Singular boundary value problems

Irena Rachůnková

Department of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic, e-mail: irena.rachunkova@upol.cz

Malá Morávka, May 2012 Overview of our common research with Svaťa

1996, Regular problems - topological methods

We have studied the functional differential equation

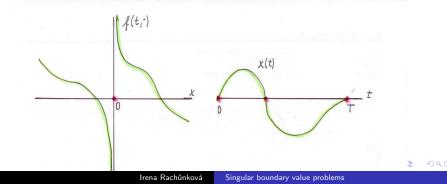
x''(t) = f(t, x(t), (Fx)(t), x'(t), (Hx')(t)),

where f satisfies the local Carathéodory conditions on $([0,1] \times \mathbb{R}^4)$ and F, H are continuous and bounded operators. We proved the existence results for various types of two-point or functional boundary conditions. Typical assumptions for f - sign conditions.

- Topological degree methods in functional boundary value problems, *Nonlinear Anal. TMA* 27 (1996), 153-166.
- Topological degree methods in functional boundary value problems at resonance, *Nonlinear Anal. TMA* 27 (1996), 271-285.

2003, Singular problems: Sign-changing solutions

- Sign-changing solutions of singular Dirichlet boundary value problems. *Archives of Inequalities and Applications* 1 (2003), 11-30.
- Connections between types of singularities in differential equations and smoothness of solutions of Dirichlet BVPs. *Dyn. Contin. Discrete Impulsive Syst.* 10 (2003), 209-222.



We have studied the singular Dirichlet boundary value problem with a positive parameter μ

$$(r(x(t))x'(t))' = \mu q(t)f(t, x(t)), \quad t \in (0, T),$$
(1)

$$x(0) = x(T) = 0, \ \max_{t \in [0,T]} \{x(t)\} \cdot \min_{t \in [0,T]} \{x(t)\} < 0,$$
 (2)

where $T \in (0, \infty)$ and f(t, x) is singular at the point x = 0 of the phase variable x in the following sense

$$\lim_{x \to 0^{-}} f(t, x) = -\infty, \ \lim_{x \to 0^{+}} f(t, x) = \infty \quad \text{for } t \in [0, T].$$
(3)

$(r(x(t))x'(t))' = \mu q(t)f(t,x(t))$

The basic assumptions:

(H1)
$$r \in C(\mathbb{R}), r(x) \ge r_0 > 0$$
 for $x \in \mathbb{R}$,
(H2) $q \in C[0, T], q < 0$ on $(0, T)$,
(H3) $f \in C([0, T] \times D)$ fulfils (3), $f(t, \cdot)$ is nonincreasing on D for
 $t \in [0, T], D = (-\infty, 0) \cup (0, \infty)$.

Definition

A function $x \in C^1[0, T]$ is a solution of problem (1), (2) if x has precisely one zero t_0 in (0, T), $r(x)x' \in C^1((0, T) \setminus \{t_0\})$, x fulfils (2) and there exists $\mu_0 > 0$ such that (1) is satisfied for $\mu = \mu_0$ and $t \in (0, T) \setminus \{t_0\}$.

Definition

We say that f has the weak singularity at x = 0 if f satisfies (3) and

$$D < f(t,x) \operatorname{sign} x \le g(x) \quad \text{for } (t,x) \in [0,T] \times D,$$
 (4)

where $g \in C(D)$ fulfils

$$\int_{0}^{0} g(x) \, dx < \infty, \quad \int_{0}^{0} g(x) \, dx < \infty. \tag{5}$$

For example

$$f(t,x) = rac{\operatorname{sign} x}{|x|^{lpha}}, \quad lpha \in (0,1).$$

э

Definition

Assume that there exist a positive function $p \in C(D)$ such that

$$D < p(x) \le f(t, x) \operatorname{sign} x$$
 for $(t, x) \in [0, T] \times D$. (6)

