2} x(t)$ can not be decomposed into two first order Ordinary differential Equations.

It is very well known that the second order operator $P_{m^{2}} x(t):=x^{\prime \prime}(t)+m^{2} x(t)$ can not be decomposed into two first order Ordinary differential Equations.

However, it is not difficult to verify that

$$
P_{m^{2}}=L_{m}^{2}=L_{-m}^{2}
$$

It is very well known that the second order operator $P_{m^{2}} x(t):=x^{\prime \prime}(t)+m^{2} x(t)$ can not be decomposed into two first order Ordinary differential Equations.
However, it is not difficult to verify that

$$
P_{m^{2}}=L_{m}^{2}=L_{-m}^{2}
$$

So, one of the main interest in to study the reflection operators $L_{ \pm m} x(t):=x^{\prime}(t) \pm m x(-t)$ consists on that, in some sense, both of them are the "Square Roots" of the harmonic oscillator operator.

It is very well known that the second order operator $P_{m^{2}} x(t):=x^{\prime \prime}(t)+m^{2} x(t)$ can not be decomposed into two first order Ordinary differential Equations.
However, it is not difficult to verify that

$$
P_{m^{2}}=L_{m}^{2}=L_{-m}^{2}
$$

So, one of the main interest in to study the reflection operators $L_{ \pm m} x(t):=x^{\prime}(t) \pm m x(-t)$ consists on that, in some sense, both of them are the "Square Roots" of the harmonic oscillator operator.
围 Sarah Post, Luc Vinet and Alexei Zhedanov, Supersymmetric Quantum Mechanics with Reflections, arXiv:1107.5844v2 [math-ph] 9 Aug 2011.

It is very well known that the second order problem with non homogeneous periodic boundary conditions

$$
\begin{aligned}
x^{\prime \prime}(t)+m^{2} x(t) & =f(t), \quad t \in[-T, T] \equiv I, \\
x(T)-x(-T) & =0, \\
x^{\prime}(T)-x^{\prime}(-T) & =\lambda
\end{aligned}
$$

can be solved using what is called the Green's function G.

It is very well known that the second order problem with non homogeneous periodic boundary conditions

$$
\begin{aligned}
x^{\prime \prime}(t)+m^{2} x(t) & =f(t), \quad t \in[-T, T] \equiv I, \\
x(T)-x(-T) & =0, \\
x^{\prime}(T)-x^{\prime}(-T) & =\lambda
\end{aligned}
$$

can be solved using what is called the Green's function G.
The solution of this problem would then be

$$
u(t)=\int_{-T}^{T} G(t, s) f(s) d s+\lambda G(t,-T) .
$$

It is very well known that the second order problem with non homogeneous periodic boundary conditions

$$
\begin{aligned}
x^{\prime \prime}(t)+m^{2} x(t) & =f(t), \quad t \in[-T, T] \equiv I, \\
x(T)-x(-T) & =0, \\
x^{\prime}(T)-x^{\prime}(-T) & =\lambda
\end{aligned}
$$

can be solved using what is called the Green's function G.
The solution of this problem would then be

$$
u(t)=\int_{-T}^{T} G(t, s) f(s) d s+\lambda G(t,-T) .
$$

The solution is unique whenever $m^{2} \neq\left(\frac{k \pi}{T}\right)^{2}, k \in \mathbb{N}$. We will assume uniqueness conditions from now on.
G is unique insofar as it satisfies the following properties:
(1) $G \in \mathcal{C}(I \times I, \mathbb{R})$,
G is unique insofar as it satisfies the following properties:
(1) $G \in \mathcal{C}(I \times I, \mathbb{R})$,
(2) $\frac{\partial G}{\partial t}$ and $\frac{\partial^{2} G}{\partial t^{2}}$ exist and are continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
G is unique insofar as it satisfies the following properties:
(1) $G \in \mathcal{C}(I \times I, \mathbb{R})$,
(2) $\frac{\partial G}{\partial t}$ and $\frac{\partial^{2} G}{\partial t^{2}}$ exist and are continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(3) $\frac{\partial G}{\partial t}\left(t, t^{-}\right)$and $\frac{\partial G}{\partial t}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy

$$
\frac{\partial G}{\partial t}\left(t, t^{-}\right)-\frac{\partial G}{\partial t}\left(t, t^{+}\right)=1 \quad \forall t \in I,
$$

G is unique insofar as it satisfies the following properties:
(1) $G \in \mathcal{C}(I \times I, \mathbb{R})$,
(2) $\frac{\partial G}{\partial t}$ and $\frac{\partial^{2} G}{\partial t^{2}}$ exist and are continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(3) $\frac{\partial G}{\partial t}\left(t, t^{-}\right)$and $\frac{\partial G}{\partial t}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy

$$
\frac{\partial G}{\partial t}\left(t, t^{-}\right)-\frac{\partial G}{\partial t}\left(t, t^{+}\right)=1 \quad \forall t \in I,
$$

(9) $\frac{\partial^{2} G}{\partial t^{2}}+m^{2} G=0$ in $\{(t, s) \in I \times I \mid s \neq t\}$,
G is unique insofar as it satisfies the following properties:
(1) $G \in \mathcal{C}(I \times I, \mathbb{R})$,
(2) $\frac{\partial G}{\partial t}$ and $\frac{\partial^{2} G}{\partial t^{2}}$ exist and are continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(3) $\frac{\partial G}{\partial t}\left(t, t^{-}\right)$and $\frac{\partial G}{\partial t}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy

$$
\frac{\partial G}{\partial t}\left(t, t^{-}\right)-\frac{\partial G}{\partial t}\left(t, t^{+}\right)=1 \quad \forall t \in I,
$$

(9) $\frac{\partial^{2} G}{\partial t^{2}}+m^{2} G=0$ in $\{(t, s) \in I \times I \mid s \neq t\}$,
(0) $G(T, s)=G(-T, s) \forall s \in I$,
$\frac{\partial G}{\partial t}(T, s)=\frac{\partial G}{\partial t}(-T, s) \forall s \in(-T, T)$.

For all $t, s \in I$, the Green's function satisfies the following properties as well:
(0) $G(t, s)=G(s, t)$,

For all $t, s \in I$, the Green's function satisfies the following properties as well:
(0) $G(t, s)=G(s, t)$,
(1) $G(t, s)=G(-t,-s)$,

For all $t, s \in I$, the Green's function satisfies the following properties as well:
(0) $G(t, s)=G(s, t)$,
(1) $G(t, s)=G(-t,-s)$,
(8) $\frac{\partial G}{\partial t}(t, s)=\frac{\partial G}{\partial s}(s, t)$,

For all $t, s \in I$, the Green's function satisfies the following properties as well:
(0) $G(t, s)=G(s, t)$,
(1) $G(t, s)=G(-t,-s)$,
(8) $\frac{\partial G}{\partial t}(t, s)=\frac{\partial G}{\partial s}(s, t)$,
(9) $\frac{\partial G}{\partial t}(t, s)=-\frac{\partial G}{\partial t}(-t,-s)$,

For all $t, s \in I$, the Green's function satisfies the following properties as well:
(0) $G(t, s)=G(s, t)$,
(1) $G(t, s)=G(-t,-s)$,
(8) $\frac{\partial G}{\partial t}(t, s)=\frac{\partial G}{\partial s}(s, t)$,
(9) $\frac{\partial G}{\partial t}(t, s)=-\frac{\partial G}{\partial t}(-t,-s)$,
(a) $\frac{\partial G}{\partial t}(t, s)=-\frac{\partial G}{\partial s}(t, s)$.

Consider the problem

$$
\begin{align*}
x^{\prime}(t)+m x(-t) & =h(t), \quad t \in[-T, T] \tag{5}\\
x(T)-x(-T) & =0,
\end{align*}
$$

where m is a real non-zero constant, $T>0$ and $h \in L^{1}(I)$.

