On the open problems connected to the results of Lazer and Solimini

Robert Hakl and Manuel Zamora

Institute of Mathematics AS CR (Czech Republic)

Departamento de Matemática Aplicada. Universidad de granada (Spain)

May 28-31, 2012

Hakl and Zamora Workshop on Differential Equations (Malá Morávka)

In order to simplify the presentation we will consider the following boundary value problem with singularity at spacial variable

$$egin{aligned} u''(t)\pmrac{1}{u^\lambda(t)}&=h(t)\qquad ext{for a. e. }t\in[0,\omega],\ u(0)&=u(\omega),\qquad u'(0)&=u'(\omega), \end{aligned}$$

where $h \in L^{p}([0, \omega]; \mathbb{R})$, $p \geq 1$ and $\lambda > 0$.

The pioneer paper about this topic was written by A. C. Lazer and S. Solimini and published in 1987.

They studied the following equations

$$u''(t) - \frac{1}{u^{\lambda}(t)} = h(t),$$
 (1)

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

In their original paper they proved:

- Assume that $h \in L([0, \omega]; \mathbb{R})$ and $\lambda \ge 1$. Then (1) has periodic solutions if and only if $\overline{h} := \frac{1}{\omega} \int_0^{\omega} h(t) dt < 0$.
- In the above theorem the assumption λ ≥ 1 is essential. In otherwise they construed a continuous function h such that the equation (1) has no periodic solutions.

$$u''(t) - \frac{1}{u^{\lambda}(t)} = h(t),$$
(1)
$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
(2)

In their original paper they proved:

- Assume that $h \in L([0, \omega]; \mathbb{R})$ and $\lambda \ge 1$. Then (1) has periodic solutions if and only if $\overline{h} := \frac{1}{\omega} \int_0^{\omega} h(t) dt < 0$.
- In the above theorem the assumption λ ≥ 1 is essential. In otherwise they construed a continuous function h such that the equation (1) has no periodic solutions.

Natural question:

Does the last result remain still valid if $h \in L([0, \omega]; \mathbb{R})$?

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

The framework is the following:

Lazer and Solimini, 1987

Assume that $h \in C([0, \omega]; \mathbb{R})$. Then (1) has periodic solutions if and only if $\overline{h} > 0$.

Natural question:

Does the above theorem still valid if $h \in L([0, \omega]; \mathbb{R})$?

This is not an innocent question. In the related literature there are many authors whom have found with this trouble.

$$u''(t)+\frac{1}{u^{\lambda}(t)}=h(t).$$

For instance, among other work we can cite

- P. Habets, L. Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1035-1044.
- I. Rachunková, M. Tvrdý, I. Vrkoc, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations 176 (2001), 445-469.
- R. Hakl, P.J. Torres, M. Zamora, Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal. 74 (2011), 7078-7093.
- I. Rachunková, S. Stanek, M. Tvrdý, Solvability of nonlinear singular problems for ordinary differential equations, Contemp. Math. Appl. 5 (2008) Hindawi Publ. Corp., 268 pp.

In addition, we can find the above natural question as an open problem formulated in:

 R. Hakl, P.J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations 248 (2010), 111-126.

イロト イポト イヨト イヨト

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

In this work we show an example giving answer for the open problem

Open Problem

Prove or disprove the following conjecture: Let

$$h \in L([0, \omega]; \mathbb{R}), \qquad \lambda > 0.$$

Then the equation (2) has a positive solution if and only if $\overline{h} > 0$.

In addition, we will show a optimal condition, which not affect to h, in order to have periodic solvability of (2).

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Theorem:

Let $p \ge 1$, $0 < \lambda < \frac{1}{2p-1}$. Then there exists $h \in L^p([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Theorem:

Let $p \ge 1$, $0 < \lambda < \frac{1}{2p-1}$. Then there exists $h \in L^p([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Theorem:

Let $p \ge 1$, $0 < \lambda < \frac{1}{2p-1}$. Then there exists $h \in L^p([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

PROOF: Let $p \ge 1$ and $\lambda \in \left(0, \frac{1}{2p-1}\right)$.

PROOF:
Let
$$p \ge 1$$
 and $\lambda \in \left(0, \frac{1}{2p-1}\right)$. Choose $\mu \in \left(2 - \frac{1}{p\lambda}, \frac{1}{p}\right)$, $\varepsilon \in \left(0, \frac{\omega}{4}\right)$, and put

$$\varphi(t) = \begin{cases} -t^{-\mu} & \text{for } t \in (0, \varepsilon], \\ 0 & \text{for } t \in (\varepsilon, \frac{\omega}{2} - \varepsilon), \\ \left(\frac{\omega}{2} - t\right)^{-\mu} & \text{for } t \in \left[\frac{\omega}{2} - \varepsilon, \frac{\omega}{2}\right), \\ v''(t) = \varphi(t), \quad v\left(\frac{\omega}{2}\right) = 0 = v'\left(\frac{\omega}{2}\right). \end{cases}$$