We say that f has the strong left singularity at x = 0 if

$$\int^0 p(x) \, dx = \infty \tag{7}$$

and we say that f has the strong right singularity at x = 0 if

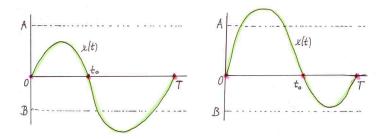
$$\int_0 p(x) \, dx = \infty. \tag{8}$$

For example

$$f(t,x) = \frac{\operatorname{sign} x}{|x|^{\alpha}}, \quad \alpha \ge 1.$$

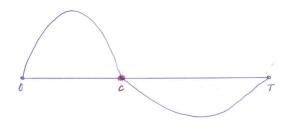
Existence and non-existence theorem - Dirichlet

- If f has the one-sided strong singularity at x = 0, then problem (1), (2) has no solution;
- 2) If f has the week singularity at x = 0 then:
 - (i) for each A > 0, there exists at least one solution having its maximum value ≤ A on [0, T],
 - (ii) for each B < 0 there exists at least one solution having its minimum value ≥ B on [0, T],
 - (iii) zeros of solutions on (0, T) are not precisely localized.



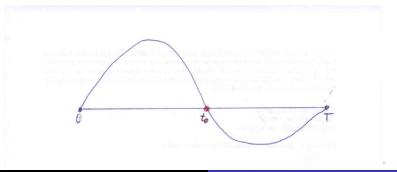
Steps of the proof:

- The existence of positive and negative solutions of auxiliary Dirichlet problems on the intervals [0, c] and [c, T] for μ = μ(c), c ∈ (0, T).
- The construction of a sign-changing "solution" from these positive and negative solutions.
- The existence of a point $t_0 \in (0, T)$ and a parameter μ_0 such that the sign-changing solution belongs to $C^1[0, 1]$.



Steps of the proof:

- The existence of positive and negative solutions of auxiliary Dirichlet problems on the intervals [0, c] and [c, T] for μ = μ(c), c ∈ (0, T).
- The construction of a sign-changing "solution" from these positive and negative solutions.
- The existence of a point $t_0 \in (0, T)$ and a parameter μ_0 such that the sign-changing solution belongs to $C^1[0, 1]$.



・ロト ・回ト ・ヨト ・ヨト

æ

Irena Rachůnková

2003-2004, Higher order singular problems

- Two-point higher order BVPs with singularities in phase variables. *Computers and Mathematics with Applications* 46 (12) (2003), 1799-1826.
- Sturm-Liouville and focal higher order BVPs with singularities in phase variables. *Georgian Mathematical Journal* 10 (2003), 165-191.
- General existence principle for singular BVPs and its applications. *Georgian Mathematical Journal* 11 (2004), 549-565.
- A singular boundary value problem for odd order differential equations. J. Math. Anal. Appl. 291 (2004), 741-756.

The singular Lidstone boundary value problem

$$(-1)^{n} x^{(2n)}(t) = f(t, x(t), \dots, x^{(2n-2)}(t)),$$
(9)
$$x^{(2j)}(0) = x^{(2j)}(T) = 0, \quad 0 \le j \le n-1,$$
(10)

where $n \ge 1$ and f satisfies the local Carathéodory conditions on the set $[0, T] \times D$,

$$\mathcal{D} = \begin{cases} \underbrace{\mathbb{R}_{+} \times \mathbb{R}_{0} \times \mathbb{R}_{-} \times \mathbb{R}_{0} \times \cdots \times \mathbb{R}_{+}}_{4k-3} & \text{if } n = 2k - 1, \\ \underbrace{\mathbb{R}_{+} \times \mathbb{R}_{0} \times \mathbb{R}_{-} \times \mathbb{R}_{0} \times \cdots \times \mathbb{R}_{-}}_{4k-1} & \text{if } n = 2k. \end{cases}$$

The function $f(t, x_0, ..., x_{2n-2})$ may be singular at the points $x_i = 0, 0 \le i \le 2n-2$, of the space variables $x_0, ..., x_{2n-2}$.

