On Vallée-Poussin type conditions for positivity of solutions to the Darboux problem for hyperbolic functional-differential equations

Alexander Lomtatidze, Jiří Šremr

Matematický ústav AV ČR, v.v.i.

On the rectangle $\mathbb{D}=[a, b] \times[c, d]$ we consider the equation

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

$\triangleright p, q: \mathbb{D} \rightarrow \mathbb{R}$ integrable
$\triangleright \tau: \mathbb{D} \rightarrow[a, b], \mu: \mathbb{D} \rightarrow[c, d]$ measurable

On the rectangle $\mathbb{D}=[a, b] \times[c, d]$ we consider the equation

$$
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x)
$$

$\triangleright p, q: \mathbb{D} \rightarrow \mathbb{R}$ integrable
$\triangleright \tau: \mathbb{D} \rightarrow[a, b], \mu: \mathbb{D} \rightarrow[c, d]$ measurable

Solution: A function $u: \mathbb{D} \rightarrow \mathbb{R}$ absolutely continuous on \mathbb{D} in the sense of Carathéodory satisfying equality (1) almost everywhere in \mathbb{D}.

On the rectangle $\mathbb{D}=[a, b] \times[c, d]$ we consider the equation

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

$\triangleright p, q: \mathbb{D} \rightarrow \mathbb{R}$ integrable
$\triangleright \tau: \mathbb{D} \rightarrow[a, b], \mu: \mathbb{D} \rightarrow[c, d]$ measurable

Solution: A function $u: \mathbb{D} \rightarrow \mathbb{R}$ absolutely continuous on \mathbb{D} in the sense of Carathéodory satisfying equality (1) almost everywhere in \mathbb{D}.

We cannot pass between equation (1) and the wave equation

$$
u_{t t}^{\prime \prime}(t, x)-u_{x x}^{\prime \prime}(t, x)=\tilde{p}(t, x) u(\tilde{\tau}(t, x), \tilde{\mu}(t, x))+\tilde{q}(t, x) .
$$

Consider now, on the interval $[a, b]$, the n-dimensional system of linear ordinary differential equations

$$
\begin{equation*}
v^{\prime}=P(t) v+q(t) \tag{2}
\end{equation*}
$$

Consider now, on the interval $[a, b]$, the n-dimensional system of linear ordinary differential equations

$$
\begin{equation*}
v^{\prime}=P(t) v+q(t) \tag{2}
\end{equation*}
$$

It is well known that every solution v to system (2) admits the representation

$$
v(t)=C\left(t, t_{0}\right) v\left(t_{0}\right)+\int_{t_{0}}^{t} C(t, s) q(s) \mathrm{d} s \quad \text { for } t \in[a, b]
$$

where $t_{0} \in[a, b]$ and C is the Cauchy matrix of the system $v^{\prime}=P(t) v$, i. e., for every $t_{0} \in[a, b], C\left(\cdot, t_{0}\right)$ is a fundamental matrix of the system $v^{\prime}=P(t) v$, which satisfies $C\left(t_{0}, t_{0}\right)=E_{n}$.

Consider now, on the interval $[a, b]$, the n-dimensional system of linear ordinary differential equations

$$
\begin{equation*}
v^{\prime}=P(t) v+q(t) \tag{2}
\end{equation*}
$$

It is well known that every solution v to system (2) admits the representation

$$
v(t)=C\left(t, t_{0}\right) v\left(t_{0}\right)+\int_{t_{0}}^{t} C(t, s) q(s) \mathrm{d} s \quad \text { for } t \in[a, b]
$$

where $t_{0} \in[a, b]$ and C is the Cauchy matrix of the system $v^{\prime}=P(t) v$, i. e., for every $t_{0} \in[a, b], C\left(\cdot, t_{0}\right)$ is a fundamental matrix of the system $v^{\prime}=P(t) v$, which satisfies $C\left(t_{0}, t_{0}\right)=E_{n}$.

