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Part I

MOTIVATION AND HISTORICAL NOTES

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION
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A SIMPLE EXAMPLE

It is clear that, given a,b ∈ R, the straight line x(t) = a t + b
satisfies the equation

x ′(t) =
x(t)− x(−t)

2t
.

−t t0

x(t)

x(−t)
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A SIMPLE EXAMPLE

However we do not impose that the derivative must be
constant. So our natural question is:

Are the straight lines the only solutions of this equation?
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A SIMPLE EXAMPLE

To answer this question we take into account the very well
known result that any f : R→ R can be expressed in a unique
way as f = fe + fo, with

fe(x) :=
f (x) + f (−x)

2
and fo(x) :=

f (x)− f (−x)

2
x ∈ R.

fe is known as the even part of f and fo is its odd part.

It is not difficult to verify the following properties:

1 (f ′)o = f ′ ⇐⇒ f = fe,

2 (f ′)e = f ′ ⇐⇒ f = fo + c, c ∈ R.
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A SIMPLE EXAMPLE

Returning to our problem, we can rewrite it as

x ′(t) =
x(t)− x(−t)

2t
=

xo(t)
t

.

Since xo(t)
t is even, we know that x ′ is even too. So

x(t) = xo(t) + c, for some c ∈ R.
Thus

(xo)′(t) + 0 = x ′(t) = (xo)′(t) + (xe)′(t).

or, which is the same:

(xe)′(t) = 0, (xo)′(t) =
xo(t)

t
.

As consequence, xe(t) = c, xo(t) = k t with c, k ∈ R, i.e.,

x(t) = k t + c.

So we conclude that the set of solutions of this problem are the
straight lines.
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PROBLEMS ARISING IN REAL PHENOMENA

R. Figueroa and R. L. Pouso,
Minimal and maximal solutions to second-order boundary
value problems with state-dependent deviating arguments,
Bull. Lond. Math. Soc., 43 (2011), 164–174.

Consider a metal wire around a thin sheet of insulating material
in a way that some parts overlap some others as in the figure.
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PROBLEMS ARISING IN REAL PHENOMENA

	  

	  

	  

	  

	  

	  

	  

	  

	  

Assuming that the position Y = 0 is the low-
est of the wire, and the insulation goes up to
the left at −Y and to the right up to Y .

Traditional heat equation with respect to the
wire is

∂T
∂t

(t , y) = α
∂2T
∂y2 (t , y).

However, given the proximity of the other
section of wire, we can add another term to
affect the equation:

∂T
∂t

(t , y) = α
∂2T
∂y2 (t , y) + β

∂2T
∂y2 (t ,−y).
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PROBLEMS ARISING IN REAL PHENOMENA

After these two examples we are interested in to consider
nth-order differential equations that follows the expression

x (n)(t) = f (t , x(t), x(−t)), t ∈ [−T ,T ].

It is important to note the following facts:

They are functional equations.

They are neither equations with delay nor advance.
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PROBLEMS ARISING IN REAL PHENOMENA

The main characteristic of the operator ϕ(t) = −t is that

ϕ 6= Id and ϕ ◦ ϕ = Id .

DEFINITION

Let A ⊂ R, a function f : A→ A such that f ◦ f = Id is called an
involution.
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PROBLEMS ARISING IN REAL PHENOMENA

A. Cabada, G. Infante and F. A. F. Tojo,
Nontrivial solutions of perturbed Hammerstein integral
equations with deviated arguments and applications,
Preprint.

Consider the model of a light bulb with a temperature regulating
system (thermostat).The model includes a bulb in which a
metal filament, bended on itself, is inserted with only its two
extremes outside of the bulb.

u′′(t) + g(t)f (t ,u(t),u(ϕ(t))) = 0, t ∈ (0,1), ϕ ◦ ϕ = Id .
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DEFINITIONS

DEFINITION

Let A ⊂ R, f : A→ A, k ∈ N, k ≥ 2. We say f is an involution of
order n if

1 f n ≡ f◦
n
^· · · ◦f = Id,

2 f k 6= Id ∀k = 1, . . . ,n − 1.
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EXAMPLES

1 f : R→ R, f (x) = −x is an involution known as reflection.

2 f : R\{0} → R\{0}, f (x) = 1/x known as inversion.

3 Let a,b, c ∈ R, c b + a2 6= 0, c 6= 0,

f : R\
{a

c

}
→ R\

{a
c

}
, f (x) =

ax + b
cx − a

is a family of involutions known as bilinear involutions.
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PROPERTIES

Involutions are invertible.

If A ⊂ R is connected and f : A→ A is a continuous
involution, then f is decreasing and has a unique fixed
point.

The only continuous involutions defined in connected
subsets of R are of order 2.
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HISTORICAL NOTES

The study of functional differential equations with involutions
can be traced back to the solution of the inversion equation
x ′(t) = x(1/t) by Silberstein in 1940.

Silberstein, Ludwik.
Solution of the Equation f ′(x) = f (1/x).
Philos. Mag. 7:30 (1940), pp 185-186.

Wiener proves that the solutions of the Silberstein equation
solve the second order singular ordinary differential equation
t2x ′′(t) + x(t) = 0.

Wiener, Joseph.
Differential equations with involutions.
Differensial’nye Uravneniya, 5, (1969), 1131-1137.
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HISTORICAL NOTES

On the other hand, by defining y(t) = x(et ), we conclude that x
is a solution of the inversion Silberstein equation if and only if y
solves the reflection equationy ′(t) = e−ty(−t).
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Šarkovskiı̆ shows that they have some applications to the
stability of differential – difference equations.