Assumptions:

 (H_1) $f \in Car([0, T] imes \mathcal{D})$ and there exists $\psi \in L_1[0, T]$ such that

 $0 < \psi(t) \leq f(t, x_0, \ldots, x_{2n-2})$

for a.e. $t \in [0, T]$ and each $(x_0, \ldots, x_{2n-2}) \in D$; (*H*₂) For a.e. $t \in [0, T]$ and for each $(x_0, \ldots, x_{2n-2}) \in D$,

$$f(t, x_0, \dots, x_{2n-2}) \le \phi(t) + \sum_{j=0}^{2n-2} q_j(t) \omega_j(|x_j|) + \sum_{j=0}^{2n-2} h_j(t) |x_j|$$

where ϕ , $h_j \in L_1[0, T]$, h_j are sufficiently small and $q_j \in L_{\infty}[0, T]$ are nonnegative, $\omega_j : \mathbb{R}_+ \to \mathbb{R}_+$ are nonincreasing,

$$\int_0^T \omega_j(s) \, ds < \infty, \quad \omega_j(uv) \leq \Lambda \omega_j(u) \omega_j(v).$$

Definition

A function $x \in AC^{2n-1}[0, T]$ is said to be a solution of BVP (9), (10) if $(-1)^j x^{(2j)}(t) > 0$ for $t \in (0, T)$ and $0 \le j \le n-1$, x satisfies the boundary conditions (10) and (9) holds a.e. on J.

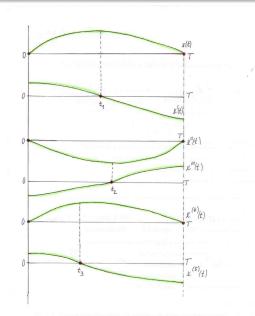
Existence theorem - Lidstone

Let assumptions (H_1) and (H_2) be satisfied. Then there exists a solution of the Lidstone BVP (9), (10).

Proofs are based on:

- a priori estimates of solutions,
- the Green's functions,
- investigation of zeros of solutions,
- the general existence principle

Singular Lidstone



GEP for BVPs with space singularities at 0

Let $n \in \mathbb{N}$, $[0, T] \subset \mathbb{R}$ and $\mathcal{D} \subset \mathbb{R}^n$, $\mathcal{D} \neq \overline{\mathcal{D}}$. We study the singular BVP

$$u^{(n)}(t) = f(t, u(t), \dots, u^{(n-1)}(t)),$$

 $u \in \mathcal{B},$

where f satisfies the local Carathéodory conditions on $[0, T] \times D$, $f(t, x_0, \ldots, x_{n-1})$ may be singular on the boundary ∂D at the points $x_i = 0$, $0 \le i \le n-1$, of the space variables x_0, \ldots, x_{n-1} and \mathcal{B} is a closed subset in $C^{n-1}([0, T])$. We look for solutions $u \in AC^{n-1}([0, T]) \cap \mathcal{B}$ such that

$$((u(t),\ldots,u^{(n-1)}(t))\in\overline{\mathcal{D}}\subset\mathbb{R}^n \text{ for all }t\in[0,T].$$

Regularization and sequential techniques

Consider the singular boundary value problem

$$u^{(n)}(t) = f(t, u(t), \dots, u^{(n-1)}(t)), \quad u \in \mathcal{B},$$
 (11)

and the sequence of regular boundary value problems

$$u^{(n)}(t) = f_m(t, u(t), \dots, u^{(n-1)}(t)), \quad u \in \mathcal{B},$$
 (12)

where f_m satisfies the local Carathéodory conditions on the set $[0, T] \times \mathbb{R}^n$, $m \in \mathbb{N}$. Assume that for a.e. $t \in [0, T]$ and all $m \in \mathbb{N}$, $(x_0, \ldots, x_{n-1}) \in \mathcal{D}$, $0 \le i \le n-1$,

$$f_m(t, x_0, \ldots, x_{n-1}) = f(t, x_0, \ldots, x_{n-1}) \ if \ |x_i| \ge \frac{1}{m}.$$