Remark. If $n=1$ then, for every $t_{0} \in[a, b], C\left(\cdot, t_{0}\right)$ is a solution to the problem

$$
v^{\prime}=P(t) v, \quad v\left(t_{0}\right)=1
$$

Indeed, we have

$$
C(t, s)=\mathrm{e}^{\int_{s}^{t} P(\xi) \mathrm{d} \xi} \quad \text { for } t, s \in[a, b]
$$

in this case.

$$
u_{t x}^{\prime \prime}=p(t, x) u+q(t, x)
$$

Every solution u to the equation (1^{\prime}) admits the representation

$$
\begin{aligned}
u(t, x)= & Z_{t, x}(a, c) u(a, c)+\int_{a}^{t} Z_{t, x}(s, c) u_{s}^{\prime}(s, c) \mathrm{d} s+ \\
& +\int_{c}^{x} Z_{t, x}(a, \eta) u_{\eta}^{\prime}(a, \eta) \mathrm{d} \eta+\int_{a}^{t} \int_{c}^{x} Z_{t, x}(s, \eta) q(s, \eta) \mathrm{d} \eta \mathrm{~d} s
\end{aligned}
$$

for $(t, x) \in \mathbb{D}$, where $Z_{t, x}$ are the Riemann functions of the equation $u_{t x}^{\prime \prime}=p(t, x) u$.

$$
u_{t x}^{\prime \prime}=p(t, x) u+q(t, x)
$$

Every solution u to the equation (1^{\prime}) admits the representation

$$
\begin{aligned}
u(t, x)= & Z_{t, x}(a, c) u(a, c)+\int_{a}^{t} Z_{t, x}(s, c) u_{s}^{\prime}(s, c) \mathrm{d} s+ \\
& +\int_{c}^{x} Z_{t, x}(a, \eta) u_{\eta}^{\prime}(a, \eta) \mathrm{d} \eta+\int_{a}^{t} \int_{c}^{x} Z_{t, x}(s, \eta) q(s, \eta) \mathrm{d} \eta \mathrm{~d} s
\end{aligned}
$$

for $(t, x) \in \mathbb{D}$, where $Z_{t, x}$ are the Riemann functions of the equation $u_{t x}^{\prime \prime}=p(t, x) u$.

The Riemann function $Z_{t_{0}, x_{0}}$ is defined as a solution to the Darboux problem

$$
\begin{gathered}
u_{t x}^{\prime \prime}=p(t, x) u \\
u\left(t, x_{0}\right)=1 \quad \text { for } t \in[a, b], \quad u\left(t_{0}, x\right)=1 \quad \text { for } x \in[c, d] .
\end{gathered}
$$

$$
\begin{aligned}
u(t, x)= & Z_{t, x}(a, c) u(a, c)+\int_{a}^{t} Z_{t, x}(s, c) u_{s}^{\prime}(s, c) \mathrm{d} s+ \\
& +\int_{c}^{x} Z_{t, x}(a, \eta) u_{\eta}^{\prime}(a, \eta) \mathrm{d} \eta+\int_{a}^{t} \int_{c}^{x} Z_{t, x}(s, \eta) q(s, \eta) \mathrm{d} \eta \mathrm{~d} s
\end{aligned}
$$

Proposition

Let

$$
\begin{equation*}
Z_{t, x}(s, \eta) \geq 0 \quad \text { for } a \leq s \leq t \leq b, c \leq \eta \leq x \leq d \tag{*}
\end{equation*}
$$

Then the implication

$$
\left.\begin{array}{l}
w \in A C(\mathbb{D}), \\
w_{t x}^{\prime \prime}(t, x) \geq p(t, x) w(t, x) \text { for a. e. }(t, x) \in \mathbb{D}, \\
w(a, c) \geq 0, \\
w_{t}^{\prime}(t, c) \geq 0 \text { for a.e. } t \in[a, b], \\
w_{x}^{\prime}(a, x) \geq 0 \text { for a. e. } x \in[c, d]
\end{array}\right\} \Longrightarrow w(t, x) \geq 0 \text { for }(t, x) \in \mathbb{D}
$$

holds.

