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Introduction and open problem

In order to simplify the presentation we will consider the following
boundary value problem with singularity at spacial variable

u′′(t)± 1

uλ(t)
= h(t) for a. e. t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω),

where h ∈ Lp([0, ω]; R), p ≥ 1 and λ > 0.
The pioneer paper about this topic was written by A. C. Lazer and
S. Solimini and published in 1987.
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Introduction and open problem

They studied the following equations

u′′(t)− 1

uλ(t)
= h(t), (1)

u′′(t) +
1

uλ(t)
= h(t). (2)

In their original paper they proved:

1 Assume that h ∈ L([0, ω]; R) and λ ≥ 1. Then (1) has
periodic solutions if and only if h := 1

ω

∫ ω
0 h(t)dt < 0.

2 In the above theorem the assumption λ ≥ 1 is essential. In
otherwise they construed a continuous function h such that
the equation (1) has no periodic solutions.

3 Assume that h ∈ C ([0, ω]; R). Then (2) has periodic solutions
if and only if h > 0.
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Introduction and open problem

u′′(t)− 1

uλ(t)
= h(t), (1)

u′′(t) +
1

uλ(t)
= h(t). (2)

In their original paper they proved:

1 Assume that h ∈ L([0, ω]; R) and λ ≥ 1. Then (1) has
periodic solutions if and only if h := 1

ω

∫ ω
0 h(t)dt < 0.

2 In the above theorem the assumption λ ≥ 1 is essential. In
otherwise they construed a continuous function h such that
the equation (1) has no periodic solutions.

3 Assume that h ∈ C ([0, ω]; R). Then (2) has periodic solutions
if and only if h > 0.

Natural question:

Does the last result remain still valid if h ∈ L([0, ω]; R)?
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Introduction and open problem

u′′(t) +
1

uλ(t)
= h(t). (2)

The framework is the following:

Lazer and Solimini, 1987

Assume that h ∈ C ([0, ω]; R). Then (1) has periodic solutions if
and only if h > 0.

Natural question:

Does the above theorem still valid if h ∈ L([0, ω]; R)?

This is not an innocent question. In the related literature there are
many authors whom have found with this trouble.
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Introduction and open problem

u′′(t) +
1

uλ(t)
= h(t).

For instance, among other work we can cite
P. Habets, L. Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math.
Soc. 109 (1990), 1035-1044.

I. Rachunková, M. Tvrdý, I. Vrkoc, Existence of nonnegative and nonpositive solutions for second order
periodic boundary value problems, J. Differential Equations 176 (2001), 445-469.

R. Hakl, P.J. Torres, M. Zamora, Periodic solutions of singular second order differential equations: Upper
and lower functions, Nonlinear Anal. 74 (2011), 7078-7093.

I. Rachunková, S. Stanek, M. Tvrdý, Solvability of nonlinear singular problems for ordinary differential
equations, Contemp. Math. Appl. 5 (2008) Hindawi Publ. Corp., 268 pp.

In addition, we can find the above natural question as an open
problem formulated in:

R. Hakl, P.J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive
singularities, J. Differential Equations 248 (2010), 111-126.

Hakl and Zamora Workshop on Differential Equations (Malá Morávka)



Introduction and open problem

u′′(t) +
1

uλ(t)
= h(t). (2)

In this work we show an example giving answer for the open
problem

Open Problem

Prove or disprove the following conjecture: Let

h ∈ L([0, ω]; R), λ > 0.

Then the equation (2) has a positive solution if and only if h > 0.

In addition, we will show a optimal condition, which not affect to
h, in order to have periodic solvability of (2).
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Counter-Example and main results
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Counter-Example and main results

u′′(t) +
1

uλ(t)
= h(t). (2)

Theorem:

Let p ≥ 1, 0 < λ < 1
2p−1 . Then there exists h ∈ Lp([0, ω]; R) with

h > 0 such that (2) has no periodic solutions.
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Counter-Example and main results

u′′(t) +
1

uλ(t)
= h(t). (2)

Theorem:

Let p ≥ 1, 0 < λ < 1
2p−1 . Then there exists h ∈ Lp([0, ω]; R) with

h > 0 such that (2) has no periodic solutions.

Corollary:

Let 0 < λ < 1. Then there exists h ∈ L
(
[0, ω]; R

)
with h > 0 such

that (2) has no periodic solutions.
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Counter-Example and main results

u′′(t) +
1

uλ(t)
= h(t). (2)

Theorem:

Let p ≥ 1, 0 < λ < 1
2p−1 . Then there exists h ∈ Lp([0, ω]; R) with

h > 0 such that (2) has no periodic solutions.