Theorem - General existence principle

Assume that there is a bounded set $\Omega \subset C^{n-1}([0, T])$ such that (i) $\forall m \in \mathbb{N}$, the regular BVP (12) has a solution $u_m \in \Omega$; (ii) $\forall \varepsilon > 0 \exists \delta > 0$ such that for each $m \in \mathbb{N}$ and each system of mutually disjoint intervals $\{(\tau_j, t_j)\}_{j=1}^{\infty}$ in [0, T],

$$\sum_{j=1}^{\infty}(t_j-\tau_j)<\delta\Rightarrow\sum_{j=1}^{\infty}\int_{\tau_j}^{t_j}|f_m(t,u_m(t),\ldots,u_m^{(n-1)}(t))|dt<\varepsilon.$$

Then:

(a) there exist $u \in cl(\Omega)$ and a subsequence $\{u_k\} \subset \{u_m\}$ such that $\lim_{k\to\infty} ||u_k - u||_{C^{n-1}} = 0$,

(b) if $\mu(\mathcal{V}) = 0$, where \mathcal{V} is the set of all zeros of the functions $u^{(i)}$ with $0 \le i \le n-1$, then u is a solution of the singular BVP (11), (12) and u > 0 on (0, T).

< ロ > < 同 > < 回 > < 回 > :

э

The proof of the General existence principle is based on:

- topological degree arguments,
- the combination of regularization and sequential techiques,
- the Vitali convergence theorem.

Vitali convergence theorem

Let $\varphi_m \subset L_1[0, T]$ for $m \in \mathbb{N}$ and let

$$\lim_{m\to\infty}\varphi_m(t)=\varphi(t)\quad\text{for a.e. }t\in[0,\,T].$$

Then the following statements are equivalent:

(i) $\varphi \in L_1[0, T]$ and $\lim_{m \to \infty} \|\varphi_m - \varphi\|_1 = 0$, (ii) the sequence $\{\varphi_m\}$ is uniformly integrable on [0, T]. The singular (n, p) boundary value problem

$$-x^{(n)}(t) = f(t, x(t), \dots, x^{(n-1)}(t)),$$
(13)

$$x^{(i)}(0) = 0, \ 0 \le i \le n-2, \ x^{(p)}(T) = 0,$$
 (14)

where $n \ge 2$, $0 \le p \le n-1$, and f satisfies the local Carathéodory conditions on the set $[0, T] \times D$,

$$\mathcal{D} = \mathbb{R}_+ \times \mathbb{R}_0^{n-2} \times \mathbb{R}.$$

The function $f(t, x_0, ..., x_{n-1})$ may be singular at the points $x_i = 0, 0 \le i \le n-2$ of the space variables $x_0, ..., x_{n-2}$.

Other higher order singular problems

The singular Sturm-Liouville boundary value problem

$$-x^{n}(t) = f(t, x(t), \dots, x^{(n-1)}(t)),$$

$$x^{(i)}(0) = 0, \quad 0 \le i \le n-3,$$

$$\alpha x^{(n-2)}(0) - \beta x^{(n-1)}(0) = 0,$$

$$\gamma x^{(n-2)}(T) + \delta x^{(n-1)}(T) = 0,$$

where n > 2, $\alpha, \gamma > 0$, $\beta, \delta \ge 0$, and f satisfies the local Carathéodory conditions on the set $[0, T] \times D$,

$$\mathcal{D} = \mathbb{R}^{n-1}_+ \times \mathbb{R}_0.$$

The function $f(t, x_0, ..., x_{n-1})$ may be singular at the points $x_i = 0, 0 \le i \le n-1$, of all its space variables $x_0, ..., x_{n-1}$.