Let $\left(t_{0}, x_{0}\right) \in \mathbb{D}$. On $\left[a, t_{0}\right] \times\left[c, x_{0}\right]$ we consider the Darboux problem

$$
\begin{array}{cc}
u_{t x}=-k u & (k \geq 0) \\
u\left(t, x_{0}\right)=1 \quad \text { for } t \in[a, b], & u\left(t_{0}, x\right)=1 \quad \text { for } x \in[c, d] \tag{4}
\end{array}
$$

Let $\left(t_{0}, x_{0}\right) \in \mathbb{D}$. On $\left[a, t_{0}\right] \times\left[c, x_{0}\right]$ we consider the Darboux problem

$$
\begin{align*}
& u_{t x}=-k u \quad(k \geq 0) \tag{3}\\
& u\left(t, x_{0}\right)=1 \quad \text { for } t \in[a, b], \quad u\left(t_{0}, x\right)=1 \quad \text { for } x \in[c, d] \tag{4}
\end{align*}
$$

If u is looked for in the form $u(t, x)=v(z)$, where $z=\sqrt{\left(t_{0}-t\right)\left(x_{0}-x\right)}$, then (3), (4) is reduced to

$$
\begin{equation*}
v^{\prime \prime}(z)+\frac{1}{z} v^{\prime}(z)+4 k v(z)=0, \quad v(0)=1 \tag{5}
\end{equation*}
$$

on the interval $\left[0, \sqrt{\left(t_{0}-a\right)\left(x_{0}-c\right)}\right]$, which has a solution

$$
v(z)=J_{0}(2 \sqrt{k} z)
$$

Let $\left(t_{0}, x_{0}\right) \in \mathbb{D}$. On $\left[a, t_{0}\right] \times\left[c, x_{0}\right]$ we consider the Darboux problem

$$
\begin{align*}
& u_{t x}=-k u \quad(k \geq 0) \tag{3}\\
& u\left(t, x_{0}\right)=1 \quad \text { for } t \in[a, b], \quad u\left(t_{0}, x\right)=1 \quad \text { for } x \in[c, d] \tag{4}
\end{align*}
$$

The Riemann function $Z_{t_{0}, x_{0}}$ of the equation (3) satisfies

$$
Z_{t_{0}, x_{0}}(t, x)=J_{0}\left(2 \sqrt{k\left(t_{0}-t\right)\left(x_{0}-x\right)}\right) \quad \text { for }(t, x) \in\left[a, t_{0}\right] \times\left[c, x_{0}\right]
$$

Let $\left(t_{0}, x_{0}\right) \in \mathbb{D}$. On $\left[a, t_{0}\right] \times\left[c, x_{0}\right]$ we consider the Darboux problem

$$
\begin{align*}
& u_{t x}=-k u \quad(k \geq 0) \tag{3}\\
& u\left(t, x_{0}\right)=1 \quad \text { for } t \in[a, b], \quad u\left(t_{0}, x\right)=1 \quad \text { for } x \in[c, d] \tag{4}
\end{align*}
$$

The Riemann function $Z_{t_{0}, x_{0}}$ of the equation (3) satisfies

$$
Z_{t_{0}, x_{0}}(t, x)=J_{0}\left(2 \sqrt{k\left(t_{0}-t\right)\left(x_{0}-x\right)}\right) \quad \text { for }(t, x) \in\left[a, t_{0}\right] \times\left[c, x_{0}\right]
$$

Therefore, the condition (*) holds, i.e.,

$$
\begin{equation*}
Z_{t, x}(s, \eta) \geq 0 \quad \text { for } a \leq s \leq t \leq b, c \leq \eta \leq x \leq d \tag{*}
\end{equation*}
$$

if and only if

$$
2 \sqrt{k(b-a)(d-c)} \leq j_{0}
$$

i. e.,

$$
k \leq \frac{j_{0}^{2}}{4(b-a)(d-c)}
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Definition

