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1 Introduction

Consider the Φ-Laplacian type equation

d

dt
Φ(t, x′) + f(t, x) = 0, (1)

t ∈ I := [a, b],
f ∈ C(I × R,R) is Lipschitz function with respect to x,
Φ ∈ C(I × R,R) is Lipschitz and monotone func. with respect to x′,
together with the boundary conditions

{
x(a) cos α− Φ(a, x′(a)) sin α = 0,
x(b) cos β − Φ(b, x′(b)) sin β = 0,

(2)

where 0 ≤ α < π, 0 < β ≤ π.

Denote y = Φ(t, x′), (1) ⇒
{

x′ = Φ−1(t, y),
y′ = −f(t, x). (3)

and apply the quasilinearization process described in [3], [4], [7].
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2 Quasilinearization process

ΦLE
d

dt
Φ(t, x′) + f(t, x) = 0,

x(a) cos α− Φ(a, x′(a)) sin α = 0,
x(b) cos β − Φ(b, x′(b)) sin β = 0,

⇓

NLS

(
x′ = Φ−1(t, y),

y′ = −f(t, x),

x(a) cos α− y(a) sin α = 0,
x(b) cos β − y(b) sin β = 0,

m

QLS

(
x′ − ky = F1(t, y),

y′ + kx = F2(t, x),

x(a) cos α− y(a) sin α = 0,
x(b) cos β − y(b) sin β = 0,

Ω = {(t, x, y) : a ≤ t ≤ b, |x| ≤ Nx, |y| ≤ Ny}
⇓8

>>><
>>>:

x(t) =
bR

a
(G11(t, s)F1(s, y(s)) + G12(t, s)F2(s, x(s)))ds,

y(t) =
bR

a
(G21(t, s)F1(s, y(s)) + G22(t, s)F2(s, x(s)))ds,

|x(t)| ≤ (b− a)(Γ11 ·M1 + Γ12 ·M2)≤ Nx,
|y(t)| ≤ (b− a)(Γ21 ·M1 + Γ22 ·M2)≤ Ny .
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“Key” inequalities

If |x(t)| ≤ Nx, |y(t)| ≤ Ny ∀t ∈ [a, b] ,
then we say that the nonlinear problem for the differential system (3)
allows for quasilinearization with respect to the extracted linear part.

{
(b− a)(Γ11 ·M1 + Γ12 ·M2) ≤ Nx,
(b− a)(Γ21 ·M1 + Γ22 ·M2) ≤ Ny.

(4)

If the inequalities (4) are fulfilled for different values of k, when
the respective extracted linear parts are essentially different, then in
this case we are able to obtain multiplicity results for boundary value
problems under consideration.
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3 Results for quasi-linear systems

Consider the quasi-linear system
{

x′ − ky = F1(t, y),
y′ + kx = F2(t, x), (5)

where functions F1, F2 are continuous, bounded and satisfy the Lip-
schitz conditions with respect to y and x respectively, together with
the boundary conditions

x(a) cos α− y(a) sin α = 0,
x(b) cos β − y(b) sin β = 0.

(6)

In order to classify the linear parts of (5) consider the respective ho-
mogeneous problem

{
x′ − ky = 0,
y′ + kx = 0,

x(a) cos α− y(a) sin α = 0,
x(b) cos β − y(b) sin β = 0.

(7)
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Introduce polar coordinates as

x(t) = r(t) sin φ(t), y(t) = r(t) cos φ(t). (8)

Then the angular function φ(t) for (7) satisfies φ′(t) = k and there-
fore the angular function φ(t) is monotonically increasing if k > 0.

The boundary conditions (6) in polar coordinates take the form

φ(a) = α, φ(b) = β(mod π). (9)

A linear part
(
LX

)
(t) in system (7) is non-resonant with respect

to the boundary conditions (6), if a coefficient k > 0 satisfies

sin
(
β − α− k(b− a)

) 6= 0 .

All proper values of k form the intervals of non-resonance, in each of
them the angular function φ(t) has distinctive properties.
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Figure 1. Phase portraits of the solutions to the problem{
x′ − k y = 0,
y′ + k x = 0,

x(0)− y(0) = 0,
x(1) + y(1) = 0 (10)

in the interval t ∈ [0, 1] for different values of k.
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Definition 1. A linear part
(
LX

)
(t) in (7) is called i-nonresonant

with respect to the boundary conditions (6) if the angular func-
tion φ(t), defined by the initial condition φ(a) = α, takes ex-
actly i values of the form β(mod π) in the interval (a, b) and
φ(b) 6= β(mod π) .

If for different values of k the respective linear parts have differ-
ent types of non-resonance then we say that these linear parts are
essentially different.
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Let
(
ξ(t), η(t)

)
be a solution of the quasi-linear problem (5), (6).