PROOF:
Let p ≥ 1 and λ ∈

(
0, 1

2p−1

)
.
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Counter-Example and main results

PROOF:
Let p ≥ 1 and λ ∈

(
0, 1

2p−1

)
. Choose µ ∈

(
2− 1

pλ ,
1
p

)
,

ε ∈ (0, ω4 ), and put

ϕ(t) =


−t−µ for t ∈ (0, ε],

0 for t ∈
(
ε, ω2 − ε

)
,(

ω
2 − t

)−µ
for t ∈

[
ω
2 − ε,

ω
2

)
,

ϕ(t) = ϕ(ω − t),

v ′′(t) = ϕ(t), v
(ω

2

)
= 0 = v ′

(ω
2

)
.
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Counter-Example and main results

PROOF:
Let p ≥ 1 and λ ∈

(
0, 1

2p−1

)
. Choose µ ∈

(
2− 1

pλ ,
1
p

)
,

ε ∈ (0, ω4 ), and put

ϕ(t) =


−t−µ for t ∈ (0, ε],

0 for t ∈
(
ε, ω2 − ε

)
,(

ω
2 − t

)−µ
for t ∈

[
ω
2 − ε,

ω
2

)
,

ϕ(t) = ϕ(ω − t),

v ′′(t) = ϕ(t), v
(ω

2

)
= 0 = v ′

(ω
2

)
.

Notice that ϕ ∈ Lp([0, ω]; R) and

v(t) =

∫ ω
2

t

∫ ω
2

s
ϕ(ξ)dξds for t ∈ [0, ω].
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Counter-Example and main results

PROOF:
Let p ≥ 1 and λ ∈

(
0, 1

2p−1

)
. Choose µ ∈

(
2− 1

pλ ,
1
p

)
, ε ∈ (0, ω4 ).

Then:

v(t) > 0 for t ∈ [0, ω/2) ∪ (ω/2, ω] , v(ω/2) = 0,

v(0) = v(ω), v ′(0) = 0 = v ′(ω),

v(t) =
|ω/2− t|2−µ

(2− µ)(1− µ)
for t ∈

(ω
2
− ε, ω

2
+ ε
)
.

Therefore
1

vλ
∈ Lp([0, ω]; R),
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Counter-Example and main results

Since ϕ ∈ Lp([0, ω]; R), 1
vλ
∈ Lp([0, ω]; R), we can define

h ∈ Lp
(
[0, ω]; R

)
such that

h(t) = ϕ(t) +
1

vλ(t)
for a. e. t ∈ [0, ω].
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Counter-Example and main results

Since ϕ ∈ Lp([0, ω]; R), 1
vλ
∈ Lp([0, ω]; R), we can define

h ∈ Lp
(
[0, ω]; R

)
such that

h(t) = ϕ(t) +
1

vλ(t)
for a. e. t ∈ [0, ω].

Recalling that v ′′ = ϕ(t), v ∈ AC 1
(
[0, ω]; [0,+∞)

)
verifies

v ′′(t) +
1

vλ(t)
= h(t) for a. e. t ∈ [0, ω].
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Counter-Example and main results

u′′(t) +
1

uλ(t)
= h(t). (2)

Recalling that v ′′ = ϕ(t), v ∈ AC 1
(
[0, ω]; [0,+∞)

)
verifies

v ′′(t) +
1

vλ(t)
= h(t) for a. e. t ∈ [0, ω].

If w is a positive periodic solution to (2) then w ≡ v , which is a
contradiction.
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Counter-Example and main results
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Counter-Example and main results

u′′(t) +
1

uλ(t)
= h(t). (2)

Corollary:

Let 0 < λ < 1. Then there exists h ∈ L
(
[0, ω]; R

)
with h > 0 such

that (2) has no periodic solutions.

What happen when λ ≥ 1?
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Counter-Example and main results

u′′(t) +
1

uλ(t)
= h(t). (2)

Corollary:

Let 0 < λ < 1. Then there exists h ∈ L
(
[0, ω]; R

)
with h > 0 such

that (2) has no periodic solutions.

Theorem:

Let λ ≥ 1 and h ∈ L
(
[0, ω]; R

)
. Then there exists an unique

periodic solution to (2) if and only if h > 0.
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Comments and questions

u′′(t) +
1

uλ(t)
= h(t). (2)

Results when h ∈ L
(
[0, ω]; R

)
:

1 λ ∈ (0, 1)⇒ ∃h ∈ L such
that (2) has not periodic
solutions;

2 λ ≥ 1⇒ (2) has periodic
solutions.

Results when h ∈ Lp
(
[0, ω]; R

)
1 λ ∈ (0, 1/(2p − 1))⇒ ∃h ∈

Lp such that (2) has not
periodic solutions;

2 Conjecture:
λ ≥ 1/(2p − 1)⇒ (2) has
periodic solutions.

Hakl and Zamora Workshop on Differential Equations (Malá Morávka)
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Comments and questions

u′′(t) +
1

uλ(t)
= h(t). (2)

Corollary:

Let 0 < λ < 1. Then there exists h ∈ L
(
[0, ω]; R

)
with h > 0 such

that (2) has no periodic solutions.

We have seen that there exists h ∈ L
(
[0, ω]; R

)
such that all

periodic solutions to (2) have at least one zero on [0, ω].
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Comments and questions

u′′(t) +
1

uλ(t)
= h(t). (2)

Corollary:

Let 0 < λ < 1. Then there exists h ∈ L
(
[0, ω]; R

)
with h > 0 such

that (2) has no periodic solutions.

We have seen that there exists h ∈ L
(
[0, ω]; R

)
such that all

periodic solutions to (2) have at least one zero on [0, ω]. If we
admit these type of solutions, Has always the equation (2) periodic
solutions when h > 0?
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Thank you for your attention.
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