We say that a theorem on differential inequalities (maximum principle) holds for the equation (1) if the implication

$$
\left.\begin{array}{l}
w \in A C(\mathbb{D}), \\
w_{t x}^{\prime \prime}(t, x) \geq p(t, x) w(\tau(t, x), \mu(t, x)) \text { for a.e. }(t, x) \in \mathbb{D}, \\
w(a, c) \geq 0, \\
w_{t}^{\prime}(t, c) \geq 0 \text { for a. e. } t \in[a, b], \\
w_{x}^{\prime}(a, x) \geq 0 \text { for a. e. } x \in[c, d]
\end{array}\right\} \Longrightarrow \begin{gathered}
w(t, x) \geq 0
\end{gathered} \quad \begin{aligned}
& \text { for }(t, x) \in \mathbb{D})
\end{aligned}
$$

holds.

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Definition

We say that a theorem on differential inequalities (maximum principle) holds for the equation (1) if the implication

$$
\left.\begin{array}{l}
w \in A C(\mathbb{D}), \\
w_{t x}^{\prime \prime}(t, x) \geq p(t, x) w(\tau(t, x), \mu(t, x)) \text { for a.e. }(t, x) \in \mathbb{D}, \\
w(a, c) \geq 0, \\
w_{t}^{\prime}(t, c) \geq 0 \text { for a. e. } t \in[a, b], \\
w_{x}^{\prime}(a, x) \geq 0 \text { for a.e. } x \in[c, d]
\end{array}\right\} \Longrightarrow \begin{gathered}
w(t, x) \geq 0
\end{gathered} \quad \begin{aligned}
& \text { for }(t, x) \in \mathbb{D})
\end{aligned}
$$

holds.

In what follows we restrict our-self to the case where

$$
\begin{equation*}
p(t, x) \leq 0 \quad \text { for a. e. }(t, x) \in \mathbb{D} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Proposition

Let maximum principle holds for equation (1) with non-positive p then the inequalities

$$
\begin{equation*}
\tau(t, x) \leq t, \quad \mu(t, x) \leq x \quad \text { for a. e. }(t, x) \in \mathbb{D} \tag{6}
\end{equation*}
$$

hold, i. e., equation (1) is delayed in both arguments.

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Proposition

Let maximum principle holds for equation (1) with non-positive p then the inequalities

$$
\begin{equation*}
\tau(t, x) \leq t, \quad \mu(t, x) \leq x \quad \text { for a. e. }(t, x) \in \mathbb{D} \tag{6}
\end{equation*}
$$

hold, i. e., equation (1) is delayed in both arguments.

Theorem 1

Let conditions (5) and (6) hold. Then maximum principle holds for equation (1) provided that there exists a function $\gamma \in C(\mathbb{D}) \cap A C_{l o c}([a, b[\times[c, d[)$ satisfying the inequalities

$$
\begin{gathered}
\gamma(t, x)>0 \quad \text { for }(t, x) \in[a, b[\times[c, d[\\
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x)) \quad \text { for a. e. }(t, x) \in \mathbb{D}, \\
\gamma_{t}^{\prime}(t, c) \leq 0 \quad \text { for a. e. } t \in[a, b] \\
\gamma_{x}^{\prime}(a, x) \leq 0 \quad \text { for a. e. } x \in[c, d] .
\end{gathered}
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Corollary 1

Let conditions (5) and (6) hold and

$$
\iint_{\mathbb{D}}|p(t, x)| \mathrm{d} t \mathrm{~d} x \leq 1
$$

Then maximum principle holds for equation (1).

Remark. The number 1 in Corollary 1 is optimal, in general. A counter-example is constructed with

$$
\tau(t, x) \equiv a, \quad \mu(t, x) \equiv c
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Corollary 1

Let conditions (5) and (6) hold and

$$
\iint_{\mathbb{D}}|p(t, x)| \mathrm{d} t \mathrm{~d} x \leq 1
$$

Then maximum principle holds for equation (1).