Other higher order singular problems

The singular (p, n - p) right focal boundary value problem

$$(-1)^{n-p}x^{(n)}(t) = f(t, x(t), \dots, x^{(n-1)}(t)),$$

 $x^{(i)}(0) = 0, \ 0 \le i \le p-1, \ x^{(i)}(T) = 0, \ p \le i \le n-1,$

where n > 2, $1 \le p \le n - 1$, and f satisfies the local Carathéodory conditions on the set $[0, T] \times D$,

$$\mathcal{D} = \begin{cases} \underbrace{\mathbb{R}_{+}^{p+1} \times \mathbb{R}_{-} \times \mathbb{R}_{+} \times \mathbb{R}_{-} \times \cdots \times \mathbb{R}_{+}}_{n} & \text{if } n-p \text{ is odd} \\ \underbrace{\mathbb{R}_{+}^{p+1} \times \mathbb{R}_{-} \times \mathbb{R}_{+} \times \mathbb{R}_{-} \times \cdots \times \mathbb{R}_{-}}_{n} & \text{if } n-p \text{ is even.} \end{cases}$$

The function $f(t, x_0, ..., x_{n-1})$ may be singular at the points $x_i = 0, 0 \le i \le n-1$, of all its space variables $x_0, ..., x_{n-1}$.

Other higher order singular problems

The singular (p, n - p) conjugate boundary value problem.

$$(-1)^p x^{(n)}(t) = f(t, x(t), \dots, x^{(n-1)}(t)),$$

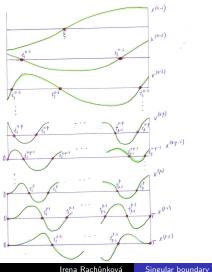
 $x^{(i)}(0) = 0, \quad x^{(j)}(T) = 0, \quad 0 \le i \le n - p - 1, \ 0 \le j \le p - 1,$

where n > 2, $p \le n - 1$, and f satisfies the local Carathéodory conditions on the set $[0, T] \times D$,

$$\mathcal{D} = ((0,\infty) imes \mathbb{R}_0^{n-1}), \quad \mathbb{R}_0 = \mathbb{R} \setminus \{0\}.$$

The function $f(t, x_0, ..., x_{n-1})$ may be singular at the points $x_i = 0, 0 \le i \le n-1$, of all its space variables $x_0, ..., x_{n-1}$.

• Zeros of derivatives of solutions to singular (p,n-p) conjugate BVPs. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 43 (2004), 137-141.

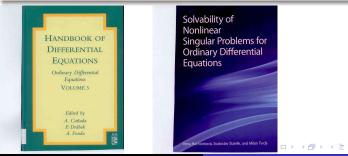


Irena Rachůnková

Univergles of solvability of smaller higher order 3VE 1. Existence results for singular higher ader BVIS 3. Buinciples of scherkly of ungaler second rike 2018s with G-laplacant 4. Singular Dividet BYP with Q-laplacan 4.1. Singalenties in a (ex. of solutions 5. Singular Ruiodic BVP with Q-Laplacian f changes sign biller types of singular stand ruler 31Ps 4.2. Singel in the Sive BYPs (ex. sol. , ex. 25 3 1. Regularisation of stagular pr. with Q-leplacian (oberni , lin jadon , yor. Dir.) - shows dilarm 4.3. Sugul in 32. Ehdene primiple for sugular problems with O-lapl. - soleme distance 7.4. Mulhplins $\frac{\mathcal{U}}{\mathcal{U}} = \frac{f(\mathcal{L}, u)}{f(\mathcal{L}, u)} = \frac{f(\mathcal{L}, u)$ 3.3. Historical and tribl. remarks. 5.1. Gurador rennesembalion. (NO Dir) < \$= Id a ford. Quality representation of the f K= = = = = (Regularita). (Jiro 340 4200 (H) 20 (H) 20 5.2. Selvabilit of regular publicans. (Ex. hold) E. help 51552) + f = port mored iter - 7 + (L) == isdu 5.3. Existence and multiplicity results for simpular purplems

Singular problems - books

- Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations, vol.3, pp. 607-723. Ed. by A. Caňada, P. Drábek, A. Fonda. Elsevier 2006.
- Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi Publishing Corporation, New York, USA, 2009, 268 pages.