Consider the problem

$$
\begin{align*}
x^{\prime}(t)+m x(-t) & =h(t), \quad t \in[-T, T] \tag{5}\\
x(T)-x(-T) & =0,
\end{align*}
$$

where m is a real non-zero constant, $T>0$ and $h \in L^{1}(I)$.
If h is differentiable, by direct differentiation one can verify that any solution of the previous problem solves the second order ODE with boundary conditions

$$
\begin{aligned}
x^{\prime \prime}(t)+m^{2} x(t) & =h^{\prime}(t)+m h(-t), \quad t \in I, \\
x(T)-x(-T) & =0, \\
x^{\prime}(T)-x^{\prime}(-T) & =h(T)-h(-T)
\end{aligned}
$$

As consequence, we know that, under the regularity assumptions on h, the solutions of the first order reflection equation (5) are given by the following expression

$$
x(t)=\int_{-T}^{T} G(t, s)\left(h^{\prime}(s)+m h(-s)\right) d s+G(t,-T)[h(T)-h(-T)]
$$

As consequence, we know that, under the regularity assumptions on h, the solutions of the first order reflection equation (5) are given by the following expression

$$
\begin{aligned}
x(t) & =\int_{-T}^{T} G(t, s)\left(h^{\prime}(s)+m h(-s)\right) d s+G(t,-T)[h(T)-h(-T)] \\
& =\int_{-T}^{T} G(t, s)\left(h^{\prime}(s)+m h(-s)\right) d s+G(t,-T) \int_{-T}^{T} h^{\prime}(s) d s
\end{aligned}
$$

After integration by parts, by using the properties of the Green's function G and the density of the $\mathcal{C}^{1}(I)$ functions in $L^{1}(I)$, we arrive to the following expression for the Green's function related to the first order problem with reflection (5)

After integration by parts, by using the properties of the Green's function G and the density of the $\mathcal{C}^{1}(I)$ functions in $L^{1}(I)$, we arrive to the following expression for the Green's function related to the first order problem with reflection (5)

Theorem

Suppose that $m \neq k \pi / T, k \in \mathbb{Z}$. Then problem (5) has a unique solution given by the expression

$$
u(t):=\int_{-T}^{T} \bar{G}(t, s) h(s) d s
$$

After integration by parts, by using the properties of the Green's function G and the density of the $\mathcal{C}^{1}(I)$ functions in $L^{1}(I)$, we arrive to the following expression for the Green's function related to the first order problem with reflection (5)

Theorem

Suppose that $m \neq k \pi / T, k \in \mathbb{Z}$. Then problem (5) has a unique solution given by the expression

$$
u(t):=\int_{-T}^{T} \bar{G}(t, s) h(s) d s,
$$

where

$$
\bar{G}(t, s):=m G(t,-s)-\frac{\partial G}{\partial s}(t, s)
$$

is called the Green's function related to problem (5).

EXAMPLE

It is not difficult to verify that the Green's function G related to the second order periodic boundary value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+m^{2} x(-t) & =h(t), \quad t \in[-T, T] \\
x(T)-x(-T) & =0 \\
x^{\prime}(T)-x^{\prime}(-T) & =0
\end{aligned}
$$

follows the expression

$$
2 m \sin (m T) G(t, s)=\left\{\begin{array}{lll}
\cos m(T+s-t) & \text { if } s \leq t \\
\cos m(T-s+t) & \text { if } s>t
\end{array}\right.
$$

EXAMPLE

Therefore,

$$
2 \sin (m T) \bar{G}(t, s)=\left\{\begin{array}{lll}
\cos m(T-s-t)+\sin m(T+s-t) & \text { if } & t>|s| \\
\cos m(T-s-t)-\sin m(T-s+t) & \text { if } & |t|<s \\
\cos m(T+s+t)+\sin m(T+s-t) & \text { if } & -|t|>s \\
\cos m(T+s+t)-\sin m(T-s+t) & \text { if } & t<-|s|
\end{array}\right.
$$

\bar{G} satisfies the following properties:

(1) $\frac{\partial \bar{G}}{\partial t}$ exists and is continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
\bar{G} satisfies the following properties:
(1) $\frac{\partial \bar{G}}{\partial t}$ exists and is continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(2) $\bar{G}\left(t, t^{-}\right)$and $\bar{G}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy $\bar{G}\left(t, t^{-}\right)-\bar{G}\left(t, t^{+}\right)=1 \quad \forall t \in I$,
\bar{G} satisfies the following properties:
(1) $\frac{\partial \bar{G}}{\partial t}$ exists and is continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(2) $\bar{G}\left(t, t^{-}\right)$and $\bar{G}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy $\bar{G}\left(t, t^{-}\right)-\bar{G}\left(t, t^{+}\right)=1 \quad \forall t \in I$,
(3) $\frac{\partial \bar{G}}{\partial t}(t, s)+m \bar{G}(-t, s)=0$ for a.e. $t, s \in I, s \neq t$,
\bar{G} satisfies the following properties:
(1) $\frac{\partial \bar{G}}{\partial t}$ exists and is continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(2) $\bar{G}\left(t, t^{-}\right)$and $\bar{G}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy $\bar{G}\left(t, t^{-}\right)-\bar{G}\left(t, t^{+}\right)=1 \quad \forall t \in I$,
(3) $\frac{\partial \bar{G}}{\partial t}(t, s)+m \bar{G}(-t, s)=0$ for a.e. $t, s \in I, s \neq t$,
(- $\bar{G}(T, s)=\bar{G}(-T, s) \forall s \in(-T, T)$,
\bar{G} satisfies the following properties:
(1) $\frac{\partial \bar{G}}{\partial t}$ exists and is continuous in $\{(t, s) \in I \times I \mid s \neq t\}$,
(2) $\bar{G}\left(t, t^{-}\right)$and $\bar{G}\left(t, t^{+}\right)$exist for all $t \in I$ and satisfy $\bar{G}\left(t, t^{-}\right)-\bar{G}\left(t, t^{+}\right)=1 \quad \forall t \in I$,
(3) $\frac{\partial \bar{G}}{\partial t}(t, s)+m \bar{G}(-t, s)=0$ for a.e. $t, s \in I, s \neq t$,
(1) $\bar{G}(T, s)=\bar{G}(-T, s) \quad \forall s \in(-T, T)$,
(0) $\bar{G}(t, s)=\bar{G}(-s,-t) \forall t, s \in I$.

Corollary

Suppose that $m \neq k \pi / T, k \in \mathbb{Z}$. Then the problem

$$
x^{\prime}(t)+m x(-t)=h(t), \quad t \in I, \quad x(-T)-x(T)=\lambda
$$

with $\lambda \in \mathbb{R}$ has a unique solution given by the expression

$$
u(t):=\int_{-T}^{T} \bar{G}(t, s) h(s) d s+\lambda \bar{G}(t,-T)
$$

If we consider the problem with constant coefficients

$$
\begin{equation*}
x^{\prime}(t)+a x(-t)+b x(t)=h(t), t \in I ; \quad x(-T)=x(T), \tag{6}
\end{equation*}
$$

where $a, b \in \mathbb{R}, a \neq 0$.