Remark. The number 1 in Corollary 1 is optimal, in general. A counter-example is constructed with

$$
\tau(t, x) \equiv a, \quad \mu(t, x) \equiv c
$$

Proposition

Let $\tau(t, x) \equiv t, \mu(t, x) \equiv x, p(t, x) \equiv k \leq 0$. Then maximum principle holds for equation (1) if and only if

$$
|k|(b-a)(d-c) \leq \frac{j_{0}^{2}}{4} \sim 1.4458
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

$j_{\nu} \ldots$ the first positive zero of the Bessel function $J_{\nu}(\nu>-1)$

$$
E_{\nu}(z):=z^{-\nu} J_{\nu}(z) \quad \text { for } z \geq 0
$$

$$
j_{\nu}^{*}=\frac{E_{\nu+1}\left(j_{\nu}\right)}{E_{\nu+1}(0)}
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Corollary 2

Let conditions (5) and (6) hold and there exist numbers $\alpha \in[0,1[, \beta \in[0, \alpha]$ such that the inequalities

$$
\begin{gathered}
|p(t, x)| \leq \frac{j_{-\alpha}^{2}}{4(b-a)(d-c)}, \\
\left(E_{-\alpha}(z[\tau(t, x), x])-E_{-\alpha}(z[t, x])\right)|p(t, x)| \leq \frac{\beta}{2} \frac{j_{-\alpha}^{2}}{(b-a)(d-c)} E_{1-\alpha}(z[\tau(t, x), x]), \\
\left(E_{-\alpha}(z[t, x])-E_{-\alpha}(z[t, \mu(t, x)])\right)|p(t, x)| \leq \frac{\alpha-\beta}{2} \frac{j_{-\alpha}^{2}}{(b-a)(d-c)} E_{1-\alpha}(z[\tau(t, x), x])
\end{gathered}
$$

are satisfied a. e. in \mathbb{D}, where

$$
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}} \quad \text { for }(t, x) \in \mathbb{D}
$$

Then maximum principle holds for equation (1).

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Corollary 3

Let conditions (5) and (6) hold and there exist numbers $\alpha \in[0,1[, \beta \in[0, \alpha]$ such that the inequalities

$$
\begin{gathered}
|p(t, x)| \leq \frac{j_{-\alpha}^{2}}{4(b-a)(d-c)}, \\
(x-c)(t-\tau(t, x))|p(t, x)| \leq \beta j_{-\alpha}^{*}, \\
(t-a)(x-\mu(t, x))|p(t, x)| \leq(\alpha-\beta) j_{-\alpha}^{*}
\end{gathered}
$$

are satisfied a.e. in \mathbb{D}. Then maximum principle holds for equation (1).

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Corollary 3

Let conditions (5) and (6) hold and there exist numbers $\alpha \in[0,1[, \beta \in[0, \alpha]$ such that the inequalities

$$
\begin{gathered}
|p(t, x)| \leq \frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \\
(x-c)(t-\tau(t, x))|p(t, x)| \leq \beta j_{-\alpha}^{*} \\
(t-a)(x-\mu(t, x))|p(t, x)| \leq(\alpha-\beta) j_{-\alpha}^{*}
\end{gathered}
$$

are satisfied a.e. in \mathbb{D}. Then maximum principle holds for equation (1).
Remark. The number $\frac{j_{-\alpha}^{2}}{4(b-a)(d-c)}$ in Corollaries 2 and 3 is optimal, in general. A counter-example is constructed with

$$
\tau(t, x) \equiv t, \quad \mu(t, x) \equiv x, \quad p(t, x) \equiv k \leq 0
$$

where we can choose $\alpha=\beta=0$ and we know that the inequality

$$
|k| \leq \frac{j_{0}^{2}}{4(b-a)(d-c)} \quad \text { is sufficient and necessary. }
$$

$$
\begin{equation*}
u_{t x}^{\prime \prime}(t, x)=p(t, x) u(\tau(t, x), \mu(t, x))+q(t, x) \tag{1}
\end{equation*}
$$