Šarkovskiı̆, Alexander N.
Functional-differential equations with a finite group of
argument transformations. (Russian)
Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 157, (1978),
118-142.
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Moreover this kind of equations has some interesting properties
by itself.

In fact it is not difficult to verify that the unique solution
of the homogeneous harmonic oscillator

x ′′(t) + m2 x(t) = 0,

coupled with the initial conditions

x(0) = x0, x ′(0) = −m x0,

for any x0 ∈ R, is the unique solution of the first order equation
with reflection

x ′(t) + m x(−t) = 0, x(0) = x0

and vice-versa.
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Wiener and Watkins study the solution of the equation
x ′(t)− a x(−t) = 0 with initial conditions.

Wiener Joseph; Watkins, Will.
A Glimpse into the Wonderland of Involutions.
Missouri J. Math. Sci. 14 (2002), 3, 175-185.

Equation x ′(t) + a x(t) + b x(−t) = g(t) has been treated in

Piao, Daxiong
Pseudo almost periodic solutions for differential equations
involving reflection of the argument.
J. Korean Math. Soc. 41 (2004), 4, 747-754.

Piao, Daxiong
Periodic and almost periodic solutions for differential
equations with reflection of the argument.
Nonlinear Anal. 57 (2004), 4, 633-637.
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In the following papers some results are introduced to
transform this kind of problems with involutions and initial
conditions into second order ordinary differential equations with
initial conditions or first order two dimensional systems,
granting that the solution of the last will be a solution to the first.

Kuller, Robert G.
On the differential equation f ′ = f ◦ g, where g ◦ g = I.
Math. Mag. 42 1969 195-200.

Shah, S. M.; Wiener, Joseph.
Reducible functional-differential equations.
Internat. J. Math. Math. Sci. 8 (1985), 1-27.
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In the following papers some results are introduced to
transform this kind of problems with involutions and initial
conditions into second order ordinary differential equations with
initial conditions or first order two dimensional systems,
granting that the solution of the last will be a solution to the first.

Wiener, Joseph.
Generalized solutions of functional-differential equations.
World Scientific Publishing Co., Inc., River Edge, NJ, 1993.

Watkins, Will.
Modified Wiener Equations.
Int. J. Math. Math. Sci. 27:6 (2001), pp 347-356.
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Second order boundary value problems have been considered
for Dirichlet and Sturm-Liouville boundary value conditions in

Gupta, Chaitan P.
Existence and uniqueness theorems for boundary value
problems involving reflection of the argument.
Nonlinear Anal. 11 (1987), 9, 1075-1083.

Gupta, Chaitan P.
Two-point boundary value problems involving reflection of
the argument.
Internat. J. Math. Math. Sci. 10 (1987), 2, 361-371.

O’Regan, Donal; Zima, Miroslawa.
Leggett-Williams norm-type fixed point theorems for
multivalued mappings.
Appl. Math. Comput. 187 (2007), 2, 1238-1249.
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Higher order equations has been studied in

O’Regan, Donal.
Existence results for differential equations with reflection of
the argument.
J. Austral. Math. Soc. Ser. A 57 (1994), 2, 237-260.
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Part II

DIFFERENTIAL EQUATIONS WITH INVOLUTIONS
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THE CONSIDERED PROBLEM

Despite all this progression of studies and to the best of our
knowledge, the case of first order differential equations with
involution and periodic boundary value conditions has been
disregarded so far.
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THE CONSIDERED PROBLEM

In this talk we will present some of the results obtained in

F. A. F. Tojo, A. C.
Comparison results for first order linear operators with
reflection and periodic boundary value conditions,
Nonlinear Anal., 78 (2013), 32–46.

F. A. F. Tojo, A. C.
Existence results for a linear equation with reflection,
non-constant coefficient and periodic boundary conditions.
J. Math. Anal. Appl. 412 (2014), 529–546.
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REDUCIBLE NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

Let us consider the first order equation with involution

x ′(t) = f (x(ϕ(t))), x(c) = xc , (1)

and the second order ordinary differential equation

x ′′(t) = f ′(f−1(x ′(t)))f (x(t))ϕ′(t), x(c) = xc , x ′(c) = f (xc). (2)

LEMMA

Let f : R→ R be a diffeomorphism. Let ϕ ∈ C1((a,b)) be an
involution and c be a fixed point of ϕ. Then x is a solution of (1)
if and only if x is a solution of (2).
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PROOF. That those solutions of (1) are solutions of (2) is almost
trivial.

The boundary conditions are justified by the fact that ϕ(c) = c.

Since differentiating (1) we get

x ′′(t) = f ′(x(ϕ(t))) x ′(ϕ(t))ϕ′(t)

and taking into account that x ′(ϕ(t)) = f (x(t)) by (1), we obtain
(2).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



DIFFERENTIAL EQUATIONS WITH INVOLUTIONS EQUIVALENCE OF INVOLUTIONS

REDUCIBLE NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

PROOF. That those solutions of (1) are solutions of (2) is almost
trivial.

The boundary conditions are justified by the fact that ϕ(c) = c.

Since differentiating (1) we get

x ′′(t) = f ′(x(ϕ(t))) x ′(ϕ(t))ϕ′(t)

and taking into account that x ′(ϕ(t)) = f (x(t)) by (1), we obtain
(2).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



DIFFERENTIAL EQUATIONS WITH INVOLUTIONS EQUIVALENCE OF INVOLUTIONS

REDUCIBLE NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

PROOF. That those solutions of (1) are solutions of (2) is almost
trivial.

The boundary conditions are justified by the fact that ϕ(c) = c.