Irena Rachůnková

2009 - 2011, Singular differential operator

We investigate the singular second order ordinary differential equation

$$u'' - \frac{a}{t}u' = \lambda f(t, u, u'),$$

where $a \in \mathbb{R} \setminus \{0\}$, $\lambda > 0$ and f(t, x, y) satisfies the local Carathéodory conditions on $[0, T] \times \mathbb{R}^2$.

- Limit properties of solutions of singular second-order differential equations. Boundary Value Problems, Vol. 2009, Article ID 905769, 28 pages.
- Neumann problems with time singularities. Computers and Mathematics with Applications 60 (2010), 722-733.

$$u'' - \frac{a}{t}u' = \lambda f(t, u, u'), \qquad (15)$$

$$u(0) = u(T), \quad u'(0) = u'(T).$$
 (16)

A function u is called a solution of equation (15) if $u \in AC^{1}[0, T]$ fulfilfs the equation for a.e. $t \in [0, T]$. If $a \neq 0$, then the solution u satisfies

 $\lim_{t\to 0+} u'(t) = 0.$

• Periodic BVPs in ODEs with time singularities. Computers and Mathematics with Applications 62 (2011), 2058-2070.

Oposite-ordered lower and upper functions. Auxiliary boundary conditions: u(0) = u(T), u'(T) = 0. Leray-Schauder degree method.

Existence theorem - periodic problem

Let a > 0. Suppose that there exist $A, B \in \mathbb{R}$, such that A < B and

$$f(t, x, y) > 0$$
 for a.e. $t \in [0, T]$ and all $x \leq A$, $y \in \mathbb{R}$ (17)

f(t, x, y) < 0 for a.e. $t \in [0, T]$ and all $x \ge B$, $y \in \mathbb{R}$. (18) Further, assume that

 $|f(t,x,y)| \leq g(t)\omega(|y|)$ for a.e. $t \in [0, T]$, all $(x,y) \in \mathbb{R}^2$, (19)

where $g \in L_1[0, T]$, $\omega(y) \in C[0, \infty)$ are positive and ω is nondecreasing.

Then problem (15), (16) has a solution for each $\lambda \in (0, \lambda^*)$, where

$$\lambda^* = \int_0^\infty \frac{\mathrm{d}s}{\omega(s)} \cdot \left(\int_0^T g(t) \, \mathrm{d}t\right)^{-1}$$

< 🗇 🕨 < 🖻 🕨

3 N

Example

The function

$$f(t, x, y) = \frac{t}{3} - \frac{1}{4\sqrt{t}}(1 + y^2) \arctan x$$
 (20)

satisfies assumptions (17)-(19) on $[0,1] \times \mathbb{R}^2$ with $g(t) = \frac{t}{3} + \frac{\pi}{8\sqrt{t}}$ and $\omega(s) = 1 + s^2$. We have A = 0 and $B = \tan(\frac{4}{3})$ and

$$\lambda^* = \int_0^\infty rac{\mathrm{d}s}{\omega(s)} \cdot \left(\int_0^1 g(t) \; \mathrm{d}t
ight)^{-1} = rac{6\pi}{2+3\pi}.$$

For each $\lambda \in \left(0, \frac{6\pi}{2+3\pi}\right)$ there exists a solution.