Definition 2. We say that
(
x(t; δ), y(t; δ)

)
is a neighboring solution

of a solution
(
ξ(t), η(t)

)
to the quasi-linear problem (5), (6), if(

x(t; δ), y(t; δ)
)

solves the same quasi-linear system (5), satisfies
the first boundary condition x(a; δ) cos α − y(a; δ) sin α = 0 and
there exists ε > 0 such that ∀ δ ∈ (0, ε]

y(a; δ) = η(a) + δ, if α = 0 or x(a; δ) = ξ(a) + δ, if α > 0.
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x

-2

-1

1

y

Α

b) 0 < α < π

Figure 2. Neighboring solutions
(
x(t; δ), y(t; δ)

)
of the solution(

ξ(t), η(t)
)
.
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In order to classify solutions of the quasi-linear problem under
consideration introduce (local) polar coordinates for the difference
between neighboring solution

(
x(t; δ), y(t; δ)

)
and being investigated

solution
(
ξ(t), η(t)

)
as

x(t; δ)− ξ(t) = ρ(t) sinΘ(t; δ),
y(t; δ)− η(t) = ρ(t) cos Θ(t; δ), (11)

where Θ(a; δ) = α.

Definition 3. We say that
(
ξ(t), η(t)

)
is an i-type solution of the

quasi-linear problem (5), (6), if there exists some small number
ε > 0 such that for δ ∈ (0, ε] the angular function Θ(t; δ) of
the difference between neighboring solution

(
x(t; δ), y(t; δ)

)
and(

ξ(t), η(t)
)
, defined by the initial condition Θ(a; δ) = α, takes

exactly i values of the form β(mod π) in the interval (a, b) and
Θ(b; δ) 6= β(mod π).
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Figure 3. Phase portraits of differences between neighboring
solution (x, y) and being investigated solution (ξ, η),
t ∈ [a, b].
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Theorem 3.1.

If a linear part
(
LX

)
(t) in the quasi-linear system (5) is

i-nonresonant with respect to the boundary conditions (6),
then the problem (5), (6) has an i-type solution.

This theorem was proved in [6], [7] for a quasi-linear system
{

x′ + a11x + a12y = F1(t, x, y),
y′ + a21x + a22y = F2(t, x, y). (12)
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4 Green’s matrix

The Green’s matrix for the homogeneous problem (7) is constructed
explicitly.

Gk(t, s) =

8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

0
BBB@

cos(α−k(a−s)) sin(β−k(b−t))
sin(β−α−k(b−a))

− sin(α−k(a−s)) sin(β−k(b−t))
sin(β−α−k(b−a))

cos(α−k(a−s)) cos(β−k(b−t))
sin(β−α−k(b−a))

− sin(α−k(a−s)) cos(β−k(b−t))
sin(β−α−k(b−a))

1
CCCA

if a ≤ s ≤ t ≤ b,

0
BBB@

sin(α−k(a−t)) cos(β−k(b−s))
sin(β−α−k(b−a))

− sin(α−k(a−t)) sin(β−k(b−s))
sin(β−α−k(b−a))

cos(α−k(a−t)) cos(β−k(b−s))
sin(β−α−k(b−a))

− cos(α−k(a−t)) sin(β−k(b−s))
sin(β−α−k(b−a))

1
CCCA

if a ≤ t < s ≤ b.
(13)

∣∣∣Gij
k (t, s)

∣∣∣ ≤ 1

| sin(β − α− k(b− a))| =: Γk, (i, j = 1, 2). (14)
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5 Application

Consider the boundary value problem (1), (2),

where Φ(t, x′) = r(t)|x′| 1p sgnx′, f(t, x) = q(t)|x|p sgnx , (15)

t ∈ I := [a, b], p > 1, r, q ∈ C(I; (0,+∞)). Denote Φ(t, x′) = y, then
obtain a two-dimensional differential system{

x′ = (r(t))−p|y|p sgn y,
y′ = −q(t)|x|p sgnx,

(16)

together with the boundary conditions (6). The obtained system (16)
is equivalent to a system{

x′ − k y = (r(t))−p|y|p sgn y − k y,
y′ + k x = k x− q(t)|x|p sgnx,

(17)

where the coefficient k > 0 satisfies sin(β − α− k(b− a)) 6= 0.
Then we wish to make bounded the right sides in the system (17)

Uk(t, y) := (r(t))−p|y|p sgn y − k y, Vk(t, x) := k x− q(t)|x|p sgnx.
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Figure 4. Number Nk existence.
Computation gives that

my(t∗) = |Uk(t∗, y0)| =
(k

p

) p
p−1

(p− 1)
(
r(t∗)