Since differentiating (1) we get

x ′′(t) = f ′(x(ϕ(t))) x ′(ϕ(t))ϕ′(t)

and taking into account that x ′(ϕ(t)) = f (x(t)) by (1), we obtain
(2).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



DIFFERENTIAL EQUATIONS WITH INVOLUTIONS EQUIVALENCE OF INVOLUTIONS

REDUCIBLE NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

PROOF.
Conversely, let x be a solution of (2).

The equation implies that

(f−1)′(x ′(t))x ′′(t) = f (x(t))ϕ′(t).

Integrating from c to t we have,

f−1(x ′(t))− xc = f−1(x ′(t))− f−1(x ′(c)) =

∫ t

c
f (x(s))ϕ′(s)ds
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PROOF.
Defining g(s) := f (x(ϕ(s)))− x ′(s), we conclude that

x ′(t) = f
(

xc +

∫ t

c
f (x(s))ϕ′(s)ds

)
= f

(
x(ϕ(t)) +

∫ t

c
(f (x(s))− x ′(ϕ(s)))ϕ′(s)ds

)

= f

(
x(ϕ(t)) +

∫ ϕ(t)

c
(f (x(ϕ(s)))− x ′(s))ds

)

= f

(
x(ϕ(t)) +

∫ ϕ(t)

c
g(s)ds

)
.

One can verify, by Grönwall’s Lemma, that g(t) = 0 and hence
(1) is satisfied.
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EXAMPLE

Notice that, as an immediate consequence of this result, we
have that the unique solution of the equation

x ′′(t) = −
√

1 + (x ′(t))2 sinh x(t), x(0) = x0, x ′(0) = sinh x0,

coincide with the unique solution of

x ′(t) = sinh x(−t), x(0) = x0.
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The second order ordinary differential equation (2) can be
rewritten as the f−1 – laplacian equation

d
d t

(
f−1(x ′(t))

)
= ϕ′(t) f (x(t)), x(c) = xc , x ′(c) = f (xc).

Recently, we have extended this result to a wider set of
functions, not necessarily diffeomorphisms. In particular, the
result is valid for the p− Laplacian operator

f (x) = |x |p−2 x , x ∈ R, p > 1.
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Previous Lemma can be extended, with a very similar proof, to
the case with periodic boundary value conditions.

Let us consider the problems

x ′(t) = f (x(ϕ(t))), x(a) = x(b) (3)

and

x ′′(t) = f ′(f−1(x ′(t)))f (x(t))ϕ′(t), x(a) = x(b) = f (x ′(a)). (4)

LEMMA

Let [a,b] ⊂ R and let fR→ R be a diffeomorphism. Let
ϕ ∈ C1([a,b]) be an involution such that ϕ([a,b]) = [a,b]. Then
x is a solution of the first order differential equation with
involution (3) if and only if x is a solution of the second order
ordinary differential equation (4).
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CORRESPONDENCE OF INVOLUTIONS

LEMMA

Let ϕ and ψ be two differentiable involutions on the intervals I1
and I2 respectively. Let t0 and s0 be the unique fixed points of ϕ
and ψ respectively.

Then, there exists an orientation preserving diffeomorphism
f : I2 → I1 such that f (ψ(s)) = ϕ(f (s)), ∀s ∈ I2.

The f described in the lemma can be taken as follows:
Let g : [inf I2, s0]→ [inf I1, t0] be an orientation preserving
diffeomorphism, that is, g(s0) = t0.
Let us define

f (s) :=

{
g(s) if s ∈ [inf I2, s0],

(ϕ ◦ g ◦ ψ)(s) if s ∈ (s0, sup I2].
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DIFFERENTIAL EQUATIONS WITH INVOLUTIONS EQUIVALENCE OF INVOLUTIONS

CORRESPONDENCE OF INVOLUTIONS

COROLLARY

Under the hypothesis of previous Lemma, the problem

d(t)x ′(t) + c(t)x ′(ϕ(t)) + b(t)x(t) + a(t)x(ϕ(t)) = h(t),
x(inf I1) = x(sup I1)

is equivalent to

d(f (s))

f ′(s)
y ′(s) +

c(f (s))

f ′(ψ(s))
y ′(ψ(s)) + b(f (s))y(s) + a(f (s))y(ψ(s)) = h(f (s)),

y(inf I2) = y(sup I2).

This result is clear by making the change of variables t = f (s)
and y(s) := x(t) = x(f (s)).
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DIFFERENTIAL EQUATIONS WITH INVOLUTIONS EQUIVALENCE OF INVOLUTIONS

FROM A GENERAL INVOLUTION TO THE REFLECTION

This correspondence allows us to study only one kind of
involutions and adapt the obtained results to the other cases.

So we will concentrate our attention on the reflection functional
ϕ(t) = −t .
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Part III

CONSTRUCTION OF THE GREEN’S FUNCTION
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CONSTANT COEFFICIENTS

We will start by finding the solution of the simplest first order
reflection equation Lm x(t) = x ′(t) + m x(−t) = h(t) with
periodic boundary value conditions and then establish some
properties of the solution.

On the contrary to the majority of the previous mentioned
papers, our approach consists on to study directly the first order
functional equation and obtain the expression of the related
Green’s function.
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CONSTANT COEFFICIENTS

It is very well known that the second order operator
Pm2 x(t) := x ′′(t) + m2 x(t) can not be decomposed into two
first order Ordinary differential Equations.

However, it is not difficult to verify that

Pm2 = L2
m = L2

−m

So, one of the main interest in to study the reflection operators
L±mx(t) := x ′(t)±m x(−t) consists on that, in some sense,
both of them are the “Square Roots” of the harmonic oscillator
operator.

