Mixing problems with many tanks

Antonín Slavík
Charles University, Prague

Workshop on Differential Equations
Malá Morávka 2012

A simple mixing problem

Consider two tanks filled with brine, which are connected by a pair of pipes. One pipe brings brine from the first tank to the second tank at a given rate, while the second pipe carries brine in the opposite direction at the same rate. Assuming that the initial concentrations in both tanks are known and that we have a perfect mixing in both tanks, find the concentrations in both tanks after a given period of time.

Mixing problems with many tanks

- Most authors restrict themselves to mixing problems involving two or three tanks arranged in various configurations (cascade with brine flowing in a single direction only, linear arrangement of tanks connected by pairs of pipes, cyclic arrangement of tanks, etc.).
- The problem leads to a linear system of differential equations for the unknown concentrations, which is solved by calculating the eigenvalues and eigenvectors of the corresponding matrix.
- With n tanks, there is a great variety of mixing problems. Can we still solve the corresponding DEs analytically?

Star arrangement of tanks (1)

- Flow through each pipe: f gallons per unit of time.
- The volume V in each tank remains constant.
- $x_{i}(t)=$ concentration of salt in tank T_{i} at time t.

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-(n-1) f \frac{x_{1}(t)}{V}+\sum_{i=2}^{n} f \frac{x_{i}(t)}{V} \\
& x_{i}^{\prime}(t)=f \frac{x_{1}(t)}{V}-f \frac{x_{i}(t)}{V}, \quad 2 \leq i \leq n
\end{aligned}
$$

Star arrangement of tanks (2)

Without loss of generality, we may assume that $f=V$.
Then $x^{\prime}(t)=A x(t)$, where

$$
A=\left(\begin{array}{cccc}
-(n-1) & 1 & \cdots & 1 \\
1 & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & -1
\end{array}\right)
$$

$\operatorname{det}(A-\lambda I)=D_{n}$, where

$$
\begin{aligned}
& D_{k}=\operatorname{det}\left(\begin{array}{cccc}
-(n-1)-\lambda & 1 & \cdots & 1 \\
1 & -1-\lambda & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & -1-\lambda
\end{array}\right)= \\
& =-(-1-\lambda)^{k-2}+(-1-\lambda) D_{k-1}, \quad D_{1}=-(n-1)-\lambda .
\end{aligned}
$$

Star arrangement of tanks (3)

Solution:

$$
D_{k}=(-1-\lambda)^{k-2} \lambda(k+\lambda)
$$

The eigenvalues of A :

- $\lambda=0$ and $\lambda=-n$ (simple)
- $\lambda=-1$ (multiplicity $n-2$)

Eigenvectors are easy to find. In particular, the eigenspace corresponding to $\lambda=0$ is spanned by $(1, \ldots, 1)$.

Corollary: Every solution approaches the state where all tanks contain the same amount of salt (a globally asymptotically stable equilibrium).

Tanks in a row (1)

$$
T_{1} \rightleftarrows T_{2} \rightleftarrows T_{3} \rightleftarrows T_{4} \rightleftarrows T_{5} \rightleftarrows T_{6} \rightleftarrows T_{7} \rightleftarrows T_{8}
$$

- Flow through each pipe: f gallons per unit of time.
- The volume V in each tank remains constant.
- $x_{i}(t)=$ concentration of salt in tank T_{i} at time t.
$x_{1}^{\prime}(t)=-f \frac{x_{1}(t)}{V}+f \frac{x_{2}(t)}{V}$
$x_{i}^{\prime}(t)=f \frac{x_{i-1}(t)}{V}-2 f \frac{x_{i}(t)}{V}+f \frac{x_{i+1}(t)}{V}, \quad 2 \leq i \leq n-1$
$x_{n}^{\prime}(t)=-f \frac{x_{n-1}(t)}{V}-f \frac{x_{n}(t)}{V}$

Tanks in a row (2)

Without loss of generality, we may assume that $f=V$.
Then $x^{\prime}(t)=A x(t)$, where

$$
A=\left(\begin{array}{rrrlrrr}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -2 & 1 & 0 \\
0 & 0 & 0 & \cdots & 1 & -2 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & -1
\end{array}\right) .
$$

Preliminary information:
All eigenvalues are real and contained in $[-4,0]$.

Tanks in a row (3)

$$
\operatorname{det}(A-\lambda I)=(-1-\lambda) D_{n-1}-D_{n-2},
$$

where

$$
\begin{aligned}
& D_{k}=\operatorname{det}\left(\begin{array}{cccccc}
-2-\lambda & 1 & 0 & \cdots & 0 & 0 \\
1 & -2-\lambda & 1 & \cdots & 0 & 0 \\
0 & 1 & -2-\lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -2-\lambda & 1 \\
0 & 0 & 0 & \cdots & 1 & -1-\lambda
\end{array}\right)= \\
&=(-2-\lambda) D_{k-1}-D_{k-2}, \quad D_{1}=-1-\lambda, D_{0}=1 .
\end{aligned}
$$

Solution:

$$
D_{k}=\cos (k \gamma)+\cot (\gamma / 2) \sin (k \gamma)
$$

where $\gamma \in[0, \pi], \cos \gamma=-(\lambda+2) / 2, \sin \gamma=\frac{\sqrt{4-(\lambda+2)^{2}}}{2}$.