PROOF:
Let
$$p \ge 1$$
 and $\lambda \in \left(0, \frac{1}{2p-1}\right)$. Choose $\mu \in \left(2 - \frac{1}{p\lambda}, \frac{1}{p}\right)$, $\varepsilon \in \left(0, \frac{\omega}{4}\right)$, and put

$$arphi(t) = egin{cases} -t^{-\mu} & ext{for } t \in (0, arepsilon], \ 0 & ext{for } t \in (arepsilon, rac{\omega}{2} - arepsilon), & arphi(t) = arphi(\omega - t), \ \left(rac{\omega}{2} - t
ight)^{-\mu} & ext{for } t \in \left[rac{\omega}{2} - arepsilon, rac{\omega}{2}
ight), \ v''(t) = arphi(t), & v\left(rac{\omega}{2}
ight) = 0 = v'\left(rac{\omega}{2}
ight). \end{cases}$$

Notice that $\varphi \in L^p([0, \omega]; \mathbb{R})$ and

$$v(t) = \int_t^{rac{\omega}{2}} \int_s^{rac{\omega}{2}} arphi(\xi) d\xi ds \qquad ext{for } t\in [0,\omega].$$

PROOF: Let $p \ge 1$ and $\lambda \in \left(0, \frac{1}{2p-1}\right)$. Choose $\mu \in \left(2 - \frac{1}{p\lambda}, \frac{1}{p}\right)$, $\varepsilon \in (0, \frac{\omega}{4})$. Then:

$$egin{aligned} & \mathsf{v}(t) > 0 & ext{ for } t \in [0, \omega/2) \cup (\omega/2, \omega] \,, & \mathsf{v}(\omega/2) = 0, \ & \mathsf{v}(0) = \mathsf{v}(\omega), & \mathsf{v}'(0) = 0 = \mathsf{v}'(\omega), \ & \mathsf{v}(t) = rac{|\omega/2 - t|^{2-\mu}}{(2-\mu)(1-\mu)} & ext{ for } t \in \left(rac{\omega}{2} - arepsilon, rac{\omega}{2} + arepsilon
ight). \end{aligned}$$

Therefore

$$rac{1}{v^{\lambda}}\in L^p([0,\omega];\mathbb{R}),$$

4 3 b

3

Since $\varphi \in L^p([0,\omega]; \mathbb{R})$, $\frac{1}{v^{\lambda}} \in L^p([0,\omega]; \mathbb{R})$, we can define $h \in L^p([0,\omega]; \mathbb{R})$ such that

$$h(t)=arphi(t)+rac{1}{v^\lambda(t)}$$
 for a. e. $t\in [0,\omega].$

• = • •

Since $\varphi \in L^{p}([0, \omega]; \mathbb{R})$, $\frac{1}{v^{\lambda}} \in L^{p}([0, \omega]; \mathbb{R})$, we can define $h \in L^{p}([0, \omega]; \mathbb{R})$ such that

$$h(t)=arphi(t)+rac{1}{v^{\lambda}(t)}$$
 for a. e. $t\in [0,\omega].$

Recalling that $v'' = \varphi(t)$, $v \in AC^1([0,\omega]; [0,+\infty))$ verifies

$$v''(t)+rac{1}{v^\lambda(t)}=h(t)\qquad ext{for a. e. }t\in[0,\omega].$$

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Recalling that $v'' = \varphi(t)$, $v \in AC^1([0,\omega]; [0,+\infty))$ verifies

$$v''(t)+rac{1}{v^{\lambda}(t)}=h(t)$$
 for a. e. $t\in [0,\omega].$

If w is a positive periodic solution to (2) then $w \equiv v$, which is a contradiction.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Theorem:

Let $p \ge 1$, $0 < \lambda < \frac{1}{2p-1}$. Then there exists $h \in L^p([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

What happen when $\lambda \geq 1$?

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

Theorem:

Let $\lambda \geq 1$ and $h \in L([0, \omega]; \mathbb{R})$. Then there exists an unique periodic solution to (2) if and only if $\overline{h} > 0$.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Results when $h \in L([0, \omega]; \mathbb{R})$:

- λ ∈ (0,1) ⇒ ∃h ∈ L such that (2) has not periodic solutions;
- 3 $\lambda \ge 1 \Rightarrow (2)$ has periodic solutions.

Results when $h \in L^p([0, \omega]; \mathbb{R})$

- $\lambda \in (0, 1/(2p-1)) \Rightarrow \exists h \in L^p$ such that (2) has not periodic solutions;
- Conjecture: $\lambda \ge 1/(2p-1) \Rightarrow (2)$ has periodic solutions.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

∃ >

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

We have seen that there exists $h \in L([0, \omega]; \mathbb{R})$ such that all periodic solutions to (2) have at least one zero on $[0, \omega]$.

$$u''(t) + \frac{1}{u^{\lambda}(t)} = h(t).$$
 (2)

Corollary:

Let $0 < \lambda < 1$. Then there exists $h \in L([0, \omega]; \mathbb{R})$ with $\overline{h} > 0$ such that (2) has no periodic solutions.

We have seen that there exists $h \in L([0, \omega]; \mathbb{R})$ such that all periodic solutions to (2) have at least one zero on $[0, \omega]$. If we admit these type of solutions, Has always the equation (2) periodic solutions when $\overline{h} > 0$?

Thank you for your attention.