Example

Let $\mu \in (0,1)$. Consider the function

$$f(t, x, y) = h(t, x, y) - \frac{1}{\sqrt[\beta]{t}} \frac{x}{\sqrt{1 + x^2}} \left(1 + |y|^{\alpha}\right)$$
(21)

depending on the parameters $\beta \in (1, \infty)$ and $\alpha \in (0, \infty)$. Here $h \in C([0, 1] \times \mathbb{R}^2)$ and $|h(t, x, y)| \leq \mu$ on $[0, 1] \times \mathbb{R}^2$. Then f satisfies assumptions (17)-(19) on $[0, 1] \times \mathbb{R}^2$ with $g(t) = \mu + \frac{1}{\sqrt[3]{t}}$,

$$\omega(s)=(1+s)^lpha.$$
 We have $A\leq -rac{\mu}{\sqrt{1-\mu^2}}$ and $B\geq rac{\mu}{\sqrt{1-\mu^2}}$ and

$$\lambda^* = \begin{cases} \infty & \text{for } \alpha \leq 1, \\ \frac{\beta - 1}{(\alpha - 1)(\beta + \mu(\beta - 1))} & \text{for } \alpha > 1. \end{cases}$$

For each $\lambda \in (0, \lambda^*)$ there exists a solution.

・ 同 ト ・ ヨ ト ・ ヨ ト

2012, Structure of solution sets

• Properties of the set of positive solutions to Dirichlet boundary value problems with time singularities. Central European Journal of Mathematics, to appear.

We consider the singular Dirichlet boundary value problem

$$u''(t) + \frac{a}{t}u'(t) - \frac{a}{t^2}u(t) = f(t, u(t), u'(t)),$$
(22)

$$u(0) = 0, \quad u(T) = 0,$$
 (23)

where $a \in (-\infty, -1)$. For $\mathcal{D} = [0, \infty) \times \mathbb{R}$ we assume that f satisfies the local Carathéodory conditions on $[0, T] \times \mathcal{D}$. For $c \ge 0$ we consider the additional condition

$$u'(T) = -c. \tag{24}$$

Assumptions:

 (H_1) There exists $\varphi \in L^1[0, T]$ such that

 $0 < \varphi(t) \leq f(t, x, y)$ for a.e. $t \in [0, T]$ and all $(x, y) \in \mathcal{D}$.

 (H_2) For a.e. $t \in [0, T]$ and all $(x, y) \in D$ the estimate

 $f(t,x,y) \leq h(t,x,|y|),$

is fulfilled, where $h \in Car([0, T] \times [0, \infty)^2)$, h(t, x, z) is nondecreasing in the variables x, z, and

$$\lim_{x\to\infty}\frac{1}{x}\int_0^T h(t,x,x)\,\mathrm{d}t=0.$$

We denote the set of all positive solutions of problem (22), (23), (24) by S_c .

Theorem about the set ${\mathcal S}_c$

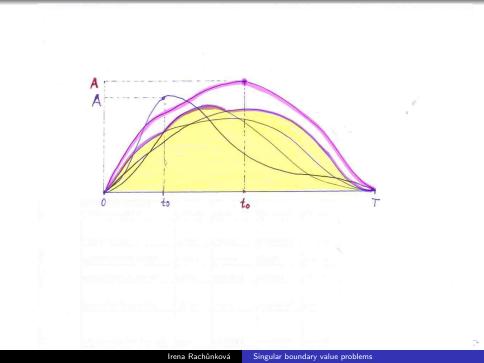
Let (H_1) , (H_2) hold. Then for each $c \ge 0$ the set S_c is nonempty and compact in $C^1[0, T]$.

$$eta(t) = \max\{u(t) : u \in \mathcal{S}_0\} \quad ext{for } t \in [0, T].$$

 $\mathcal{S} = \cup_{c \ge 0} \mathcal{S}_c.$

Theorem about the set $\mathcal{S}\setminus\mathcal{S}_{\mathsf{0}}$

Let $(H_1), (H_2)$ hold. Then for each $t_0 \in (0, T)$ and each $A > \beta(t_0)$ there exists a positive solution u of problem (22), (23) satisfying $u(t_0) = A$.