If we consider the problem with constant coefficients

$$
\begin{equation*}
x^{\prime}(t)+a x(-t)+b x(t)=h(t), t \in I ; \quad x(-T)=x(T) \tag{6}
\end{equation*}
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Considering the homogeneous case ($h \equiv 0$) we can reduce it, by differentiating and making substitutions, to the second order ODE problem,

$$
x^{\prime \prime}(t)+\left(a^{2}-b^{2}\right) x(t)=0, \quad x(T)=x(-T), \quad x^{\prime}(T)=x^{\prime}(-T)
$$

If we consider the problem with constant coefficients

$$
\begin{equation*}
x^{\prime}(t)+a x(-t)+b x(t)=h(t), t \in I ; \quad x(-T)=x(T) \tag{6}
\end{equation*}
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Considering the homogeneous case ($h \equiv 0$) we can reduce it, by differentiating and making substitutions, to the second order ODE problem,

$$
\begin{equation*}
x^{\prime \prime}(t)+\left(a^{2}-b^{2}\right) x(t)=0, \quad x(T)=x(-T), \quad x^{\prime}(T)=x^{\prime}(-T) . \tag{7}
\end{equation*}
$$

Observe that in the case $b=0$ this is the problem from which we obtained the Green's function G.

If we consider the problem with constant coefficients

$$
\begin{equation*}
x^{\prime}(t)+a x(-t)+b x(t)=h(t), t \in I ; \quad x(-T)=x(T), \tag{6}
\end{equation*}
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Considering the homogeneous case ($h \equiv 0$) we can reduce it, by differentiating and making substitutions, to the second order ODE problem,

$$
\begin{equation*}
x^{\prime \prime}(t)+\left(a^{2}-b^{2}\right) x(t)=0, \quad x(T)=x(-T), \quad x^{\prime}(T)=x^{\prime}(-T) . \tag{7}
\end{equation*}
$$

Observe that in the case $b=0$ this is the problem from which we obtained the Green's function G.
The Green's function for problem (7) satisfies, changing $\pm \omega^{2}$ by $a^{2}-b^{2}$, the same properties as G for $a \neq \pm b$.

Theorem

Suppose that $a^{2}-b^{2} \neq n^{2}(\pi / T)^{2}, n=0,1, \ldots$ Then problem (6) has a unique solution given by the expression

$$
u(t):=\int_{-T}^{T} \bar{G}(t, s) h(s) d s
$$

where

$$
\begin{equation*}
\bar{G}(t, s):=a G(t,-s)-b G(t, s)+\frac{\partial G}{\partial t}(t, s) \tag{8}
\end{equation*}
$$

is called the Green's function related to problem (6).

We center our attention on the first order equation with non constant coefficients
$d(t) x^{\prime}(t)+c(t) x^{\prime}(-t)+b(t) x(t)+a(t) x(-t)=h(t), x(-T)=x(T)$.
(9)

We center our attention on the first order equation with non constant coefficients
$d(t) x^{\prime}(t)+c(t) x^{\prime}(-t)+b(t) x(t)+a(t) x(-t)=h(t), x(-T)=x(T)$.
(9)

In order to solve it, we return to the decomposition of even and odd part of a given function f :

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2}, \quad f_{o}(x):=\frac{f(x)-f(-x)}{2}
$$

We center our attention on the first order equation with non constant coefficients
$d(t) x^{\prime}(t)+c(t) x^{\prime}(-t)+b(t) x(t)+a(t) x(-t)=h(t), x(-T)=x(T)$.
In order to solve it, we return to the decomposition of even and odd part of a given function f :

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2}, \quad f_{o}(x):=\frac{f(x)-f(-x)}{2}
$$

Then, the solutions of equation (9) satisfy

$$
\Lambda\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{0}-b_{o}
\end{array}\right)\binom{x_{o}}{x_{e}}+\binom{h_{e}}{h_{o}}
$$

where

$$
\Lambda=\left(\begin{array}{ll}
c_{e}+d_{e} & d_{0}-c_{o} \\
c_{o}+d_{o} & d_{e}-c_{e}
\end{array}\right)
$$

Important! The solutions of this system need not to be pairs of even and odd functions, nor provide solutions of (9).

Important! The solutions of this system need not to be pairs of even and odd functions, nor provide solutions of (9).
If $\operatorname{det}(\Lambda(t))=c(t) c(-t)-d(t) d(-t) \neq 0$ for a.e. $t \in I, \Lambda(t)$ is invertible a.e. and

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\Lambda^{-1}\left(\begin{array}{ll}
a_{0}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{0}-b_{o}
\end{array}\right)\binom{x_{o}}{x_{e}}+\Lambda^{-1}\binom{h_{e}}{h_{0}} .
$$

Important! The solutions of this system need not to be pairs of even and odd functions, nor provide solutions of (9).
If $\operatorname{det}(\Lambda(t))=c(t) c(-t)-d(t) d(-t) \neq 0$ for a.e. $t \in I, \Lambda(t)$ is invertible a.e. and

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\Lambda^{-1}\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{0}-b_{o}
\end{array}\right)\binom{x_{o}}{x_{e}}+\Lambda^{-1}\binom{h_{e}}{h_{o}} .
$$

So we can assume that $\Lambda=\mathrm{Id}$, that is, $d \equiv 1$ and $c \equiv 0$. Hence, the equation to study is

$$
x^{\prime}(t)+b(t) x(t)+a(t) x(-t)=h(t), x(-T)=x(T) .
$$

Important! The solutions of this system need not to be pairs of even and odd functions, nor provide solutions of (9).
If $\operatorname{det}(\Lambda(t))=c(t) c(-t)-d(t) d(-t) \neq 0$ for a.e. $t \in I, \Lambda(t)$ is invertible a.e. and

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\Lambda^{-1}\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{0}-b_{o}
\end{array}\right)\binom{x_{o}}{x_{e}}+\Lambda^{-1}\binom{h_{e}}{h_{o}} .
$$

So we can assume that $\Lambda=\mathrm{Id}$, that is, $d \equiv 1$ and $c \equiv 0$. Hence, the equation to study is

$$
x^{\prime}(t)+b(t) x(t)+a(t) x(-t)=h(t), x(-T)=x(T)
$$

and the system consists on

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{o}-b_{o}
\end{array}\right)\binom{x_{o}}{x_{e}}+\binom{h_{e}}{h_{o}} .
$$

A Green's Function for the Non-Homogeneous Problem

Consider

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{o}-b_{o}
\end{array}\right)\binom{x_{0}}{x_{e}} .
$$

EqUATIONS WITH INVOLUTION

Consider

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{0}-b_{0}
\end{array}\right)\binom{x_{0}}{x_{e}} .
$$

It is a well known result that, if we have a system of linear ODE defined by a matrix M which commutes with its integral, then the solution of the system is given by the exponential of the integral of M.

Consider

$$
\binom{x_{o}^{\prime}}{x_{e}^{\prime}}=\left(\begin{array}{ll}
a_{0}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{0}-b_{0}
\end{array}\right)\binom{x_{0}}{x_{e}} .
$$

It is a well known result that, if we have a system of linear ODE defined by a matrix M which commutes with its integral, then the solution of the system is given by the exponential of the integral of M.

We can try to compute the solution of the problem as an exponential, but, under which circumstances can we do this?

DEFINITION

Let $S \subset \mathbb{R}$ be an interval. Define $\mathcal{M} \subset \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{M}_{n \times n}(\mathbb{R})\right)$ such that for every $M \in \mathcal{M}$,

- there exists $P \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{M}_{n \times n}(\mathbb{R})\right)$ such that $M(t)=P^{-1}(t) J(t) P(t)$ for every $t \in S$ where $P^{-1}(t) J(t) P(t)$ is a Jordan decomposition of $M(t)$;
- the superdiagonal elements of J are independent of t, as well as the dimensions of the Jordan boxes associated to the different eigenvalues of M;
- two different Jordan boxes of J correspond to different eigenvalues;
- if two eigenvalues of M are ever equal, they are identical in the whole interval S.

Theorem (Kotin and Irving, 1982)

Let $M \in \mathcal{M}$. Then, the following statements are equivalent.