Sarah Post, Luc Vinet and Alexei Zhedanov,
Supersymmetric Quantum Mechanics with Reflections,
arXiv:1107.5844v2 [math-ph] 9 Aug 2011.
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SECOND ORDER ODE

It is very well known that the second order problem with non
homogeneous periodic boundary conditions

x ′′(t) + m2 x(t) = f (t), t ∈ [−T ,T ] ≡ I,
x(T )− x(−T ) = 0,

x ′(T )− x ′(−T ) = λ

can be solved using what is called the Green’s function G.

The solution of this problem would then be

u(t) =

∫ T

−T
G(t , s)f (s)ds + λG(t ,−T ).

The solution is unique whenever m2 6= (kπ
T )2, k ∈ N. We will

assume uniqueness conditions from now on.
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PROPERTIES OF G

G is unique insofar as it satisfies the following properties:
1 G ∈ C(I × I,R),

2 ∂G
∂t and ∂2G

∂t2 exist and are continuous in
{(t , s) ∈ I × I | s 6= t},

3 ∂G
∂t (t , t−) and ∂G

∂t (t , t+) exist for all t ∈ I and satisfy

∂G
∂t

(t , t−)− ∂G
∂t

(t , t+) = 1 ∀t ∈ I,

4 ∂2G
∂t2 + m2G = 0 in {(t , s) ∈ I × I | s 6= t},

5 G(T , s) = G(−T , s) ∀s ∈ I,
∂G
∂t (T , s) = ∂G

∂t (−T , s) ∀s ∈ (−T ,T ).
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PROPERTIES OF G

For all t , s ∈ I, the Green’s function satisfies the following
properties as well:

6 G(t , s) = G(s, t),

7 G(t , s) = G(−t ,−s),

8 ∂G
∂t (t , s) = ∂G

∂s (s, t),

9 ∂G
∂t (t , s) = −∂G

∂t (−t ,−s),

10 ∂G
∂t (t , s) = −∂G

∂s (t , s).
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FIRST ORDER EQUATION WITH REFLECTION

Consider the problem

x ′(t) + m x(−t) = h(t), t ∈ [−T ,T ]

x(T )− x(−T ) = 0,
(5)

where m is a real non-zero constant, T > 0 and h ∈ L1(I).

If h is differentiable, by direct differentiation one can verify that
any solution of the previous problem solves the second order
ODE with boundary conditions

x ′′(t) + m2 x(t) = h′(t) + m h(−t), t ∈ I,
x(T )− x(−T ) = 0,

x ′(T )− x ′(−T ) = h(T )− h(−T )
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FIRST ORDER EQUATION WITH REFLECTION

As consequence, we know that, under the regularity
assumptions on h, the solutions of the first order reflection
equation (5) are given by the following expression

x(t) =

∫ T

−T
G(t , s)(h′(s) + m h(−s))ds + G(t ,−T ) [h(T )− h(−T )]

=

∫ T

−T
G(t , s)(h′(s) + m h(−s))ds + G(t ,−T )

∫ T

−T
h′(s) ds.
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FIRST ORDER EQUATION WITH REFLECTION

After integration by parts, by using the properties of the Green’s
function G and the density of the C1(I) functions in L1(I), we
arrive to the following expression for the Green’s function
related to the first order problem with reflection (5)

THEOREM

Suppose that m 6= k π/T , k ∈ Z. Then problem (5) has a
unique solution given by the expression

u(t) :=

∫ T

−T
G(t , s)h(s)ds,

where
G(t , s) := m G(t ,−s)− ∂G

∂s
(t , s)

is called the Green’s function related to problem (5).
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FIRST ORDER EQUATION WITH REFLECTION

EXAMPLE

It is not difficult to verify that the Green’s function G related to
the second order periodic boundary value problem

x ′′(t) + m2 x(−t) = h(t), t ∈ [−T ,T ]

x(T )− x(−T ) = 0,
x ′(T )− x ′(−T ) = 0,

follows the expression

2m sin(mT )G(t , s) =

{
cos m(T + s − t) if s ≤ t ,
cos m(T − s + t) if s > t .
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FIRST ORDER EQUATION WITH REFLECTION

EXAMPLE

Therefore,

2 sin(mT )G(t , s) =


cos m(T − s − t) + sin m(T + s − t) if t > |s|,
cos m(T − s − t)− sin m(T − s + t) if |t | < s,
cos m(T + s + t) + sin m(T + s − t) if − |t | > s,
cos m(T + s + t)− sin m(T − s + t) if t < −|s|.

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

PROPERTIES OF G

G satisfies the following properties:

1 ∂G
∂t exists and is continuous in {(t , s) ∈ I × I | s 6= t},

2 G(t , t−) and G(t , t+) exist for all t ∈ I and satisfy
G(t , t−)−G(t , t+) = 1 ∀t ∈ I,

3 ∂G
∂t (t , s) + mG(−t , s) = 0 for a.e. t , s ∈ I, s 6= t ,

4 G(T , s) = G(−T , s) ∀s ∈ (−T ,T ),

5 G(t , s) = G(−s,−t) ∀t , s ∈ I.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

NON HOMOGENEOUS BOUNDARY CONDITIONS

COROLLARY

Suppose that m 6= k π/T , k ∈ Z. Then the problem

x ′(t) + m x(−t) = h(t), t ∈ I, x(−T )− x(T ) = λ,

with λ ∈ R has a unique solution given by the expression

u(t) :=

∫ T

−T
G(t , s)h(s)ds + λG(t ,−T ).
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

A MORE GENERAL CASE

If we consider the problem with constant coefficients

x ′(t) + a x(−t) + b x(t) = h(t), t ∈ I; x(−T ) = x(T ), (6)

where a,b ∈ R, a 6= 0.

