On the open problems connected to the results of Lazer and Solimini

Robert Hakl and Manuel Zamora
Institute of Mathematics AS CR (Czech Republic)
Departamento de Matemática Aplicada. Universidad de granada (Spain)

May 28-31, 2012

Introduction and open problem

Introduction and open problem

In order to simplify the presentation we will consider the following boundary value problem with singularity at spacial variable

$$
\begin{gathered}
u^{\prime \prime}(t) \pm \frac{1}{u^{\lambda}(t)}=h(t) \quad \text { for a. e. } t \in[0, \omega] \\
u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega)
\end{gathered}
$$

where $h \in L^{p}([0, \omega] ; \mathbb{R}), p \geq 1$ and $\lambda>0$.
The pioneer paper about this topic was written by A. C. Lazer and S. Solimini and published in 1987.

Introduction and open problem

They studied the following equations

$$
\begin{align*}
& u^{\prime \prime}(t)-\frac{1}{u^{\lambda}(t)}=h(t), \tag{1}\\
& u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{align*}
$$

In their original paper they proved:
(1) Assume that $h \in L([0, \omega] ; \mathbb{R})$ and $\lambda \geq 1$. Then (1) has periodic solutions if and only if $\bar{h}:=\frac{1}{\omega} \int_{0}^{\omega} h(t) d t<0$.
(2) In the above theorem the assumption $\lambda \geq 1$ is essential. In otherwise they construed a continuous function h such that the equation (1) has no periodic solutions.
(3) Assume that $h \in C([0, \omega] ; \mathbb{R})$. Then (2) has periodic solutions if and only if $\bar{h}>0$.

Introduction and open problem

$$
\begin{align*}
& u^{\prime \prime}(t)-\frac{1}{u^{\lambda}(t)}=h(t) \tag{1}\\
& u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{align*}
$$

In their original paper they proved:
(1) Assume that $h \in L([0, \omega] ; \mathbb{R})$ and $\lambda \geq 1$. Then (1) has periodic solutions if and only if $\bar{h}:=\frac{1}{\omega} \int_{0}^{\omega} h(t) d t<0$.
(2) In the above theorem the assumption $\lambda \geq 1$ is essential. In otherwise they construed a continuous function h such that the equation (1) has no periodic solutions.
(3) Assume that $h \in C([0, \omega] ; \mathbb{R})$. Then (2) has periodic solutions if and only if $\bar{h}>0$.

Natural question:

Does the last result remain still valid if $h \in L([0, \omega] ; \mathbb{R})$?

Introduction and open problem

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) . \tag{2}
\end{equation*}
$$

The framework is the following:

Lazer and Solimini, 1987

Assume that $h \in C([0, \omega] ; \mathbb{R})$. Then (1) has periodic solutions if and only if $\bar{h}>0$.

Natural question:

Does the above theorem still valid if $h \in L([0, \omega] ; \mathbb{R})$?
This is not an innocent question. In the related literature there are many authors whom have found with this trouble.

Introduction and open problem

$$
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t)
$$

For instance, among other work we can cite

- P. Habets, L. Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1035-1044.
- I. Rachunková, M. Tvrdý, I. Vrkoc, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations 176 (2001), 445-469.
- R. Hakl, P.J. Torres, M. Zamora, Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal. 74 (2011), 7078-7093.
- I. Rachunková, S. Stanek, M. Tvrdý, Solvability of nonlinear singular problems for ordinary differential equations, Contemp. Math. Appl. 5 (2008) Hindawi Publ. Corp., 268 pp.
In addition, we can find the above natural question as an open problem formulated in:
- R. Hakl, P.J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations 248 (2010), 111-126.

Introduction and open problem

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

In this work we show an example giving answer for the open problem

Open Problem

Prove or disprove the following conjecture: Let

$$
h \in L([0, \omega] ; \mathbb{R}), \quad \lambda>0
$$

Then the equation (2) has a positive solution if and only if $\bar{h}>0$.
In addition, we will show a optimal condition, which not affect to h, in order to have periodic solvability of (2).