- M commutes with its derivative.
- M commutes with its integral.
- M commutes functionally, that is $M(t) M(s)=M(s) M(t)$ for all $t, s \in S$.
- $M=\sum_{k=0}^{r} \gamma_{k}(t) C^{k}$ For some $C \in \mathcal{M}_{n \times n}(\mathbb{R})$ and

$$
\gamma_{k} \in \mathcal{C}^{1}(S, \mathbb{R}), k=1, \ldots, r
$$

Furthermore, any of the last properties imply that $M(t)$ has a set of constant eigenvectors, i.e. a Jordan decomposition $P^{-1} J(t) P$ where P is constant.

Let us check when

$$
M:=\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{o}-b_{o}
\end{array}\right)
$$

commutes functionally, i.e.:

Let us check when

$$
M:=\left(\begin{array}{ll}
a_{o}-b_{o} & -a_{e}-b_{e} \\
a_{e}-b_{e} & -a_{o}-b_{o}
\end{array}\right)
$$

commutes functionally, i.e.:

$$
\begin{gathered}
0=M(t) M(s)-M(s) M(t) \\
=2\left(\begin{array}{cc}
a_{e}(t) b_{e}(s)-a_{e}(s) b_{e}(t) & a_{o}(s)\left[a_{e}(t)+b_{e}(t)\right]-a_{o}(t)\left[a_{e}(s)+b_{e}(s)\right] \\
a_{o}(t)\left[a_{e}(s)+b_{e}(s)\right]-a_{0}(s)\left[a_{e}(t)+b_{e}(t)\right] & a_{e}(s) b_{e}(t)-a_{e}(t) b_{e}(s)
\end{array}\right)
\end{gathered}
$$

M commutes functionally if and only if one of the five different situations is fulfilled:

M commutes functionally if and only if one of the five different situations is fulfilled:

(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
M commutes functionally if and only if one of the five different situations is fulfilled:
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
M commutes functionally if and only if one of the five different situations is fulfilled:
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
M commutes functionally if and only if one of the five different situations is fulfilled:
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
(C4) $b_{e}=-a$.
M commutes functionally if and only if one of the five different situations is fulfilled:
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
(C4) $b_{e}=-a$.
(C5) $b_{e}=a_{e}=0$.
M commutes functionally if and only if one of the five different situations is fulfilled:
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
(C4) $b_{e}=-a$.
(C5) $b_{e}=a_{e}=0$.
M commutes functionally if and only if one of the five different situations is fulfilled:
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
(C4) $b_{e}=-a$.
(C5) $b_{e}=a_{e}=0$.

We note that if (C1)-(C4) hold, with $k \neq 0$ in case (C1), we deduce that a must be even.

In order to obtain the Green's function for our problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t), x(-T)=x(T)
$$

when one of the conditions $(C 1)-(C 5)$ holds.
Let us denote $A(t):=\int_{0}^{t} a(s) d s$ and $B(t):=\int_{0}^{t} b(s) d s$.

In order to obtain the Green's function for our problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t), x(-T)=x(T)
$$

when one of the conditions $(C 1)-(C 5)$ holds.
Let us denote $A(t):=\int_{0}^{t} a(s) d s$ and $B(t):=\int_{0}^{t} b(s) d s$.

In order to obtain the Green's function for our problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t), x(-T)=x(T)
$$

when one of the conditions $(C 1)-(C 5)$ holds.
Let us denote $A(t):=\int_{0}^{t} a(s) d s$ and $B(t):=\int_{0}^{t} b(s) d s$.
(1) If a is even, we have that A is odd.

In order to obtain the Green's function for our problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t), x(-T)=x(T)
$$

when one of the conditions $(C 1)-(C 5)$ holds.
Let us denote $A(t):=\int_{0}^{t} a(s) d s$ and $B(t):=\int_{0}^{t} b(s) d s$.
(1) If a is even, we have that A is odd.
(2) As consequence $A(-T)=-A(T)$.

In order to obtain the Green's function for our problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t), x(-T)=x(T)
$$

when one of the conditions $(C 1)-(C 5)$ holds.
Let us denote $A(t):=\int_{0}^{t} a(s) d s$ and $B(t):=\int_{0}^{t} b(s) d s$.
(1) If a is even, we have that A is odd.
(2) As consequence $A(-T)=-A(T)$.
(3) Remember that there is no sign assumptions on a and b.

In order to obtain the Green's function for our problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t), x(-T)=x(T)
$$

when one of the conditions $(C 1)-(C 5)$ holds.
Let us denote $A(t):=\int_{0}^{t} a(s) d s$ and $B(t):=\int_{0}^{t} b(s) d s$.
(1) If a is even, we have that A is odd.
(2) As consequence $A(-T)=-A(T)$.
(3) Remember that there is no sign assumptions on a and b.
(4) In particular we cannot ensure that A or B are monotone.

Considering the cases, with a even
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
We refer to the constant coefficients problem

$$
x^{\prime}(t)+x(-t)+k x(t)=h(t), \quad t \in[-|A(T)|,|A(T)|], x(A(T))=x(-A(T)) .
$$

Considering the cases, with a even
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
We refer to the constant coefficients problem
$x^{\prime}(t)+x(-t)+k x(t)=h(t), \quad t \in[-|A(T)|,|A(T)|], x(A(T))=x(-A(T))$.
This problem has been completely studied before and so we know that is is uniquely solvable if and only if
$\left(\mathbf{C 1}^{*}\right)(\mathrm{C} 1)$ is satisfied, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$ and $\cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0$.

Considering the cases, with a even
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
We refer to the constant coefficients problem
$x^{\prime}(t)+x(-t)+k x(t)=h(t), \quad t \in[-|A(T)|,|A(T)|], x(A(T))=x(-A(T))$.
This problem has been completely studied before and so we know that is is uniquely solvable if and only if
(C1*) (C1) is satisfied, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$ and $\cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0$.
(C2*) (C2) is satisfied and $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$

Considering the cases, with a even
(C1) $b_{e}=k a, k \in \mathbb{R},|k|<1$.
(C2) $b_{e}=k a, k \in \mathbb{R},|k|>1$.
(C3) $b_{e}=a$.
We refer to the constant coefficients problem
$x^{\prime}(t)+x(-t)+k x(t)=h(t), \quad t \in[-|A(T)|,|A(T)|], x(A(T))=x(-A(T))$.
This problem has been completely studied before and so we know that is is uniquely solvable if and only if
(C1*) (C1) is satisfied, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$ and $\cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0$.
(C2*) (C2) is satisfied and $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$
(C3*) (C3) is satisfied and $A(T) \neq 0$.

Assume one of (C1*)-(C3*).

Assume one of $\left(C 1^{*}\right)-\left(C 3^{*}\right)$. The Green's function G_{2} for the constant coefficients problem can be expressed as

$$
G_{2}(t, s):= \begin{cases}k_{1}(t, s), & t>|s|, \\ k_{2}(t, s), & s>|t| \\ k_{3}(t, s), & -t>|s| \\ k_{4}(t, s), & -s>|t|\end{cases}
$$

where the k_{i} are analytic functions.

Let us define

$$
G_{1}(t, s):=e^{B_{e}(s)-B_{e}(t)} \begin{cases}k_{1}(A(t), A(s)), & t>|s| \\ k_{2}(A(t), A(s)), & s>|t| \\ k_{3}(A(t), A(s)), & -t>|s|, \\ k_{4}(A(t), A(s)), & -s>|t|\end{cases}
$$

Let us define

$$
G_{1}(t, s):=e^{B_{e}(s)-B_{e}(t)} \begin{cases}k_{1}(A(t), A(s)), & t>|s| \\ k_{2}(A(t), A(s)), & s>|t| \\ k_{3}(A(t), A(s)), & -t>|s| \\ k_{4}(A(t), A(s)), & -s>|t|\end{cases}
$$

Here $B_{e}(t):=\int_{0}^{t} b_{e}(t) d t$.