Considering the homogeneous case (h ≡ 0) we can reduce it,
by differentiating and making substitutions, to the second order
ODE problem,

x ′′(t) + (a2 − b2)x(t) = 0, x(T ) = x(−T ), x ′(T ) = x ′(−T ).
(7)

Observe that in the case b = 0 this is the problem from which
we obtained the Green’s function G.
The Green’s function for problem (7) satisfies, changing ±ω2 by
a2 − b2, the same properties as G for a 6= ±b.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

A MORE GENERAL CASE

THEOREM

Suppose that a2 − b2 6= n2 (π/T )2, n = 0,1, . . . Then problem
(6) has a unique solution given by the expression

u(t) :=

∫ T

−T
G(t , s)h(s)ds,

where
G(t , s) := a G(t ,−s)−b G(t , s) +

∂G
∂t

(t , s) (8)

is called the Green’s function related to problem (6).
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

NON CONSTANT COEFFICIENTS

We center our attention on the first order equation with non
constant coefficients

d(t)x ′(t) + c(t)x ′(−t) + b(t)x(t) + a(t)x(−t) = h(t), x(−T ) = x(T ).
(9)

In order to solve it, we return to the decomposition of even and
odd part of a given function f :

fe(x) :=
f (x) + f (−x)

2
, fo(x) :=

f (x)− f (−x)

2
.

Then, the solutions of equation (9) satisfy

Λ

(
x ′o
x ′e

)
=

(
ao − bo −ae − be
ae − be −ao − bo

)(
xo
xe

)
+

(
he
ho

)
,

where

Λ =

(
ce + de do − co
co + do de − ce

)
.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

NON CONSTANT COEFFICIENTS

Important! The solutions of this system need not to be pairs of
even and odd functions, nor provide solutions of (9).

If det(Λ(t)) = c(t)c(−t)− d(t)d(−t) 6= 0 for a. e. t ∈ I, Λ(t) is
invertible a. e. and(

x ′o
x ′e

)
= Λ−1

(
ao − bo −ae − be
ae − be −ao − bo

)(
xo
xe

)
+ Λ−1

(
he
ho

)
.

So we can assume that Λ = Id, that is, d ≡ 1 and c ≡ 0.
Hence, the equation to study is

x ′(t) + b(t)x(t) + a(t)x(−t) = h(t), x(−T ) = x(T ).

and the system consists on

(
x ′o
x ′e

)
=

(
ao − bo −ae − be
ae − be −ao − bo

)(
xo
xe

)
+

(
he
ho

)
.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

A GREEN’S FUNCTION FOR THE NON-HOMOGENEOUS PROBLEM

Consider (
x ′o
x ′e

)
=

(
ao − bo −ae − be
ae − be −ao − bo

)(
xo
xe

)
.

It is a well known result that, if we have a system of linear ODE
defined by a matrix M which commutes with its integral, then
the solution of the system is given by the exponential of the
integral of M.

We can try to compute the solution of the problem as an
exponential, but, under which circumstances can we do this?
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A GREEN’S FUNCTION FOR THE NON-HOMOGENEOUS PROBLEM

DEFINITION

Let S ⊂ R be an interval. DefineM⊂ C1(R,Mn×n(R)) such
that for every M ∈M,

there exists P ∈ C1(R,Mn×n(R)) such that
M(t) = P−1(t)J(t)P(t) for every t ∈ S where
P−1(t)J(t)P(t) is a Jordan decomposition of M(t);
the superdiagonal elements of J are independent of t , as
well as the dimensions of the Jordan boxes associated to
the different eigenvalues of M;
two different Jordan boxes of J correspond to different
eigenvalues;
if two eigenvalues of M are ever equal, they are identical in
the whole interval S.
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A GREEN’S FUNCTION FOR THE NON-HOMOGENEOUS PROBLEM

THEOREM (KOTIN AND IRVING, 1982)
Let M ∈M. Then, the following statements are equivalent.

M commutes with its derivative.
M commutes with its integral.
M commutes functionally, that is M(t)M(s) = M(s)M(t) for
all t , s ∈ S.
M =

∑r
k=0 γk (t)Ck For some C ∈Mn×n(R) and

γk ∈ C1(S,R), k = 1, . . . , r .
Furthermore, any of the last properties imply that M(t) has a
set of constant eigenvectors, i.e. a Jordan decomposition
P−1J(t)P where P is constant.

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

A GREEN’S FUNCTION FOR THE NON-HOMOGENEOUS PROBLEM

Let us check when

M :=

(
ao − bo −ae − be
ae − be −ao − bo

)
commutes functionally, i.e.:

0 = M(t)M(s)−M(s)M(t)

= 2

0@ ae(t)be(s)− ae(s)be(t) ao(s)[ae(t) + be(t)]− ao(t)[ae(s) + be(s)]

ao(t)[ae(s) + be(s)]− ao(s)[ae(t) + be(t)] ae(s)be(t)− ae(t)be(s)

1A .
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A GREEN’S FUNCTION FOR THE NON-HOMOGENEOUS PROBLEM

M commutes functionally if and only if one of the five different
situations is fulfilled:

(C1) be = k a, k ∈ R, |k | < 1.
(C2) be = k a, k ∈ R, |k | > 1.
(C3) be = a.
(C4) be = −a.
(C5) be = ae = 0.

We note that if (C1)–(C4) hold, with k 6= 0 in case (C1), we
deduce that a must be even.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

A GREEN’S FUNCTION FOR THE NON-HOMOGENEOUS PROBLEM

In order to obtain the Green’s function for our problem

x ′(t) + a(t)x(−t) + b(t)x(t) = h(t), x(−T ) = x(T ),

when one of the conditions (C1)− (C5) holds.

Let us denote A(t) :=
∫ t

0 a(s)ds and B(t) :=
∫ t

0 b(s)ds.