Counter-Example and main results

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

Theorem:

Let $p \geq 1,0<\lambda<\frac{1}{2 p-1}$. Then there exists $h \in L^{p}([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) . \tag{2}
\end{equation*}
$$

Theorem:

Let $p \geq 1,0<\lambda<\frac{1}{2 p-1}$. Then there exists $h \in L^{p}([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

Theorem:

Let $p \geq 1,0<\lambda<\frac{1}{2 p-1}$. Then there exists $h \in L^{p}([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

PROOF:
Let $p \geq 1$ and $\lambda \in\left(0, \frac{1}{2 p-1}\right)$.

Counter-Example and main results

PROOF:

Let $p \geq 1$ and $\lambda \in\left(0, \frac{1}{2 p-1}\right)$. Choose $\mu \in\left(2-\frac{1}{p \lambda}, \frac{1}{p}\right)$,
$\varepsilon \in\left(0, \frac{\omega}{4}\right)$, and put

$$
\begin{gathered}
\varphi(t)=\left\{\begin{array}{ll}
-t^{-\mu} & \text { for } t \in(0, \varepsilon], \\
0 & \text { for } t \in\left(\varepsilon, \frac{\omega}{2}-\varepsilon\right), \quad \\
\left(\frac{\omega}{2}-t\right)^{-\mu} & \text { for } t \in\left[\frac{\omega}{2}-\varepsilon, \frac{\omega}{2}\right),
\end{array} \quad \varphi(t)=\varphi(\omega-t),\right. \\
v^{\prime \prime}(t)=\varphi(t), \quad v\left(\frac{\omega}{2}\right)=0=v^{\prime}\left(\frac{\omega}{2}\right) .
\end{gathered}
$$

Counter-Example and main results

PROOF:

Let $p \geq 1$ and $\lambda \in\left(0, \frac{1}{2 p-1}\right)$. Choose $\mu \in\left(2-\frac{1}{p \lambda}, \frac{1}{p}\right)$,
$\varepsilon \in\left(0, \frac{\omega}{4}\right)$, and put

$$
\begin{gathered}
\varphi(t)=\left\{\begin{array}{ll}
-t^{-\mu} & \text { for } t \in(0, \varepsilon], \\
0 & \text { for } t \in\left(\varepsilon, \frac{\omega}{2}-\varepsilon\right), \quad \\
\left(\frac{\omega}{2}-t\right)^{-\mu} & \text { for } t \in\left[\frac{\omega}{2}-\varepsilon, \frac{\omega}{2}\right),
\end{array} \quad \varphi(t)=\varphi(\omega-t),\right. \\
v^{\prime \prime}(t)=\varphi(t), \quad v\left(\frac{\omega}{2}\right)=0=v^{\prime}\left(\frac{\omega}{2}\right) .
\end{gathered}
$$

Notice that $\varphi \in L^{p}([0, \omega] ; \mathbb{R})$ and

$$
v(t)=\int_{t}^{\frac{\omega}{2}} \int_{s}^{\frac{\omega}{2}} \varphi(\xi) d \xi d s \quad \text { for } t \in[0, \omega] .
$$

Counter-Example and main results

PROOF:
Let $p \geq 1$ and $\lambda \in\left(0, \frac{1}{2 p-1}\right)$. Choose $\mu \in\left(2-\frac{1}{p \lambda}, \frac{1}{p}\right), \varepsilon \in\left(0, \frac{\omega}{4}\right)$. Then:

$$
\begin{array}{cc}
v(t)>0 \quad \text { for } t \in[0, \omega / 2) \cup(\omega / 2, \omega], \quad v(\omega / 2)=0, \\
& v(0)=v(\omega), \quad v^{\prime}(0)=0=v^{\prime}(\omega), \\
v(t)=\frac{|\omega / 2-t|^{2-\mu}}{(2-\mu)(1-\mu)} \quad \text { for } t \in\left(\frac{\omega}{2}-\varepsilon, \frac{\omega}{2}+\varepsilon\right) .
\end{array}
$$