Theorem

Assume one of $\left(C 1^{*}\right)-\left(C 3^{*}\right)$. If $G_{1}(t, \cdot) h(\cdot) \in L^{1}(I)$ for every $t \in I$, then problem

$$
\begin{aligned}
x^{\prime}(t)+a(t) x(-t)+b(t) x(t) & =h(t), \text { for a. } e . t \in I, \\
x(-T) & =x(T),
\end{aligned}
$$

has a unique solution given by

$$
u(t)=\int_{-T}^{T} G_{1}(t, s) h(s) d s
$$

EXAMPLE

Consider the problem

$$
\begin{array}{r}
x^{\prime}(t)+\cos (\pi t) x(-t)+\sinh (t) x(t)=\cos (\pi t)+\sinh (t) \\
x(-T)=x(T)
\end{array}
$$

EXAMPLE

Consider the problem

$$
\begin{gathered}
x^{\prime}(t)+\cos (\pi t) x(-t)+\sinh (t) x(t)=\cos (\pi t)+\sinh (t), \\
x(-T)=x(T) . \\
a(t)=\cos (\pi t) \text { and } b(t)=\sinh (t) .
\end{gathered}
$$

EXAMPLE

Consider the problem

$$
\begin{aligned}
& x^{\prime}(t)+\cos (\pi t) x(-t)+\sinh (t) x(t)= \cos (\pi t)+\sinh (t), \\
& x(-T)=x(T) . \\
& a(t)=\cos (\pi t) \text { and } b(t)=\sinh (t) .
\end{aligned}
$$

Since $b_{e}(t)=0$, we have that $b_{e}=k a$, for $k=0$.

EXAMPLE

Consider the problem

$$
\begin{gathered}
x^{\prime}(t)+\cos (\pi t) x(-t)+\sinh (t) x(t)=\cos (\pi t)+\sinh (t), \\
x(-T)=x(T) . \\
a(t)=\cos (\pi t) \text { and } b(t)=\sinh (t) .
\end{gathered}
$$

Since $b_{e}(t)=0$, we have that $b_{e}=k a$, for $k=0$.
So, we are in the case (C1).

EXAMPLE

If we compute the Green's function, we obtain

$$
2 \sin (\sin (\pi T)) G_{1}(t, s)=e^{\cosh (s)-\cosh (t)} H(t, s),
$$

EXAMPLE

If we compute the Green's function, we obtain

$$
2 \sin (\sin (\pi T)) G_{1}(t, s)=e^{\cosh (s)-\cosh (t)} H(t, s),
$$

where H is the "extended" Green's function related to

$$
x^{\prime}(t)+x(-t)=h(t), x\left(\frac{\sin (\pi T)}{\pi}\right)=x\left(-\frac{\sin (\pi T)}{\pi}\right) .
$$

EXAMPLE

If we compute the Green's function, we obtain

$$
2 \sin (\sin (\pi T)) G_{1}(t, s)=e^{\cosh (s)-\cosh (t)} H(t, s)
$$

where H is the "extended" Green's function related to

$$
\begin{gathered}
x^{\prime}(t)+x(-t)=h(t), x\left(\frac{\sin (\pi T)}{\pi}\right)=x\left(-\frac{\sin (\pi T)}{\pi}\right) . \\
H(t, s)=\left\{\begin{array}{l}
\sin \left(\frac{\sin (\pi s)}{\pi}-\frac{\sin (\pi t)}{\pi}-\frac{\sin (\pi T)}{\pi}\right)+\cos \left(\frac{\sin (\pi s)}{\pi}+\frac{\sin (\pi t)}{\pi}-\frac{\sin (\pi T)}{\pi}\right),|t|<s, \\
\sin \left(\frac{\sin (\pi s)}{\pi}-\frac{\sin (\pi t)}{\pi}+\frac{\sin (\pi)}{\pi}\right)+\cos \left(\frac{\sin (\pi s)}{\pi}+\frac{\sin (\pi t)}{\pi}+\frac{\sin (\pi T)}{\pi}\right),|t|<-s, \\
\sin \left(\frac{\sin (\pi s)}{\pi}-\frac{\sin (\pi t)}{\pi}+\frac{\sin (\pi T)}{\pi}\right)+\cos \left(\frac{\sin (\pi s)}{\pi}+\frac{\sin (\pi t)}{\pi}-\frac{\sin (\pi T)}{\pi}\right),|s|<t, \\
\sin \left(\frac{\sin (\pi s)}{\pi}-\frac{\sin (\pi t)}{\pi}-\frac{\sin (\pi T)}{\pi}\right)+\cos \left(\frac{\sin (\pi s)}{\pi}+\frac{\sin (\pi t)}{\pi}+\frac{\sin (\pi T)}{\pi}\right),|s|<-t .
\end{array}\right.
\end{gathered}
$$

EXAMPLE

Figure: Graphs of the kernel (left) and of the functions involved in the problem (right) for $T=3 / 2$.

Theorem

If condition (C4) $\left(b_{e}=-a\right)$ holds, then problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a.e. $t \in I, \quad x(-T)=x(T)$,
has solution if and only if

$$
\int_{0}^{T} e^{B_{e}(s)} h_{e}(s) d s=0
$$

Theorem

If condition (C4) $\left(b_{e}=-a\right)$ holds, then problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a.e. $t \in I, \quad x(-T)=x(T)$,
has solution if and only if

$$
\int_{0}^{T} e^{B_{e}(s)} h_{e}(s) d s=0,
$$

and in that case the solutions are given by
$u_{c}(t)=e^{-B_{e}(t)}\left\{c+\int_{0}^{t}\left(e^{B_{e}(s)} h(s)+2 a_{e}(s) \int_{0}^{s} e^{B_{e}(r)} h_{e}(r) d r\right) d s\right\}$ for $c \in \mathbb{R}$.

THEOREM

If condition (C5) $b_{e}=a_{e}=0$) holds, then problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a.e. $t \in I, \quad x(-T)=x(T)$,
has solution if and only if

$$
\int_{0}^{T} e^{B(s)-A(s)} h_{e}(s) d s=0
$$

THEOREM

If condition (C5) $b_{e}=a_{e}=0$) holds, then problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a.e. $t \in I, \quad x(-T)=x(T)$,
has solution if and only if

$$
\int_{0}^{T} e^{B(s)-A(s)} h_{e}(s) d s=0
$$

and in that case the solutions are given by

$$
u_{c}(t)=e^{A(t)} \int_{0}^{t} e^{-A(s)} h_{e}(s) d s+e^{-A(t)}\left\{c+\int_{0}^{t} e^{A(s)} h_{0}(s) d s\right\}
$$

for $c \in \mathbb{R}$.

When we are not on the cases (C1)-(C5), since the fundamental matrix of M is not given by its exponential matrix, it is more difficult to precise when our problem has a solution.

Theorem

Define $v=a+b$. Let h, a, b in problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a.e. $t \in I, x(-T)=x(T)$,
be in $L^{1}(I)$ and assume $\int_{-T}^{T} v(t) d t \neq 0$.

Theorem

Define $v=a+b$. Let h, a, b in problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a. e. $t \in I, x(-T)=x(T)$,
be in $L^{1}(I)$ and assume $\int_{-T}^{T} v(t) d t \neq 0$.
Denoting $1 / p+1 / p^{*}=1$. If

$$
\frac{e^{\|v\|_{1}}}{\mid e^{\left\|v^{+}\right\|_{1}}-e^{\left\|v^{-}\right\|_{1}}}\|a\|_{1} \inf _{p \in[1,+\infty]}\left\{\left\{(2 T)^{\frac{1}{p}}\left(\|a\|_{p^{*}}+\|b\|_{p^{*}}\right)\right\}\right\}<1 .
$$

then the problem has a unique solution.