Corollary 2

Let conditions (5) and (6) hold and there exist numbers $\alpha \in[0,1[, \beta \in[0, \alpha]$ such that the inequalities

$$
\begin{gathered}
|p(t, x)| \leq \frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \\
\left(E_{-\alpha}(z[\tau(t, x), x])-E_{-\alpha}(z[t, x])\right)|p(t, x)| \leq \frac{\beta}{2} \frac{j_{-\alpha}^{2}}{(b-a)(d-c)} E_{1-\alpha}(z[t, x]) \\
\left(E_{-\alpha}(z[t, x])-E_{-\alpha}(z[t, \mu(t, x)])\right)|p(t, x)| \leq \frac{\alpha-\beta}{2} \frac{j_{-\alpha}^{2}}{(b-a)(d-c)} E_{1-\alpha}(z[t, x])
\end{gathered}
$$

are satisfied a. e. in \mathbb{D}, where

$$
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}} \quad \text { for }(t, x) \in \mathbb{D}
$$

Then maximum principle holds for equation (1).

Sketch of the proof of Corollary 2

We put

$$
\begin{gathered}
\gamma(t, x)=E_{-\alpha}(z[t, x]) \quad \text { for }(t, x) \in \mathbb{D} \\
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}}
\end{gathered}
$$

and apply

Theorem 1

Let conditions (5) and (6) hold. Then maximum principle holds for equation (1) provided that there exists a function $\gamma \in C(\mathbb{D}) \cap A C_{l o c}([a, b[\times[c, d[)$ satisfying the inequalities

$$
\begin{gathered}
\gamma(t, x)>0 \quad \text { for }(t, x) \in[a, b[\times[c, d[\\
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x)) \quad \text { for a. e. }(t, x) \in \mathbb{D}, \\
\gamma_{t}^{\prime}(t, c) \leq 0 \quad \text { for a. e. } t \in[a, b] \\
\gamma_{x}^{\prime}(a, x) \leq 0 \quad \text { for a. e. } x \in[c, d]
\end{gathered}
$$

Sketch of the proof of Corollary 2

We put

$$
\begin{gathered}
\gamma(t, x)=E_{-\alpha}(z[t, x]) \quad \text { for }(t, x) \in \mathbb{D} \\
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}} \\
J_{-\alpha}^{\prime \prime}(s)+\frac{1}{s} J_{-\alpha}^{\prime}(s)+\left(1-\frac{\alpha^{2}}{s^{2}}\right) J_{-\alpha}(s)=0
\end{gathered}
$$

Sketch of the proof of Corollary 2

We put

$$
\begin{gathered}
\gamma(t, x)=E_{-\alpha}(z[t, x]) \quad \text { for }(t, x) \in \mathbb{D} \\
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}} \\
J_{-\alpha}^{\prime \prime}(s)+\frac{1}{s} J_{-\alpha}^{\prime}(s)+\left(1-\frac{\alpha^{2}}{s^{2}}\right) J_{-\alpha}(s)=0 \\
E_{-\alpha}^{\prime \prime}(s)+\frac{1-2 \alpha}{s} E_{-\alpha}^{\prime}(s)+E_{-\alpha}(s)=0
\end{gathered}
$$

Sketch of the proof of Corollary 2

We put

$$
\begin{gathered}
\gamma(t, x)=E_{-\alpha}(z[t, x]) \text { for }(t, x) \in \mathbb{D} \\
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}} \\
J_{-\alpha}^{\prime \prime}(s)+\frac{1}{s} J_{-\alpha}^{\prime}(s)+\left(1-\frac{\alpha^{2}}{s^{2}}\right) J_{-\alpha}(s)=0 \\
E_{-\alpha}^{\prime \prime}(s)+\frac{1-2 \alpha}{s} E_{-\alpha}^{\prime}(s)+E_{-\alpha}(s)=0 \\
\gamma_{t x}^{\prime \prime}(t, x)=-\frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \gamma(t, x)+\frac{\beta}{x-c} \gamma_{t}^{\prime}(t, x)+\frac{\beta}{t-a} \gamma_{x}^{\prime}(t, x)
\end{gathered}
$$

