Equations with involutions

Alberto Cabada and F. Adrián F. Tojo
Department of Mathematical Analysis, University of Santiago de Compostela, Spain
alberto.cabada@usc.es

This talk is devoted to the study of the following first order functional equation, coupled with periodic boundary value conditions:

$$
x^{\prime}(t)=f(t, x(t), x(\varphi(t))), \text { for a. e. } t \in J, \quad x(\inf J)=x(\sup J) .
$$

Here function $\varphi: J \rightarrow J$ is such that $\varphi \circ \varphi=\mathrm{Id}$, and it is called an involution.
To this end, we consider the linear equation

$$
x^{\prime}(t)+a(t) x(t)+b(t) x(\varphi(t))=h(t), \text { for a. e. } t \in J, \quad x(\inf J)=x(\sup J)
$$

After constructing an equivalence between all the involution equations, we concentrate our study in the particular case of the reflection operator $\varphi(t))=-t$ and $J=[-T, T]$.

We obtain some estimations on the norm of a and b (optimal in some cases) to ensure that the linear problem has a unique solution and it has constant sign on $[-T, T]$. In this way, we automatically establish maximum and anti-maximum principles for the linear operator. In some particular situations we are able to obtain the exact expression of the Green's function.

The existence results for the nonlinear problem follow from iterative techniques and fixed point theorems in cones. In some of the given results, the Green's function is allowed to change sign on its square of definition.

References

[1] A. Cabada, A. F. Tojo: Comparison results for first order linear operators with reflection and periodic boundary value conditions. Nonlinear Anal. 78 (2013), 32-46.
[2] A. Cabada, A. F. Tojo: Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions. J. Math. Anal. Appl. 412 (2014), 529-546.
[3] D. Piao: Periodic and almost periodic solutions for differential equations with reflection of the argument. Nonlinear Anal. 57 (2004), 633-637.
[4] J. Wiener, W. Watkins: A glimpse into the wonderland of involutions. Missouri J. Math. Sci. 14 (2002), 175-185.