Theorem

Define $v=a+b$. Let h, a, b in problem
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, for a.e. $t \in I, x(-T)=x(T)$,
be in $L^{1}(I)$ and assume $\int_{-T}^{T} v(t) d t \neq 0$.
Denoting $1 / p+1 / p^{*}=1$. If

$$
\frac{e^{\|v\|_{1}}}{\mid e^{\left\|v^{+}\right\|_{1}}-e^{\left\|v^{-}\right\|_{1}}}\|a\|_{1} \inf _{p \in[1,+\infty]}\left\{\left\{(2 T)^{\frac{1}{p}}\left(\|a\|_{p^{*}}+\|b\|_{p^{*}}\right)\right\}\right\}<1 .
$$

then the problem has a unique solution.
The proof follows from the Banach Contraction Theorem.

Part IV

Constant Sign Green's Functions

Now we are interested in to obtain the set of functions $a(t)$ and $b(t)$ for which the Green's function \bar{G} has constant sign on $I \times I$.

We start with the constant coefficient equation

$$
\begin{aligned}
x^{\prime}(t)+m x(-t) & =h(t), \quad t \in[-T, T] \\
x(T)-x(-T) & =0
\end{aligned}
$$

Now we are interested in to obtain the set of functions $a(t)$ and $b(t)$ for which the Green's function \bar{G} has constant sign on $I \times I$.

We start with the constant coefficient equation

$$
\begin{aligned}
x^{\prime}(t)+m x(-t) & =h(t), \quad t \in[-T, T] \\
x(T)-x(-T) & =0,
\end{aligned}
$$

We have proved that there is the Green's function if and only if

$$
m \neq \pm \frac{k \pi}{T}, \quad k=0,1, \ldots
$$

To this end, denote by $\alpha:=m T$ and \bar{G}_{α} be the related Green's function for a particular value of the parameter α.

To this end, denote by $\alpha:=m T$ and \bar{G}_{α} be the related Green's function for a particular value of the parameter α. Note that $\operatorname{sign}(\alpha)=\operatorname{sign}(m)$ because T is always positive.

To this end, denote by $\alpha:=m T$ and \bar{G}_{α} be the related Green's function for a particular value of the parameter α. Note that $\operatorname{sign}(\alpha)=\operatorname{sign}(m)$ because T is always positive.

Lemma

$$
\bar{G}_{\alpha}(t, s)=-\bar{G}_{-\alpha}(-t,-s) \forall t, s \in I .
$$

To this end, denote by $\alpha:=m T$ and \bar{G}_{α} be the related Green's function for a particular value of the parameter α. Note that $\operatorname{sign}(\alpha)=\operatorname{sign}(m)$ because T is always positive.

Lemma
$\bar{G}_{\alpha}(t, s)=-\bar{G}_{-\alpha}(-t,-s) \forall t, s \in I$.
Corollary
\bar{G}_{α} is positive if and only if $\bar{G}_{-\alpha}$ is negative on $I \times I$.

Remember that

$$
2 \sin (m T) \bar{G}(t, s)=\left\{\begin{array}{lll}
\cos m(T-s-t)+\sin m(T+s-t) & \text { if } & t>|s|, \\
\cos m(T-s-t)-\sin m(T-s+t) & \text { if } & |t|<s, \\
\cos m(T+s+t)+\sin m(T+s-t) & \text { if } & -|t|>s, \\
\cos m(T+s+t)-\sin m(T-s+t) & \text { if } & t<-|s| .
\end{array}\right.
$$

Sign of \bar{G}

After some manipulation, the change of variables $t=T z$, $s=T y$ and using the trigonometric identity

$$
\cos (a-b) \pm \sin (a+b)=(\cos a \pm \sin a)(\cos b \pm \sin b)
$$

we get

$$
2 \sin (\alpha) \bar{G}(z, y)=
$$

$([\cos \alpha(1-z)+\sin \alpha(1-z)][\sin \alpha y+\cos \alpha y] \quad$ if $\quad z>|y|$, $[\cos \alpha z-\sin \alpha z][\sin \alpha(y-1)+\cos \alpha(y-1)] \quad$ if $\quad|z|<y$, $[\cos \alpha(1+y)+\sin \alpha(1+y)][\cos \alpha z-\sin \alpha z] \quad$ if $\quad-|z|>y$,
$[\cos \alpha y+\sin \alpha y][\cos \alpha(z+1)-\sin \alpha(z+1)] \quad$ if $\quad z<-|y|$.

SIGN OF \bar{G}

y
Figure: Plot of the function $\bar{G}(z, y)$ for $\alpha=\frac{\pi}{4}$

Theorem

(1) If $\alpha \in\left(0, \frac{\pi}{4}\right)$ then \bar{G} is strictly positive on $I \times I$.

THEOREM

(1) If $\alpha \in\left(0, \frac{\pi}{4}\right)$ then \bar{G} is strictly positive on $I \times I$.
(2) If $\alpha \in\left(-\frac{\pi}{4}, 0\right)$ then \bar{G} is strictly negative on $I \times I$.

Theorem

(1) If $\alpha \in\left(0, \frac{\pi}{4}\right)$ then \bar{G} is strictly positive on $I \times I$.
(2) If $\alpha \in\left(-\frac{\pi}{4}, 0\right)$ then \bar{G} is strictly negative on $I \times I$.
(3) If $\alpha=\frac{\pi}{4}$ then \bar{G} vanishes on $P:=\{(-T,-T),(0,0),(T, T),(T,-T)\}$ and is strictly positive on $(I \times I) \backslash P$.

Theorem

(1) If $\alpha \in\left(0, \frac{\pi}{4}\right)$ then \bar{G} is strictly positive on $I \times I$.
(2) If $\alpha \in\left(-\frac{\pi}{4}, 0\right)$ then \bar{G} is strictly negative on $I \times I$.
(3) If $\alpha=\frac{\pi}{4}$ then \bar{G} vanishes on
$P:=\{(-T,-T),(0,0),(T, T),(T,-T)\}$ and is strictly positive on $(I \times I) \backslash P$.
(4) If $\alpha=-\frac{\pi}{4}$ then \bar{G} vanishes on P and is strictly negative on $(I \times I) \backslash P$.

Theorem

(1) If $\alpha \in\left(0, \frac{\pi}{4}\right)$ then \bar{G} is strictly positive on $I \times I$.
(2) If $\alpha \in\left(-\frac{\pi}{4}, 0\right)$ then \bar{G} is strictly negative on $I \times I$.
(3) If $\alpha=\frac{\pi}{4}$ then \bar{G} vanishes on
$P:=\{(-T,-T),(0,0),(T, T),(T,-T)\}$ and is strictly positive on $(I \times I) \backslash P$.
(4) If $\alpha=-\frac{\pi}{4}$ then \bar{G} vanishes on P and is strictly negative on $(I \times I) \backslash P$.
(5) If $\alpha \in \mathbb{R} \backslash\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ then \bar{G} is not positive nor negative on $I \times I$.

Denoting as $x \succ 0$ and $x \prec 0$ for $x \not \equiv 0$ and $x \geq 0$ and $x \leq 0$ a.e. respectively, we arrive at the following definition

Denoting as $x \succ 0$ and $x \prec 0$ for $x \not \equiv 0$ and $x \geq 0$ and $x \leq 0$ a.e. respectively, we arrive at the following definition

DEFINITION

Let $\mathcal{F}_{\lambda}(I)$ be the set of real differentiable functions f on I such that $f(-T)-f(T)=\lambda$.