) p
p−1 , (18)

ny(t∗) = k
1

p−1
(
r(t∗)

) p
p−1 γ, (19)

where a constant γ is a root of the equation γp = γ + (p− 1)p
p

1−p .

mx(t∗) = |Vk(t∗, x0)| =
(k

p

) p
p−1

(p− 1)
(
q(t∗)

) 1
1−p , (20)

nx(t∗) = k
1

p−1
(
q(t∗)

) 1
1−p γ. (21)
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Instead of the functions Uk(t, y), Vk(t, x) consider

Ûk(t, y) := Uk(t, δ(−Ny, y, Ny)),
V̂k(t, x) := Vk(t, δ(−Nx, x, Nx)),

where Ny = min{ny(t) : t ∈ [a, b]} and Nx = min{nx(t) : t ∈ [a, b]},
besides

sup |Ûk(t, y| = My = max{my(t) : t ∈ [a, b]},
sup |V̂k(t, x)| = Mx = max{mx(t) : t ∈ [a, b]}.

The nonlinear system (17) and the quasi-linear one
{

x′ − k y = Ûk(t, y),
y′ + k x = V̂k(t, x)

(22)

are equivalent in a domain

Ωk = {(t, x, y) : a ≤ t ≤ b, |x(t)| ≤ Nx, |y(t)| ≤ Ny}. (23)

The modified quasi-linear problem (22), (6) is solvable if k > 0 satisfies
sin(β−α−k(b−a)) 6= 0. The respective solution

(
xk(t), yk(t)

)
can be
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written in the integral form and can be estimated. Since the elements
of Green’s matrix have same estimate therefore “key” inequalities for
BVP under consideration take the form

(b− a)Γk

(
My + Mx

)
< Nx,

(b− a)Γk

(
My + Mx

)
< Ny

(24)

or, equivalently

(b− a)
| sin(β − α− k(b− a))|

(
My + Mx

)
< min{Nx, Ny}. (25)

If “key” inequality (25) holds then the nonlinear problem (17), (6)
(or, equivalently, the original problem (1), (2)) allows for quasilin-
earization and therefore has a solution of definite type.

Suppose that in (15) 0 < r1 ≤ r(t) ≤ r2 and 0 < q1 ≤ q(t) ≤ q2

∀t ∈ [a, b].
Taking into consideration the expressions for My, Mx, Ny, Nx,

γ (19) we obtain the following inequality
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k(b− a)
| sin(β − α− k(b− a))| · p

p
1−p · (p− 1) ·

(
r

p
p−1
2 + q

1
1−p

1

)
< A · γ, (26)

where A = min{r
p

p−1
1 , q

1
1−p

2 }. Thus a fulfilment of the inequality (26)
is a sufficient condition for existence of a solution of definite type to
the problem (1), (2). Depending on the functions r(t) and q(t) and
parameter p there are possible 4 different cases. Denote:

∗ µ =
1

rp
2 · q2

, if r−p
1 < q2 and r−p

2 < q1 ;

∗ µ = rp
1 · q1 , if r−p

1 > q2 and r−p
2 > q1 ;

∗ µ =
(r1

r2

)p

, if r−p
1 > q2 and r−p

2 < q1 ;

∗ µ =
q1

q2
, if r−p

1 < q2 and r−p
2 > q1 .

(27)

Then the inequality (26) is fulfilled if the following inequality holds

2k(b− a)
| sin(β − α− k(b− a))| · p

p
1−p · (p− 1) · µ 1

1−p < γ.
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Dirichlet boundary conditions (α = 0, β = π):

x(a) = 0, x(b) = 0. (28)

Neumann boundary conditions (α = π
2 , β = π

2 ):

x′(a) = 0, x′(b) = 0. (29)

Mixed boundary conditions (α = 0, β = π
2 ):

x(a) = 0, x′(b) = 0. (30)

The linear part
(
LX

)
(t) under consideration is i-nonresonant

- with respect to the boundary conditions (28) and (29), if

k ∈
(

iπ

(b− a)
,

(i + 1)π
(b− a)

)
, i ∈ N ∪ {0} ;

- with respect to the mixed boundary conditions (30), if

k ∈
(

(2i− 1)π
2(b− a)

,
(2i + 1)π
2(b− a)

)
, i ∈ N .
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Theorem 5.1. If there exists some number ki ∈
(

iπ

(b− a)
,
(i + 1)π
(b− a)

)
,

i ∈ N ∪ {0}, which satisfies the inequality

2ki(b− a)
| sin ki(b− a)| · p

p
1−p · (p− 1) · µ 1

1−p < γ , (31)

where γ is a root of the equation γp = γ + (p− 1) · p p
1−p and µ

is number of the form (27), then there exists an i-type solution
of the nonlinear problem (1), (15), (28) (or (1),(15), (29)).