Therefore

$$
\frac{1}{v^{\lambda}} \in L^{p}([0, \omega] ; \mathbb{R})
$$

Counter-Example and main results

Since $\varphi \in L^{p}([0, \omega] ; \mathbb{R}), \frac{1}{v^{\lambda}} \in L^{p}([0, \omega] ; \mathbb{R})$, we can define $h \in L^{p}([0, \omega] ; \mathbb{R})$ such that

$$
h(t)=\varphi(t)+\frac{1}{v^{\lambda}(t)} \quad \text { for a. e. } t \in[0, \omega] .
$$

Counter-Example and main results

Since $\varphi \in L^{P}([0, \omega] ; \mathbb{R})$, $\frac{1}{v^{\lambda}} \in L^{p}([0, \omega] ; \mathbb{R})$, we can define $h \in L^{p}([0, \omega] ; \mathbb{R})$ such that

$$
h(t)=\varphi(t)+\frac{1}{v^{\lambda}(t)} \quad \text { for a. e. } t \in[0, \omega] .
$$

Recalling that $v^{\prime \prime}=\varphi(t), v \in A C^{1}([0, \omega] ;[0,+\infty))$ verifies

$$
v^{\prime \prime}(t)+\frac{1}{v^{\lambda}(t)}=h(t) \quad \text { for a. e. } t \in[0, \omega] .
$$

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

Recalling that $v^{\prime \prime}=\varphi(t), v \in A C^{1}([0, \omega] ;[0,+\infty))$ verifies

$$
v^{\prime \prime}(t)+\frac{1}{v^{\lambda}(t)}=h(t) \quad \text { for a. e. } t \in[0, \omega]
$$

If w is a positive periodic solution to (2) then $w \equiv v$, which is a contradiction.

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) . \tag{2}
\end{equation*}
$$

Theorem:

Let $p \geq 1,0<\lambda<\frac{1}{2 p-1}$. Then there exists $h \in L^{p}([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

What happen when $\lambda \geq 1$?

Counter-Example and main results

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Theorem:

Let $\lambda \geq 1$ and $h \in L([0, \omega] ; \mathbb{R})$. Then there exists an unique periodic solution to (2) if and only if $\bar{h}>0$.

Comments and questions

Comments and questions

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) . \tag{2}
\end{equation*}
$$

Results when $h \in L([0, \omega] ; \mathbb{R})$:
(1) $\lambda \in(0,1) \Rightarrow \exists h \in L$ such that (2) has not periodic solutions;
(2) $\lambda \geq 1 \Rightarrow$ (2) has periodic solutions.

Results when $h \in L^{p}([0, \omega] ; \mathbb{R})$
(1) $\lambda \in(0,1 /(2 p-1)) \Rightarrow \exists h \in$ L^{p} such that (2) has not periodic solutions;
(2) Conjecture:
$\lambda \geq 1 /(2 p-1) \Rightarrow(2)$ has periodic solutions.

Comments and questions

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) . \tag{2}
\end{equation*}
$$

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

Comments and questions

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) \tag{2}
\end{equation*}
$$

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

We have seen that there exists $h \in L([0, \omega] ; \mathbb{R})$ such that all periodic solutions to (2) have at least one zero on $[0, \omega]$.

Comments and questions

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{1}{u^{\lambda}(t)}=h(t) . \tag{2}
\end{equation*}
$$

Corollary:

Let $0<\lambda<1$. Then there exists $h \in L([0, \omega] ; \mathbb{R})$ with $\bar{h}>0$ such that (2) has no periodic solutions.

We have seen that there exists $h \in L([0, \omega] ; \mathbb{R})$ such that all periodic solutions to (2) have at least one zero on $[0, \omega]$. If we admit these type of solutions, Has always the equation (2) periodic solutions when $\bar{h}>0$?

Thank you for your attention.