Sketch of the proof of Corollary 2

We put

$$
\begin{gathered}
\gamma(t, x)=E_{-\alpha}(z[t, x]) \text { for }(t, x) \in \mathbb{D} \\
z[t, x]:=\frac{j_{-\alpha}}{2} \sqrt{\frac{(t-a)(x-c)}{(b-a)(d-c)}} \\
J_{-\alpha}^{\prime \prime}(s)+\frac{1}{s} J_{-\alpha}^{\prime}(s)+\left(1-\frac{\alpha^{2}}{s^{2}}\right) J_{-\alpha}(s)=0 \\
E_{-\alpha}^{\prime \prime}(s)+\frac{1-2 \alpha}{s} E_{-\alpha}^{\prime}(s)+E_{-\alpha}(s)=0 \\
\gamma_{t x}^{\prime \prime}(t, x)=-\frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \gamma(t, x)+\frac{\beta}{x-c} \gamma_{t}^{\prime}(t, x)+\frac{\beta}{t-a} \gamma_{x}^{\prime}(t, x)
\end{gathered}
$$

We need to show that

$$
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x))
$$

$$
\begin{gathered}
\gamma_{t x}^{\prime \prime}(t, x)=-\frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \gamma(t, x)+\frac{\beta}{x-c} \gamma_{t}^{\prime}(t, x)+\frac{\beta}{t-a} \gamma_{x}^{\prime}(t, x) \\
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x)) \\
\gamma(t, x)>0 \quad \text { for every }(t, x) \in \mathbb{D},(t, x) \neq(b, d), \\
\left.\left.\gamma_{t}(t, x) \leq 0 \quad \text { for every }(t, x) \in\right] a, b\right] \times[c, d] \\
\left.\left.\gamma_{x}(t, x) \leq 0 \quad \text { for every }(t, x) \in[a, b] \times\right] c, d\right] \\
\left.\gamma_{t x}^{\prime \prime}(t, x) \leq 0 \quad \text { for every }(t, x) \in\right] a, b[\times] c, d[
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{t x}^{\prime \prime}(t, x)=-\frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \gamma(t, x)+\frac{\beta}{x-c} \gamma_{t}^{\prime}(t, x)+\frac{\beta}{t-a} \gamma_{x}^{\prime}(t, x) \\
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x))
\end{gathered}
$$

$$
\gamma(t, x)>0 \quad \text { for every }(t, x) \in \mathbb{D},(t, x) \neq(b, d)
$$

$\gamma_{t}(t, x) \leq 0 \quad$ for every $\left.\left.(t, x) \in\right] a, b\right] \times[c, d]$,
$\gamma_{x}(t, x) \leq 0 \quad$ for every $\left.\left.(t, x) \in[a, b] \times\right] c, d\right]$,
$\gamma_{t x}^{\prime \prime}(t, x) \leq 0 \quad$ for every $\left.(t, x) \in\right] a, b[\times] c, d[$

$$
\begin{aligned}
\gamma(\tau(t, x), \mu(t, x)) & =\gamma(t, x)-\int_{\tau(t, x)}^{t} \gamma_{s}^{\prime}(s, x) \mathrm{d} s-\int_{\mu(t, x)}^{x} \gamma_{\eta}^{\prime}(t, \eta) \mathrm{d} \eta+\int_{\tau(t, x)}^{t} \int_{\mu(t, x)}^{x} \gamma_{s \eta}^{\prime \prime}(s, \eta) \mathrm{d} \eta \mathrm{~d} s \\
& \leq \gamma(t, x)-\int_{\tau(t, x)}^{t} \gamma_{s}^{\prime}(s, x) \mathrm{d} s-\int_{\mu(t, x)}^{x} \gamma_{\eta}^{\prime}(t, \eta) \mathrm{d} \eta
\end{aligned}
$$

$$
\gamma_{t x}^{\prime \prime}(t, x)=-\frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \gamma(t, x)+\frac{\beta}{x-c} \gamma_{t}^{\prime}(t, x)+\frac{\beta}{t-a} \gamma_{x}^{\prime}(t, x)
$$

$$
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x))
$$

$$
\gamma(t, x)>0 \quad \text { for every }(t, x) \in \mathbb{D},(t, x) \neq(b, d)
$$