Theorem 5.2. If there exists some number ki ∈
(

(2i− 1)π
2(b− a)

,
(2i + 1)π
2(b− a)

)
,

i ∈ N, which satisfies the inequality

2ki(b− a)
| cos ki(b− a)| · p

p
1−p · (p− 1) · µ 1

1−p < γ , (32)

where γ is a root of the equation γp = γ + (p− 1) · p p
1−p and µ

is number of the form (27), then there exists an i-type solution
of the nonlinear problem (1), (15),(30).
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Denote:
- τi is a root of the equation τ = tan τ , which belongs to the

interval
(
iπ,

(2i + 1)π
2

)
, i ∈ N ∪ {0};

- νi is a root of the equation ν = − cot ν, which belongs to the

interval
( (2i− 1)π

2
, πi

)
, i ∈ N.

The results of calculations are provided in the following tables.
For certain values of p and µ these tables show which numbers ki of
the form ki =

τi

(b− a)
or ki =

νi

(b− a)
satisfy the inequality (31) or

(32) respectively.
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Table 1. Results of calculations for the BVP (1), (15),(28)
(or for the BVP (1), (15), (29)).

p γ µ ki

4

3
1.2703 µ ≥ 0.9144 k0; k1

5

4
1.2813 µ ≥ 0.8760 k0; k1

µ ≥ 0.9991 k0; k1; k2

6

5
1.2884 µ ≥ 0.8630 k0; k1

µ ≥ 0.9588 k0; k1; k2

7

6
1.2933 µ ≥ 0.8596 k0; k1

µ ≥ 0.9384 k0; k1; k2

µ ≥ 0.9931 k0; k1; k2; k3
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Table 2. Results of calculations for the BVP (1), (15), (30).

p γ µ ki

3

2
1.2509 µ ≥ 0.8390 k0; k1

4

3
1.2703 µ ≥ 0.7903 k0; k1

5

4
1.2813 µ ≥ 0.7852 k0; k1

µ ≥ 0.9437 k0; k1; k2

6

5
1.2884 µ ≥ 0.7907 k0; k1

µ ≥ 0.9161 k0; k1; k2

µ ≥ 0.9949 k0; k1; k2; k3

7

6
1.2933 µ ≥ 0.7991 k0; k1

µ ≥ 0.9034 k0; k1; k2

µ ≥ 0.9702 k0; k1; k2; k3
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6 Example

Consider the problem
d

dt
(0.005(95 + sin

π

2
t)|x′| 56 sgn x′) + 0.05(49− 4

π
arctan(2− t))|x| 65 sgn x = 0,

x(1) = 0, x(3) = 0,
(33)

that is a special case of the problem (1), (15), (28) with p = 6
5 ,

r(t) = 0.005(95 + sin π
2 t) and q(t) = 0.05

(
49− 4

π arctan(2− t)
)
.

∀t ∈ [1, 3] 0.47 ≤ r(t) ≤ 0.48 and 2.4 ≤ q(t) ≤ 2.5,
therefore that is the 4-th possible case r−p

1 < q2 and r−p
2 > q1,

thus µ = q1
q2

, µ = 0.96.

In accordance with calculations ( Table 1) there exist at least three
different solutions of the problem (33), of 0-type, 1-type and 2-type
respectively. We have computed them.

Contents First Last J I Back Close Full Screen



25

∀δ ∈ (0, 0.12]
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Figure 5. 0-type solution of the BVP (33):
a) the trivial solution ξ0(t) ≡ 0 ;
b) phase portrait of the difference between neighboring solution(

x(t; δ), y(t; δ)
)

and
(
ξ0(t), η0(t)

)
, t ∈ [1, 3], if δ = 0.02.
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∀δ ∈ (0, 4]
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Figure 6. 1-type solution of the BVP (33):
a) ξ1(1) = 0, ξ′1(1) = 0.207219 ;
b) phase portrait of the difference between neighboring solution(

x(t; δ), y(t; δ)
)

and
(
ξ1(t), η1(t)

)
, t ∈ [1, 3], if δ = 0.02.
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∀δ ∈ (0, 29]
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-4

-2

2

4

a)

-0.2 -0.1 0.1 0.2
x - Ξ2

-0.2

-0.1

0.1

0.2

0.3

y - Η2

b)

Figure 7. 2-type solution of the BVP (33):
a) ξ2(1) = 0, ξ′1(2) = 13.2705 ;
b) phase portrait of the difference between neighboring solution(

x(t; δ), y(t; δ)
)

and
(
ξ2(t), η2(t)

)
, t ∈ [1, 3], if δ = 0.2.
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