1 If a is even, we have that A is odd.

2 As consequence A(−T ) = −A(T ).

3 Remember that there is no sign assumptions on a and b.

4 In particular we cannot ensure that A or B are monotone.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

Considering the cases, with a even

(C1) be = k a, k ∈ R, |k | < 1.
(C2) be = k a, k ∈ R, |k | > 1.
(C3) be = a.

We refer to the constant coefficients problem

x ′(t)+x(−t)+k x(t) = h(t), t ∈ [−|A(T )|, |A(T )|], x(A(T )) = x(−A(T )).

This problem has been completely studied before and so we
know that is is uniquely solvable if and only if

(C1∗) (C1) is satisfied, (1− k2)A(T )2 6= (n π)2 for all n = 0,1, . . .
and cos

(√
1− k2A(T )

)
6= 0.

(C2∗) (C2) is satisfied and (1− k2)A(T )2 6= (n π)2 for all
n = 0,1, . . .

(C3∗) (C3) is satisfied and A(T ) 6= 0.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

Assume one of (C1∗)–(C3∗).

The Green’s function G2 for the
constant coefficients problem can be expressed as

G2(t , s) :=


k1(t , s), t > |s|,
k2(t , s), s > |t |,
k3(t , s), −t > |s|,
k4(t , s), −s > |t |.

where the ki are analytic functions.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

Let us define

G1(t , s) := eBe(s)−Be(t)


k1(A(t),A(s)), t > |s|,
k2(A(t),A(s)), s > |t |,
k3(A(t),A(s)), −t > |s|,
k4(A(t),A(s)), −s > |t |.

Here Be(t) :=
∫ t

0 be(t)dt .
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

THEOREM

Assume one of (C1∗)–(C3∗). If G1(t , ·)h(·) ∈ L1(I) for every
t ∈ I, then problem

x ′(t) + a(t) x(−t) + b(t) x(t) = h(t), for a. e. t ∈ I,
x(−T ) = x(T ),

has a unique solution given by

u(t) =

∫ T

−T
G1(t , s)h(s)ds.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

EXAMPLE

Consider the problem

x ′(t) + cos(πt)x(−t) + sinh(t)x(t) = cos(πt) + sinh(t),
x(−T ) = x(T ).

a(t) = cos(πt) and b(t) = sinh(t).

Since be(t) = 0, we have that be = k a, for k = 0.

So, we are in the case (C1).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

EXAMPLE

Consider the problem

x ′(t) + cos(πt)x(−t) + sinh(t)x(t) = cos(πt) + sinh(t),
x(−T ) = x(T ).

a(t) = cos(πt) and b(t) = sinh(t).

Since be(t) = 0, we have that be = k a, for k = 0.

So, we are in the case (C1).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

EXAMPLE

Consider the problem

x ′(t) + cos(πt)x(−t) + sinh(t)x(t) = cos(πt) + sinh(t),
x(−T ) = x(T ).

a(t) = cos(πt) and b(t) = sinh(t).

Since be(t) = 0, we have that be = k a, for k = 0.

So, we are in the case (C1).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

EXAMPLE

Consider the problem

x ′(t) + cos(πt)x(−t) + sinh(t)x(t) = cos(πt) + sinh(t),
x(−T ) = x(T ).

a(t) = cos(πt) and b(t) = sinh(t).

Since be(t) = 0, we have that be = k a, for k = 0.

So, we are in the case (C1).

ALBERTO CABADA AND ADRIÁN F. TOJO

EQUATIONS WITH INVOLUTION



CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

EXAMPLE

If we compute the Green’s function, we obtain

2 sin(sin(πT ))G1(t , s) = ecosh(s)−cosh(t)H(t , s),

where H is the “extended” Green’s function related to

x ′(t) + x(−t) = h(t), x(
sin(πT )

π
) = x(−sin(πT )

π
).

H(t , s) =

8>>>>><>>>>>:

sin
“

sin(πs)
π
− sin(πt)

π
− sin(πT )

π

”
+ cos

“
sin(πs)

π
+ sin(πt)

π
− sin(πT )

π

”
, |t | < s,

sin
“

sin(πs)
π
− sin(πt)

π
+ sin(πT )

π

”
+ cos

“
sin(πs)

π
+ sin(πt)

π
+ sin(πT )

π

”
, |t | < −s,

sin
“

sin(πs)
π
− sin(πt)

π
+ sin(πT )

π

”
+ cos

“
sin(πs)

π
+ sin(πt)

π
− sin(πT )

π

”
, |s| < t ,

sin
“

sin(πs)
π
− sin(πt)

π
− sin(πT )

π

”
+ cos

“
sin(πs)

π
+ sin(πt)

π
+ sin(πT )

π

”
, |s| < −t .
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C1)− (C3)

EXAMPLE

FIGURE: Graphs of the kernel (left) and of the functions involved in
the problem (right) for T = 3/2.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C4) AND (C5)

THEOREM

If condition (C4) (be = −a) holds, then problem

x ′(t)+a(t) x(−t)+b(t) x(t) = h(t), for a. e. t ∈ I, x(−T ) = x(T ),

has solution if and only if∫ T

0
eBe(s)he(s)ds = 0,

and in that case the solutions are given by

uc(t) = e−Be(t)
{

c +

∫ t

0

(
eBe(s)h(s) + 2ae(s)

∫ s

0
eBe(r)he(r)dr

)
ds
}

for c ∈ R.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

CASES (C4) AND (C5)