$$
\left.\left.\gamma_{t}(t, x) \leq 0 \quad \text { for every }(t, x) \in\right] a, b\right] \times[c, d],
$$

$$
\left.\left.\gamma_{x}(t, x) \leq 0 \quad \text { for every }(t, x) \in[a, b] \times\right] c, d\right]
$$

$$
\left.\gamma_{t x}^{\prime \prime}(t, x) \leq 0 \quad \text { for every }(t, x) \in\right] a, b[\times] c, d[
$$

$$
\gamma(\tau(t, x), \mu(t, x))=\gamma(t, x)-\int_{\tau(t, x)}^{t} \gamma_{s}^{\prime}(s, x) \mathrm{d} s-\int_{\mu(t, x)}^{x} \gamma_{\eta}^{\prime}(t, \eta) \mathrm{d} \eta+\int_{\tau(t, x)}^{t} \int_{\mu(t, x)}^{x} \gamma_{s \eta}^{\prime \prime}(s, \eta) \mathrm{d} \eta \mathrm{~d} s
$$

$$
\begin{aligned}
& \leq \gamma(t, x)-\int_{\tau(t, x)}^{t} \gamma_{s}^{\prime}(s, x) \mathrm{d} s-\int_{\mu(t, x)}^{x} \gamma_{\eta}^{\prime}(t, \eta) \mathrm{d} \eta \\
& =\gamma(t, x)-\varphi(t, x) \gamma_{t}^{\prime}(t, x) \int_{\tau(t, x)}^{t} \frac{\mathrm{~d} s}{\varphi(s, x)}-\psi(t, x) \gamma_{x}^{\prime}(t, x) \int_{\mu_{\mu(t, x)}}^{x} \frac{\mathrm{~d} \eta}{\psi(t, \eta)}
\end{aligned}
$$

$$
\begin{gathered}
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x)) \\
|p(t, x)| \leq \frac{j_{-\alpha}^{2}}{4(b-a)(d-c)} \\
|p(t, x)| \varphi(t, x) \int_{\tau(t, x)}^{t} \frac{\mathrm{~d} s}{\varphi(s, x)} \leq \frac{\beta}{x-c} \\
|p(t, x)| \psi(t, x) \int_{\mu(t, x)}^{x} \frac{\mathrm{~d} \eta}{\psi(t, \eta)} \leq \frac{\alpha-\beta}{t-a} \\
\varphi(t, x):=\frac{(t-a)^{1-\alpha}}{(z[t, x])^{1-\alpha} J_{1-\alpha}(z[t, x])}, \quad \psi(t, x):=\frac{(x-c)^{1-\alpha}}{(z[t, x])^{1-\alpha} J_{1-\alpha}(z[t, x])}
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{t x}^{\prime \prime}(t, x) \leq p(t, x) \gamma(\tau(t, x), \mu(t, x)) \\
|p(t, x)| \leq \frac{\prod_{-\alpha}^{2}}{4(b-a)(d-c)} \\
|p(t, x)| \varphi(t, x) \int_{\tau(t, x)}^{t} \frac{\mathrm{~d} s}{\varphi(s, x)} \leq \frac{\beta}{x-c} \\
\varphi(t, x):=\frac{|p(t, x)| \psi(t, x) \int_{\mu(t, x)}^{x} \frac{\mathrm{~d} \eta}{\psi(t, \eta)} \leq \frac{\alpha-\beta}{t-a}}{(z[t, x])^{1-\alpha} J_{1-\alpha}(z[t, x])}, \quad \psi(t, x):=\frac{(t-a)^{1-\alpha}}{(z[t, x])^{1-\alpha} J_{1-\alpha}(z[t, x])} \\
\int_{\tau(t, x)}^{t} \frac{\mathrm{~d} s}{\varphi(s, x)}=\frac{c o n s t .}{(x-c)^{\alpha}}\left(E_{-\alpha}(z[\tau(t, x), x])-E_{-\alpha}(z[t, x])\right)
\end{gathered}
$$