Denoting as $x \succ 0$ and $x \prec 0$ for $x \not \equiv 0$ and $x \geq 0$ and $x \leq 0$ a.e. respectively, we arrive at the following definition

DEFINITION

Let $\mathcal{F}_{\lambda}(I)$ be the set of real differentiable functions f on I such that $f(-T)-f(T)=\lambda$.
A linear operator $R: \mathcal{F}_{\lambda}(I) \rightarrow L^{1}(I)$ is said to be
(1) strongly inverse positive on $\mathcal{F}_{\lambda}(I)$ if

$$
R x \succ 0 \Rightarrow x>0 \quad \forall x \in \mathcal{F}_{\lambda}(I)
$$

Denoting as $x \succ 0$ and $x \prec 0$ for $x \not \equiv 0$ and $x \geq 0$ and $x \leq 0$ a.e. respectively, we arrive at the following definition

DEFINITION

Let $\mathcal{F}_{\lambda}(I)$ be the set of real differentiable functions f on I such that $f(-T)-f(T)=\lambda$.
A linear operator $R: \mathcal{F}_{\lambda}(I) \rightarrow L^{1}(I)$ is said to be
(1) strongly inverse positive on $\mathcal{F}_{\lambda}(I)$ if

$$
R x \succ 0 \Rightarrow x>0 \quad \forall x \in \mathcal{F}_{\lambda}(I)
$$

(2) strongly inverse negative on $\mathcal{F}_{\lambda}(I)$ if $R x \succ 0 \Rightarrow x<0 \forall x \in \mathcal{F}_{\lambda}(I)$.

The next corollary establishes maximum and anti-maximum principles.

Corollary
The operator $R_{m}: \mathcal{F}_{\lambda}(I) \rightarrow \mathcal{F}_{\lambda}(I)$ defined as
$R_{m}(x(t))=x^{\prime}(t)+m x(-t)$, with $m \in \mathbb{R} \backslash\{0\}$, satisfies
(1) R_{m} is strongly inverse positive if and only if $m \in\left(0, \frac{\pi}{4 T}\right]$ and $\lambda \geq 0$,

The next corollary establishes maximum and anti-maximum principles.

Corollary

The operator $R_{m}: \mathcal{F}_{\lambda}(I) \rightarrow \mathcal{F}_{\lambda}(I)$ defined as
$R_{m}(x(t))=x^{\prime}(t)+m x(-t)$, with $m \in \mathbb{R} \backslash\{0\}$, satisfies
(1) R_{m} is strongly inverse positive if and only if $m \in\left(0, \frac{\pi}{4 T}\right]$ and $\lambda \geq 0$,
(2) R_{m} is strongly inverse negative if and only if $m \in\left[-\frac{\pi}{4 T}, 0\right)$ and $\lambda \geq 0$.

With these results we get the following corollary for non constant coefficients.

Corollary

If $b=0$, a is nonnegative on I and $A(T) \neq n \pi$ then the following assertions are fulfilled:

- If $A(T) \in\left(0, \frac{\pi}{4}\right)$ then G_{1} is strictly positive on $I \times I$.
- If $A(T) \in\left(-\frac{\pi}{4}, 0\right)$ then G_{1} is strictly negative on $I \times I$.
- If $A(T)=\frac{\pi}{4}$ then G_{1} vanishes on $P:=$ $\{(-A(T),-A(T)),(0,0),(A(T), A(T)),(A(T),-A(T))\}$ and is strictly positive on $(I \times I) \backslash P$.
- If $A(T)=-\frac{\pi}{4}$ then G_{1} vanishes on P and is strictly negative on $(I \times I) \backslash P$.
- If $A(T) \in \mathbb{R} \backslash\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ then G_{1} is not positive nor negative on $I \times I$.

Corollary

If $b=0$, a is nonnegative on I and $A(T) \neq n \pi$ the operator $R_{a}: \mathcal{F}_{\lambda}(I) \rightarrow L^{1}(I)$ defined as $R_{a}(x(t))=x^{\prime}(t)+a(t) x(-t)$ satisfies

- R_{a} is strongly inverse positive if and only if $A(T) \in\left(0, \frac{\pi}{4 T}\right]$ and $\lambda \geq 0$,
- R_{a} is strongly inverse negative if and only if $A(T) \in\left[-\frac{\pi}{4 T}, 0\right)$ and $\lambda \geq 0$.

ThEOREM

Consider the homogeneous initial value problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I ; x\left(t_{0}\right)=0
$$

Theorem

Consider the homogeneous initial value problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I ; x\left(t_{0}\right)=0
$$

If this problem has a unique solution $(x \equiv 0)$ on I for all $t_{0} \in I$ then, if the Green's function for
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, a. e. $t \in I, x(-T)=x(T)$,
exists, it has constant sign.

Theorem

Consider the homogeneous initial value problem

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I ; x\left(t_{0}\right)=0
$$

If this problem has a unique solution $(x \equiv 0)$ on I for all $t_{0} \in I$ then, if the Green's function for
$x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=h(t)$, a. e. $t \in I, x(-T)=x(T)$,
exists, it has constant sign.
What is more, if we further assume $a+b$ has constant sign, the Green's function has the same sign as $a+b$.

Proof.

Without lost of generality, consider a to be a $2 T$-periodic L^{1} function defined on \mathbb{R}.

Proof.

Without lost of generality, consider a to be a $2 T$-periodic L^{1} function defined on \mathbb{R}.
Assume, on the contrary, that there exists $t_{1}, s_{1} \in I$ such that $G_{1}\left(t_{1}, s_{1}\right)=0$.

Proof.

Without lost of generality, consider a to be a $2 T$-periodic L^{1} function defined on \mathbb{R}.
Assume, on the contrary, that there exists $t_{1}, s_{1} \in I$ such that $G_{1}\left(t_{1}, s_{1}\right)=0$.
Let g be the $2 T$-periodic extension of $G_{1}\left(\cdot, s_{1}\right)$.

PROOF.

Without lost of generality, consider a to be a $2 T$-periodic L^{1} function defined on \mathbb{R}.
Assume, on the contrary, that there exists $t_{1}, s_{1} \in I$ such that $G_{1}\left(t_{1}, s_{1}\right)=0$.
Let g be the $2 T$-periodic extension of $G_{1}\left(\cdot, s_{1}\right)$. Let f be the restriction of g to $\left(s_{1}, s_{1}+2 T\right)$.

PROOF.

Without lost of generality, consider a to be a $2 T$-periodic L^{1} function defined on \mathbb{R}.
Assume, on the contrary, that there exists $t_{1}, s_{1} \in I$ such that $G_{1}\left(t_{1}, s_{1}\right)=0$.
Let g be the $2 T$-periodic extension of $G_{1}\left(\cdot, s_{1}\right)$. Let f be the restriction of g to $\left(s_{1}, s_{1}+2 T\right)$. f is absolutely continuous and satisfies

$$
f^{\prime}(t)+a(t) f(-t)+b(t) f(t)=0, t \in I ; f\left(t_{1}\right)=0
$$

hence, $f \equiv 0$. A contradiction.

Second Part of the Proof.
Realize now that $x \equiv 1$ satisfies

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=a(t)+b(t), x(-T)=x(T)
$$

General Constant Sign Property

Second Part of the Proof.
Realize now that $x \equiv 1$ satisfies

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=a(t)+b(t), x(-T)=x(T)
$$

Hence,

$$
\int_{-T}^{T} G_{1}(t, s)(a(s)+b(s)) d s=1 \text { for all } t \in I
$$

Second Part of the Proof.
Realize now that $x \equiv 1$ satisfies

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=a(t)+b(t), x(-T)=x(T)
$$

Hence,

$$
\int_{-T}^{T} G_{1}(t, s)(a(s)+b(s)) d s=1 \text { for all } t \in I
$$

Since both G_{1} and $a+b$ have constant sign, they have the same sign.

Corollary

Assume a has constant sign.