THEOREM

If condition (C5) be = ae = 0) holds, then problem

x ′(t)+a(t) x(−t)+b(t) x(t) = h(t), for a. e. t ∈ I, x(−T ) = x(T ),

has solution if and only if∫ T

0
eB(s)−A(s)he(s)ds = 0,

and in that case the solutions are given by

uc(t) = eA(t)
∫ t

0
e−A(s)he(s)ds + e−A(t)

{
c +

∫ t

0
eA(s)ho(s)ds

}
for c ∈ R.
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THEOREM
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

THE GENERAL CASE

When we are not on the cases (C1)-(C5), since the
fundamental matrix of M is not given by its exponential matrix, it
is more difficult to precise when our problem has a solution.
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CONSTANT COEFFICIENTS NON CONSTANT COEFFICIENTS

THE GENERAL CASE

THEOREM

Define υ = a + b. Let h, a, b in problem

x ′(t)+a(t) x(−t)+b(t) x(t) = h(t), for a. e. t ∈ I, x(−T ) = x(T ),

be in L1(I) and assume
∫ T
−T υ(t)dt 6= 0.

Denoting 1/p + 1/p∗ = 1. If

e‖υ‖1

|e‖υ+‖1 − e‖υ−‖1 |
‖a‖1 inf

p∈[1,+∞]

{
{(2T )

1
p (‖a‖p∗ + ‖b‖p∗)}

}
< 1.

then the problem has a unique solution.

The proof follows from the Banach Contraction Theorem.
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Part IV

CONSTANT SIGN GREEN’S FUNCTIONS
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CONSTANT SIGN GREEN’S FUNCTIONS

SIGN OF G

Now we are interested in to obtain the set of functions a(t) and
b(t) for which the Green’s function G has constant sign on I × I.

We start with the constant coefficient equation

x ′(t) + m x(−t) = h(t), t ∈ [−T ,T ]

x(T )− x(−T ) = 0,

We have proved that there is the Green’s function if and only if

m 6= ±kπ
T
, k = 0,1, . . . .
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CONSTANT SIGN GREEN’S FUNCTIONS

SIGN OF G

To this end, denote by α := m T and Gα be the related Green’s
function for a particular value of the parameter α.

Note that
sign(α) = sign(m) because T is always positive.

LEMMA

Gα(t , s) = −G−α(−t ,−s) ∀t , s ∈ I.

COROLLARY

Gα is positive if and only if G−α is negative on I × I.
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CONSTANT SIGN GREEN’S FUNCTIONS

SIGN OF G

Remember that

2 sin(mT )G(t , s) =


cos m(T − s − t) + sin m(T + s − t) if t > |s|,
cos m(T − s − t)− sin m(T − s + t) if |t | < s,
cos m(T + s + t) + sin m(T + s − t) if − |t | > s,
cos m(T + s + t)− sin m(T − s + t) if t < −|s|.
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CONSTANT SIGN GREEN’S FUNCTIONS

SIGN OF G

After some manipulation, the change of variables t = Tz,
s = Ty and using the trigonometric identity

cos(a− b)± sin(a + b) = (cos a± sin a)(cos b ± sin b),

we get
2 sin(α)G(z, y) =

[cosα(1− z) + sinα(1− z)][sinαy + cosαy ] if z > |y |,
[cosαz − sinαz][sinα(y − 1) + cosα(y − 1)] if |z| < y ,
[cosα(1 + y) + sinα(1 + y)][cosαz − sinαz] if − |z| > y ,
[cosαy + sinαy ][cosα(z + 1)− sinα(z + 1)] if z < −|y |.
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CONSTANT SIGN GREEN’S FUNCTIONS

SIGN OF G

FIGURE: Plot of the function G(z, y) for α = π
4
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CONSTANT SIGN GREEN’S FUNCTIONS

CONSTANT SIGN OF G

THEOREM

1 If α ∈ (0, π4 ) then G is strictly positive on I × I.

2 If α ∈ (−π
4 ,0) then G is strictly negative on I × I.

3 If α = π
4 then G vanishes on

P := {(−T ,−T ), (0,0), (T ,T ), (T ,−T )} and is strictly
positive on (I × I)\P.

4 If α = −π
4 then G vanishes on P and is strictly negative on

(I × I)\P.

5 If α ∈ R\[−π
4 ,

π
4 ] then G is not positive nor negative on I× I.
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CONSTANT SIGN GREEN’S FUNCTIONS

MAXIMUM AND ANTI-MAXIMUM PRINCIPLES

Denoting as x � 0 and x ≺ 0 for x 6≡ 0 and x ≥ 0 and x ≤ 0
a.e. respectively, we arrive at the following definition

DEFINITION

Let Fλ(I) be the set of real differentiable functions f on I such
that f (−T )− f (T ) = λ.

A linear operator R : Fλ(I)→ L1(I) is said to be

1 strongly inverse positive on Fλ(I) if
Rx � 0⇒ x > 0 ∀x ∈ Fλ(I),

2 strongly inverse negative on Fλ(I) if
Rx � 0⇒ x < 0 ∀x ∈ Fλ(I).
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CONSTANT SIGN GREEN’S FUNCTIONS

MAXIMUM AND ANTI-MAXIMUM PRINCIPLES

The next corollary establishes maximum and anti-maximum
principles.

COROLLARY

The operator Rm : Fλ(I)→ Fλ(I) defined as
Rm(x(t)) = x ′(t) + m x(−t), with m ∈ R\{0}, satisfies

1 Rm is strongly inverse positive if and only if m ∈ (0, π4T ] and
λ ≥ 0,

2 Rm is strongly inverse negative if and only if m ∈ [− π
4T ,0)

and λ ≥ 0.
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CONSTANT SIGN GREEN’S FUNCTIONS

MAXIMUM AND ANTI-MAXIMUM PRINCIPLES

With these results we get the following corollary for non
constant coefficients.

