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Valveless pumping

Valveless pumping

assists in fluid transport in various biomedical and engineering systems

no valves are present to regulate the flow direction

fluid pumping efficiency of a valveless system is not necessarily lower
than that having valves

many fluid-dynamical systems in nature and engineering more or less
rely upon valveless pumping to transport the working fluids therein

blood circulation in the cardiovascular system is maintained to some
extent even when the heart’s valves fail

the embryonic vertebrate heart begins pumping blood long before the
development of discernable chambers and valves

in microfluidics, valveless impedance pump have been fabricated, and
are expected to be particularly suitable for handling sensitive biofluids.



Valveless pumping

Flow configurations with rigid pipes and tanks

cross sections of the pipes are small
in comparison to cross sections of tanks

w , w1, w2 are flow velocities

(a)–(c): pressure p outside a massless
and frictionless piston is forced

(d): level height h0 in the middle tank
is forced



Valveless pumping (1 tank - 1 pipe model)

G. Propst : Pumping effects in models of periodically forced flow configurations.
Physica D 217 (2006), 193–201.

ρ . . . density of the liquid (constant)
p(t) . . . periodic pressure
g . . . acceleration of gravity
r0 . . . friction coefficient
ζ . . . junction coefficient
AT /AP . . . cross sections of pipe/tank
V0 . . . constant total volume of liquid
w = −u ′ . . . velocity in the pipe

AP u(t) + AT h(t) ≡ V0 =⇒ h(t) ≡
1

AT

�
V0−AP u(t)

�
.

Momentum balance with Poiseuille’s law and Bernoulli’s equation



Poiseuille’s Law

In the case
of smooth flow of uniform liquids
(Newtonian fluids) without turbulences,

the volume flowrate w is given by
the pressure difference P1−P2
divided by the viscous resistance R.

R = 8 η L
π r4 ,

η=viscosity, r=radius, L=length

w =
π (P1 − P2) r4

8 η L
(w = volume flowrate)

tube friction = P2 − P1 = −r0 w L (r0 = friction coefficient)



Poiseuille’s Law

In the case
of smooth flow of uniform liquids
(Newtonian fluids) without turbulences,

the volume flowrate w is given by
the pressure difference P1−P2
divided by the viscous resistance R.

R = 8 η L
π r4 ,

η=viscosity, r=radius, L=length

w =
π (P1 − P2) r4

8 η L
(w = volume flowrate)

tube friction = P2 − P1 = −r0 w L (r0 = friction coefficient)



Poiseuille’s Law

In the case
of smooth flow of uniform liquids
(Newtonian fluids) without turbulences,

the volume flowrate w is given by
the pressure difference P1−P2
divided by the viscous resistance R.

R = 8 η L
π r4 ,

η=viscosity, r=radius, L=length

w =
π (P1 − P2) r4

8 η L
(w = volume flowrate)

tube friction = P2 − P1 = −r0 w L (r0 = friction coefficient)



Bernoulli’s Equation
is a statement of the conservation of energy principle appropriate for flowing fluids.

The lowering of pressure in a constriction of a flow path is understandable when
we consider pressure to be energy density:
kinetic energy must increase at the expense of pressure energy. (Bernoulli effect).

Energy per unit volume before = Energy per unit volume after

P1 +
1

2
ρ w2

1 + ρ g h1 = P2 +
1

2
ρ w2

2 + ρ g h2z }| {
pressure

z }| {
kinetic

z }| {
potential

Flow velocity Flow velocity
w1 w2

P1

P2
increased fluid speed

decreased internal pressure

w2 > w1

P2 < P1



Bernoulli’s Equation
is a statement of the conservation of energy principle appropriate for flowing fluids.

The lowering of pressure in a constriction of a flow path is understandable when
we consider pressure to be energy density:
kinetic energy must increase at the expense of pressure energy. (Bernoulli effect).

Energy per unit volume before = Energy per unit volume after

P1 +
1

2
ρ w2

1 = P2 + ρ g h2

P2 − P1 =
1

2
ρ w2

1 − ρ g h2

Flow velocity Flow velocity
w1 0

h1 = 0
w2 = 0



Valveless pumping (1 tank - 1 pipe model)
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Momentum balance with Poiseuille’s law and Bernoulli’s equation

(time derivative of the momentum of the mass of water in the pipe between piston and the tank
equals the sum of the forces acting on it:
pressure+hydrostatic pressure at the bottom of tank + tube friction + pressure loss due the
junction pipe/tube) =⇒

ρ (u(t) w(t)) ′ = p(t)− ρ g h(t)− r0 u(t) w(t) +
1

2
ζ (w(t))2,

i.e.
u u ′′ + a u u ′ + b (u ′)2 + s u = e(t),

where
T > 0, a =

r0

ρ
> 0, b =

�
1 +

ζ

2

�
≥ 3/2,

e(t) =
g V0

AT
−

p(t)

ρ
is T − periodic, 0 < s =

g Ap

AT
< 1.
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Results

This leads to singular periodic problem:

(∗) u ′′ + a u ′ = h(t , u, u ′), u(0) = u(T ), u ′(0) = u ′(T ) ,

where

h(t , x , y) =
1
x

(
e(t)−b y2)− s ,

h
T > 0, a =

r 0

ρ
> 0, b =

�
1 +

ζ

2

�
≥ 3/2, 0 < s =

g Ap

AT
< 1, e(t)=

g V0

AT
−

p(t)

ρ

i
.