Corollary

Assume a has constant sign. Under the assumption
$\left(\mathbf{C 1}^{*}\right) b_{e}=k a, k \in \mathbb{R},|k|<1$ and, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all

$$
n=0,1, \ldots \text { and } \cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0
$$

Corollary

Assume a has constant sign. Under the assumption
(C1*) $b_{e}=k a, k \in \mathbb{R},|k|<1$ and, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all

$$
n=0,1, \ldots \text { and } \cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0
$$

the Green's funciton G_{1} has constant sign if

$$
|A(T)|<\frac{\arccos (k)}{2 \sqrt{1-k^{2}}}
$$

Corollary

Assume a has constant sign. Under the assumption
(C1*) $b_{e}=k a, k \in \mathbb{R},|k|<1$ and, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all

$$
n=0,1, \ldots \text { and } \cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0
$$

the Green's funciton G_{1} has constant sign if

$$
|A(T)|<\frac{\arccos (k)}{2 \sqrt{1-k^{2}}}
$$

Furthermore, $\operatorname{sign}\left(G_{1}\right)=\operatorname{sign}(a)$.

Corollary

Assume a has constant sign. Under the assumption
(C1*) $b_{e}=k a, k \in \mathbb{R},|k|<1$ and, $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all

$$
n=0,1, \ldots \text { and } \cos \left(\sqrt{1-k^{2}} A(T)\right) \neq 0
$$

the Green's funciton G_{1} has constant sign if

$$
|A(T)|<\frac{\arccos (k)}{2 \sqrt{1-k^{2}}}
$$

Furthermore, $\operatorname{sign}\left(G_{1}\right)=\operatorname{sign}(a)$.

In order to prove this Corollary, we use (by means of the change of variable to a constant coefficients equation) that the general solution of equation

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I
$$

is given by

$$
x(t)=\alpha e^{-B_{e}(t)}\left\{\cos \left(\sqrt{1-k^{2}} A(t)\right)-\frac{1+k}{\sqrt{1-k^{2}}} \sin \left(\sqrt{1-k^{2}} A(t)\right)\right\}
$$

In order to prove this Corollary, we use (by means of the change of variable to a constant coefficients equation) that the general solution of equation

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I
$$

is given by
$x(t)=\alpha e^{-B_{e}(t)}\left\{\cos \left(\sqrt{1-k^{2}} A(t)\right)-\frac{1+k}{\sqrt{1-k^{2}}} \sin \left(\sqrt{1-k^{2}} A(t)\right)\right\}$

Now, we study the values of $A(t)$ for which any solution satisfying $x\left(t_{0}\right)=0$ for some $t_{0} \in I$ must be equals to zero.

Corollary

Assume a has constant sign. Under the assumption
$\left(\mathbf{C 2}{ }^{*}\right) b_{e}=k a, k \in \mathbb{R},|k|>1$ and $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$

Corollary

Assume a has constant sign. Under the assumption
$\left(\mathbf{C 2}{ }^{*}\right) b_{e}=k a, k \in \mathbb{R},|k|>1$ and $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$
the Green's function G_{1} has constant sign if

$$
k<-1 \quad \text { or } \quad|A(T)|<-\frac{\ln \left(k-\sqrt{k^{2}-1}\right)}{2 \sqrt{k^{2}-1}} .
$$

Corollary

Assume a has constant sign. Under the assumption
$\left(\mathbf{C 2}{ }^{*}\right) b_{e}=k a, k \in \mathbb{R},|k|>1$ and $\left(1-k^{2}\right) A(T)^{2} \neq(n \pi)^{2}$ for all $n=0,1, \ldots$
the Green's function G_{1} has constant sign if

$$
k<-1 \quad \text { or } \quad|A(T)|<-\frac{\ln \left(k-\sqrt{k^{2}-1}\right)}{2 \sqrt{k^{2}-1}} .
$$

Furthermore, $\operatorname{sign}\left(G_{1}\right)=\operatorname{sign}(k a)$.

In this case, we use (by means of the change of variable to a constant coefficients equation) that the general solution of equation

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I
$$

is given by

$$
x(t)=\alpha e^{-B_{e}(t)}\left\{\cosh \left(\sqrt{k^{2}-1} A(t)\right)-\frac{1+k}{\sqrt{k^{2}-1}} \sinh \left(\sqrt{k^{2}-1} A(t)\right)\right\}
$$

In this case, we use (by means of the change of variable to a constant coefficients equation) that the general solution of equation

$$
x^{\prime}(t)+a(t) x(-t)+b(t) x(t)=0, t \in I .
$$

is given by

$$
x(t)=\alpha e^{-B_{e}(t)}\left\{\cosh \left(\sqrt{k^{2}-1} A(t)\right)-\frac{1+k}{\sqrt{k^{2}-1}} \sinh \left(\sqrt{k^{2}-1} A(t)\right)\right\}
$$

So, we study the values of $A(t)$ for which any solution satisfying $x\left(t_{0}\right)=0$ for some $t_{0} \in I$ must be equals to zero.

> COROLLARY
> Under the condition
> $\left(\mathbf{C 3 ^ { * }}\right) b_{e}=a$ and $A(T) \neq 0$.

Corollary
 Under the condition

(C3*) $b_{e}=a$ and $A(T) \neq 0$.
the Green's function G_{1} has constant sign if $|A(T)|<\frac{1}{2}$.

If we consider σ defined piecewise as in previous Corollaries we get

$$
\sigma(k):= \begin{cases}\frac{\arccos (k)}{2 \sqrt{1-k^{2}}} & \text { if } k \in(-1,1) \\ \frac{1}{2} & \text { if } k=1 \\ -\frac{\ln \left(k-\sqrt{k^{2}-1}\right)}{2 \sqrt{k^{2}-1}} & \text { if } k>1\end{cases}
$$

If we consider σ defined piecewise as in previous Corollaries we get

$$
\sigma(k):= \begin{cases}\frac{\arccos (k)}{2 \sqrt{1-k^{2}}} & \text { if } k \in(-1,1) \\ \frac{1}{2} & \text { if } k=1 \\ -\frac{\ln \left(k-\sqrt{k^{2}-1}\right)}{2 \sqrt{k^{2}-1}} & \text { if } k>1\end{cases}
$$

We can verify that this function is not only continuous, but also analytic!

If we consider σ defined piecewise as in previous Corollaries we get

$$
\sigma(k):= \begin{cases}\frac{\arccos (k)}{2 \sqrt{1-k^{2}}} & \text { if } k \in(-1,1) \\ \frac{1}{2} & \text { if } k=1 \\ -\frac{\ln \left(k-\sqrt{k^{2}-1}\right)}{2 \sqrt{k^{2}-1}} & \text { if } k>1\end{cases}
$$

We can verify that this function is not only continuous, but also analytic!

As consequence if $|A(T)|<\sigma(k)$ the Green's function has constant sign in $I \times I$.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.
(1) Lower and Upper Solutions Method.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.
(1) Lower and Upper Solutions Method.
(2) Monotone Iterative Techniques.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.
(1) Lower and Upper Solutions Method.
(2) Monotone Iterative Techniques.
(3) Degree Theory.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.
(1) Lower and Upper Solutions Method.
(2) Monotone Iterative Techniques.
(3) Degree Theory.
(4) Fixed Point Theorems in Cones.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.
(1) Lower and Upper Solutions Method.
(2) Monotone Iterative Techniques.
(3) Degree Theory.
(4) Fixed Point Theorems in Cones.

These techniques has been used to deduce existence of solutions for first order nonlinear boundary value problems.
(1) Lower and Upper Solutions Method.
(2) Monotone Iterative Techniques.
(3) Degree Theory.
(4) Fixed Point Theorems in Cones.

Some particular case in which the Green's function changes its sign has been also studied.

THANKS FOR YOUR ATTENTION

Alberto Cabada and Adrián F. Tojo
Equations with Involution