COROLLARY

If b = 0, a is nonnegative on I and A(T ) 6= n π then the
following assertions are fulfilled:

If A(T ) ∈ (0, π4 ) then G1 is strictly positive on I × I.
If A(T ) ∈ (−π

4 ,0) then G1 is strictly negative on I × I.
If A(T ) = π

4 then G1 vanishes on P :=
{(−A(T ),−A(T )), (0,0), (A(T ),A(T )), (A(T ),−A(T ))} and
is strictly positive on (I × I)\P.
If A(T ) = −π

4 then G1 vanishes on P and is strictly
negative on (I × I)\P.
If A(T ) ∈ R\[−π

4 ,
π
4 ] then G1 is not positive nor negative on

I × I.
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CONSTANT SIGN GREEN’S FUNCTIONS

MAXIMUM AND ANTI-MAXIMUM PRINCIPLES

COROLLARY

If b = 0, a is nonnegative on I and A(T ) 6= n π the operator
Ra : Fλ(I)→ L1(I) defined as Ra(x(t)) = x ′(t) + a(t) x(−t)
satisfies

Ra is strongly inverse positive if and only if A(T ) ∈ (0, π4T ]
and λ ≥ 0,

Ra is strongly inverse negative if and only if
A(T ) ∈ [− π

4T ,0) and λ ≥ 0.
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CONSTANT SIGN GREEN’S FUNCTIONS

GENERAL CONSTANT SIGN PROPERTY

THEOREM

Consider the homogeneous initial value problem

x ′(t) + a(t) x(−t) + b(t) x(t) = 0, t ∈ I; x(t0) = 0.

If this problem has a unique solution (x ≡ 0) on I for all t0 ∈ I
then, if the Green’s function for

x ′(t) + a(t) x(−t) + b(t) x(t) = h(t),a. e. t ∈ I, x(−T ) = x(T ),

exists, it has constant sign.

What is more, if we further assume a + b has constant sign, the
Green’s function has the same sign as a + b.
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CONSTANT SIGN GREEN’S FUNCTIONS

GENERAL CONSTANT SIGN PROPERTY

PROOF.

Without lost of generality, consider a to be a 2T -periodic L1

function defined on R.

Assume, on the contrary, that there exists t1, s1 ∈ I such that
G1(t1, s1) = 0.
Let g be the 2T -periodic extension of G1(·, s1).Let f be the
restriction of g to (s1, s1 + 2T ). f is absolutely continuous and
satisfies

f ′(t) + a(t) f (−t) + b(t) f (t) = 0, t ∈ I; f (t1) = 0.

hence, f ≡ 0. A contradiction.
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CONSTANT SIGN GREEN’S FUNCTIONS

GENERAL CONSTANT SIGN PROPERTY

SECOND PART OF THE PROOF.
Realize now that x ≡ 1 satisfies

x ′(t) + a(t)x(−t) + b(t)x(t) = a(t) + b(t), x(−T ) = x(T ).

Hence, ∫ T
−T G1(t , s)(a(s) + b(s))ds = 1 for all t ∈ I.

Since both G1 and a + b have constant sign, they have the
same sign.
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CONSTANT SIGN GREEN’S FUNCTIONS

GENERAL CONSTANT SIGN PROPERTY

COROLLARY

Assume a has constant sign.

Under the assumption
(C1∗) be = k a, k ∈ R, |k | < 1 and, (1− k2)A(T )2 6= (n π)2 for all

n = 0,1, . . . and cos
(√

1− k2A(T )
)
6= 0.

the Green’s funciton G1 has constant sign if

|A(T )| < arccos(k)

2
√

1− k2
.

Furthermore, sign(G1) = sign(a).
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In order to prove this Corollary, we use (by means of the
change of variable to a constant coefficients equation) that the
general solution of equation

x ′(t) + a(t) x(−t) + b(t) x(t) = 0, t ∈ I.

is given by

x(t) = αe−Be(t)
{

cos
(√

1− k2A(t)
)
− 1 + k√

1− k2
sin
(√

1− k2A(t)
)}

.

Now, we study the values of A(t) for which any solution
satisfying x(t0) = 0 for some t0 ∈ I must be equals to zero.
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In this case, we use (by means of the change of variable to a
constant coefficients equation) that the general solution of
equation

x ′(t) + a(t) x(−t) + b(t) x(t) = 0, t ∈ I.

is given by

x(t) = αe−Be(t)
{

cosh
(√

k2 − 1A(t)
)
− 1 + k√

k2 − 1
sinh

(√
k2 − 1A(t)

)}
.

So, we study the values of A(t) for which any solution satisfying
x(t0) = 0 for some t0 ∈ I must be equals to zero.
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COROLLARY

Under the condition
(C3∗) be = a and A(T ) 6= 0.

the Green’s function G1 has constant sign if |A(T )| < 1
2 .
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If we consider σ defined piecewise as in previous Corollaries
we get

σ(k) :=


arccos(k)

2
√

1−k2
if k ∈ (−1,1)

1
2 if k = 1

− ln(k−
√

k2−1)

2
√

k2−1
if k > 1

We can verify that this function is not only continuous, but also
analytic!

As consequence if |A(T )| < σ(k) the Green’s function has
constant sign in I × I.
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CONSTANT SIGN GREEN’S FUNCTIONS

NONLINEAR PROBLEMS

These techniques has been used to deduce existence of
solutions for first order nonlinear boundary value problems.

1 Lower and Upper Solutions Method.

2 Monotone Iterative Techniques.

3 Degree Theory.

4 Fixed Point Theorems in Cones.

Some particular case in which the Green’s function changes its
sign has been also studied.
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