Multiplying the equation by u and integrating over [0, T ] gives

THEOREM 1

(*) has a positive solution only if e≥0 (i.e. p≤ ρ g V0
AT

) .

CLAIM
Assume : a > 0, e∈L∞[0, T ], inf ess e > 0, b≥1, 0 < s < 1.

Then : (*) has a positive solution for a sufficiently large provided that
for an arbitrary interval [r , R]⊂ (0,∞), the number of T -periodic solutions
between r and R is finite.
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Proof: Step 1

(∗) u ′′+a u ′ =
1
u

(
e(t)−b (u ′)2)− s , u(0) = u(T ), u ′(0) = u ′(T ),�

T > 0, a > 0, b≥ 3/2, e is T -periodic and continuous and 0 < s < 1
�

Put µ= 1/(b+1) and u = x µ. Then b = 1
µ −1,

u ′ = µ xµ−1 x ′, u ′′ = µ xµ−1 x ′′+µ (µ−1) xµ−1 (x ′)2

coefficient by
(x ′)2

x
equals −µ xµ−1

(
b µ+µ−1

)
= 0 and (*) reduces to

(P) x ′′+ a x ′+ q x = f (t , x), x(0) = x(T ), x ′(0) = x ′(T ) ,

where f (t , x) = q x +
1
µ

(
e(t) x1−2 µ−s x1−µ

)
, q > 0 arbitrary .

Lemma 1
u is a [positive solution of (*) iff x(t)= (u(t))1/µ is a positive solution of (P).

Notice: 1−µ> 1−2 µ≥0 !!!
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Proof: Step 2

p∈R, q > 0, CT =
�

y ∈ C2[0, T ] : y(0)= y(T ), y ′(0)= y ′(T )
	

,

L : y ∈ CT ⊂C[0, T ] → y ′′ + p y ′ + q y ∈ C[0, T ]

LEMMA 2 [Omari & Trombetta, 1992]

Let p, q ∈R, 0 < q≤
�

π
T

�2
+
� p

2

�2. Then the operator L is inverse nonnegative, i.e.

y ′′ + p y ′ + q y ≥ 0

y(0)= y(T ), y ′(0)= y ′(T )

)
⇒ y ≥ 0 .

COROLLARY

Let p = a, 0 < q≤
�

π
T

�2
+
� a

2

�2. Then the operator L has a bounded nonnegative inverse

L−1 : C[0, T ] → CT ⊂C[0, T ], i.e. L−1f ≥ 0 on [0, T ] for f ≥ 0 on [0, T ] .

Moreover, the operator

F : x ∈ C[0, T ] → (Fx)(t) = L−1(f (t , x(t))) ∈ C[0, T ]

is completely continuous and x is a solution to (P) iff it is a solution to F x = x .
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Proof: Step 3
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min e > 0⇒∃R > r > 0 such that f (t , R) < 0 < f (t , r) for all t ∈ [0, T ],
i.e. F (r) < r , F (R) > R.

a > 0 sufficiently large ⇒ operator F is nondecreasing on [r , R].

By Torres (MJM 2004) this completes the proof.
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Result

(P) x ′′ + a x ′ + q(t) x = f (t , x), x(0) = x(T ), x ′(0) = x ′(T ) ,

where

f (t , x)= q(t) x +
�

r(t) xα−s(t) xβ
�

.

THEOREM 2
Assume : q, r , s∈C([0, T ], [0,∞)), r̄ > 0, q̄ > 0,

q≤
(

π
T

)2
+

(
a
2

)2
, 0 <α < β.

Then : (P) has a positive solution for a sufficiently large provided that
for an arbitrary interval [r , R]⊂ (0,∞), the number of T -periodic solutions
between r and R is finite..

LEMMA [Ortega & Amine, 1994]

Assume : σ1 and σ2 is a reversely ordered pair of strict lower and an upper
functions of (P).

Then : the existence of a unique asymptotically stable T –periodic solution
x such that σ2 < x < σ1 is guaranteed provided there is γ ∈ C[0, T ] such that

γ ≥ 0, γ̄ > 0 and
∂f (t , x)

∂ x
≥ γ(t) for t ∈ [0, T ] and x ∈ [σ2(t), σ1(t)].
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Rresult

(∗) u ′′ +
r 0

ρ
u ′ = h(t , u, u ′), u(0) = u(T ), u ′(0) = u ′(T ) ,

where

h(t , x , y) =
1
x

((g V0

AT
− p(t)

ρ

)
−

(
1 +

ζ

2

)
y2

)
−

g Ap

AT
,

COROLLARY

Assume : min p <ρ
g V0

AT
.

Then : (*) has a positive solution for
r 0

ρ
sufficiently large.
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