Tanks in a row (4)

$$
\operatorname{det}(A-\lambda I)=2 \cot \left(\frac{\gamma}{2}\right) \sin (n \gamma)
$$

n distinct eigenvalues:

$$
\lambda_{k}=-2 \cos \frac{k \pi}{n}-2, \quad k \in\{1, \ldots, n\}
$$

The eigenspace corresponding to $\lambda_{n}=0$ is spanned by $(1, \ldots, 1)$, the remaining eigenvalues are negative.

Tanks in a row (5)

Consider the BVP for the one-dimensional heat equation

$$
\begin{gathered}
\frac{\partial f}{\partial t}(t, x)=k \frac{\partial^{2} f}{\partial x^{2}}(t, x), \quad x \in[a, b] \\
\frac{\partial f}{\partial x}(t, a)=\frac{\partial f}{\partial x}(t, b)=0
\end{gathered}
$$

Discretize the spatial domain and replace second-order derivatives by the second-order central differences to get

$$
\begin{aligned}
y_{0}^{\prime}(t) & \doteq \frac{k}{(\Delta x)^{2}}\left(-y_{0}(t)+y_{1}(t)\right) \\
y_{i}^{\prime}(t) & \doteq \frac{k}{(\Delta x)^{2}}\left(y_{i-1}(t)-2 y_{i}(t)+y_{i+1}(t)\right), \quad i \in\{1, \ldots, n\} \\
y_{n}^{\prime}(t) & \doteq \frac{k}{(\Delta x)^{2}}\left(y_{n-1}(t)-y_{n}(t)\right)
\end{aligned}
$$

where $y_{i}(t)=f(t, a+i \Delta x)$.
\Rightarrow mixing problem for n tanks in a row

Tanks in a circle (1)

$$
A=\left(\begin{array}{rrrlrrr}
-2 & 1 & 0 & \cdots & 0 & 0 & 1 \\
1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -2 & 1 & 0 \\
0 & 0 & 0 & \cdots & 1 & -2 & 1 \\
1 & 0 & 0 & \cdots & 0 & 1 & -2
\end{array}\right)
$$

Tanks in a circle (2)

A is a circulant matrix with eigenvalues

$$
\lambda_{j}=-2+2 \cos (2 \pi j / n), \quad j \in\{0, \ldots, n-1\}
$$

The eigenspace corresponding to $\lambda_{0}=0$ is spanned by $(1, \ldots, 1)$, the remaining eigenvalues are negative.

This type of mixing problem can be interpreted as the spatial discretization of the one-dimensional heat equation on a circle.

Qualitative analysis of a general mixing problem

For a general mixing problem, is it always true that every solution approaches the state with all tanks containing the same amount of salt?
(1) All tanks hold the same constant volume V of brine; consequently, the total amount of brine flowing into a particular tank equals the total amount of brine flowing out of the tank.
(2) Each pipe connecting a pair of tanks transports the same volume f of brine per unit of time. By a suitable choice of time units, we can assume that $f / V=1$.
(3) The mixing problem is irreducible in the following sense: The tanks cannot be divided into two disjoint nonempty groups such that the pipes always lead between tanks from the same group.

Graph representation

- The mixing problem can be represented by a directed graph, which is connected and balanced, i.e., the indegree $\operatorname{deg}^{-}(v)$ of an arbitrary vertex v equals its outdegree $\operatorname{deg}^{+}(v)$.
- Every balanced connected graph is strongly connected.

How does the corresponding matrix A look like? By the first condition, the sum of each row of A is zero. By the second condition, $a_{i j}=1$ if there is a pipe transporting brine from the i-th tank to the j-th tank, $a_{i j}$ equals minus the number of pipes originating in the i-th tank, and all remaining entries of A are zero.

Laplacian matrix

Given a directed graph $G=(V, E)$ with n vertices v_{1}, \ldots, v_{n}, the matrix $L=\left\{\iota_{i j}\right\}_{i, j=1}^{n}$ given by

$$
I_{i j}= \begin{cases}\operatorname{deg}^{+}\left(v_{i}\right) & \text { if } i=j, \\ -1 & \text { if } i \neq j \text { and }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

(where $\operatorname{deg}^{+}(v)$ stands for the outdegree of the vertex v) is known as the Laplacian matrix of G.

Observations:

- $L=-A$
- L has a zero eigenvalue with $(1, \ldots, 1)$ as the corresponding eigenvector.
- All remaining eigenvalues of L have positive real parts.

To finish the analysis, it is enough to show that the zero eigenvalue is a simple one.

Laplacian matrix eigenvalues

Lemma

If L is the Laplacian matrix of a balanced directed graph on n vertices and $x \in \mathbb{R}^{n}$ is an arbitrary vector, then

$$
x^{\top} L x=\frac{1}{2} \sum_{\left(v_{i}, v_{j}\right) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

Theorem

The null space of the Laplacian matrix of a connected balanced directed graph has dimension 1.

Theorem

For the Laplacian matrix of a connected balanced directed graph, the zero eigenvalue is a simple one.