Operators:

$$\tilde{f}(t, x, y) = \begin{cases} f(t, x, y) & \text{if } x \ge 0\\ f(t, 0, y) & \text{if } x < 0. \end{cases}$$

We define

$$(\mathcal{H}x)(t) = t \int_t^T s^{-a-2} \left(\int_s^T \xi^{a+1} \tilde{f}(\xi, x(\xi), x'(\xi)) \, \mathrm{d}\xi \right) \, \mathrm{d}s.$$

Further, for each $t_0 \in (0, T)$ and $A \ge 0$ we define

$$(\mathcal{K}_{t_0,A}x)(t) = \frac{t}{t_0} \frac{T^{-a-1} - t^{-a-1}}{T^{-a-1} - t_0^{-a-1}} \max\{0, A - (\mathcal{H}x)(t_0)\} + (\mathcal{H}x)(t),$$

and for each $c \ge 0$ we define

$$(\mathcal{L}_{c}x)(t) = t \frac{cT^{a+1}}{|a+1|} (T^{-a-1} - t^{-a-1}) + (\mathcal{H}x)(t).$$
Irena Rachúnková Singular boundary value problems

$$u''(t) + \frac{a}{t}u'(t) - \frac{a}{t^2}u(t) = f(t, u(t)).$$
(25)

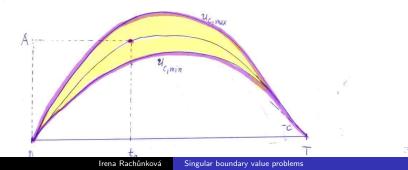
Now we will work with the following assumptions on f: $(H_1^*) \ f \in Car([0, T] \times [0, \infty)).$ $(H_2^*) \ 0 < f(t, x) \text{ for a.e. } t \in [0, T] \text{ and all } x \in [0, \infty).$ $(H_3^*) \ f(t, x) \text{ is increasing in } x \text{ for a.e. } t \in [0, T] \text{ and}$ $\lim_{x \to \infty} \frac{1}{x} \int_{x}^{T} f(t, x) \ dt = 0.$

- There exist minimal and maximal solutions u_{c,min}, u_{c,max} ∈ S_c for each c ≥ 0.
- If the interior of the set $\{(t,x) \in \mathbb{R}^2 : 0 \le t \le T, u_{c,min}(t) \le x \le u_{c,max}(t)\}$ is nonempty, then this interior is covered by graphs of other solutions of S_c for each c > 0.

Theorem

Let $(H_1^*) - (H_3^*)$ hold.

- Assume that there exists $t_0 \in (0, T)$ such that $u_{c,min}(t_0) < u_{c,max}(t_0)$ for some c > 0. Then for each $A \in (u_{c,min}(t_0), u_{c,max}(t_0))$ there exists $u \in S_c$ satisfying $u(t_0) = A$.
- The set S_c is one-point for each $c \in [0, \infty) \setminus \Gamma$, where $\Gamma \subset [0, \infty)$ is at most countable.



Example

Let us choose $\alpha \in [0, 1)$ and for a.e. $t \in [0, T]$ and all $x \in [0, \infty)$, define the function f by

$$f(t,x) = h_1(t) + h_2(t,x)x^{\alpha},$$

or

$$f(t,x) = h_1(t) + h_2(t,x) \frac{x}{\ln(x+2)},$$

where $h_1 \in L^1[0, T]$, $h_1 > 0$ a.e. on [0, T], h_2 is nonnegative, bounded and continuous on $[0, T] \times [0, \infty)$ and increasing in x. Then $(H_1^*) - (H_3^*)$ hold.

Happy birthday, Svaťa !!!

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

э