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Boundary value problem

We are looking for the assumptions ensuring the existence of at
least one solution to the singular nonlinear boundary value problem

(1) u′′(t) + f (t, u(t), u′(t)) = 0,

(2) u(0) = 0, u′(T ) = ψ(u(T )).

where f ∈ Car((0,T )× D), D = (0,∞)× R, can have time or
space singularity, ψ ∈ C [0,∞).
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Time and space singularities

Let f ∈ Car((0,T )× D), where D = (0,∞)× R. We say that f
has a time singularity at t = 0 and/or at t = T , if there exists
(x1, y1) ∈ D and/or (x2, y2) ∈ D such that∫ ε

0
|f (t, x1, y1)|dt = ∞ and/or

∫ T

T−ε
|f (t, x2, y2)|dt = ∞

for each sufficiently small ε > 0. The point t = 0 and/or t = T
will be called a singular point of f .
We say that f has a space singularity at x = 0 if

lim sup
x→0+

|f (t, x , y)| = ∞ for a. e. t ∈ [0,T ] and for some y ∈ R.
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Solution of the problem (1),(2)

By solution of the problem

(1) u′′(t) + f (t, u(t), u′(t)) = 0,

(2) u(0) = 0, u′(T ) = ψ(u(T ))

we understand the function

u ∈ AC 1[0,T ]

satisfying the differential equation (1) and boundary conditions (2).
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Main assumptions

To prove the existence of at least one solution of the problem (1),
(2) we assume that

(i) f ∈ Car((0,T )× D), where T > 0, D = (0,∞)× R, with
possible time singularities at t = 0 and/or t = T and a space
singularity at x = 0.
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Main assumptions

(ii) there exist ε ∈ (0, 1), ν ∈ (0,T ), c ∈ (ν,∞) and ε0 ∈ (0,∞)
such that

f (t, ct, c) = 0 for a. e. t ∈ [0,T ],

0 = ψ(0), ψ(cT ) ≤ c

0 ≤ f (t, x , y)

for a. e. t ∈ [0,T ], each x ∈ (0, ct], y ∈ [mint∈[0,cT ] ψ(t), c],

ε ≤ f (t, x , y)

for a. e. t ∈ [T − ν,T ], each x ∈ (0, ct], y ∈ (−ε0, ν].
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The existence theorem

Theorem Let assumptions (i) and (ii) hold. Then there exists a
solution u of the problem (1), (2) such that

0 < u(t) ≤ ct

for each t ∈ (0,T ] (the constant c is from the assumption (ii)).

Proof. Step 1. For k ≥ 3/T we define

αk(t, x) =


c/k for x < c/k,
x for c/k ≤ x ≤ ct,
ct for x > ct,

for each t ∈ [1/k,T − 1/k], x ∈ R,
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The existence theorem

β(y) =


mint∈[0,cT ] ψ(t) for y < mint∈[0,cT ] ψ(t),
y for mint∈[0,cT ] ψ(t) ≤ y ≤ c ,
c for y > c ,

and

γ(y) =


ε for y < ν,

ε c−y
c−ν for ν ≤ y ≤ c ,

0 for y > c ,

for each y ∈ R and

fk(t, x , y) =


0 for t ∈ [0, 1/k),
f (t, αk(t, x), β(y)) for t ∈ [1/k,T − 1/k],
γ(y) for t ∈ (T − 1/k,T ],

for each x , y ∈ R.
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The existence theorem

Let us define regular problem

(Rk) u′′ + fk(t, u, u′) = 0, u(0) = 0, u′(T ) = ψ(u(T )).

Step 2. From the assumptions it follows that

σ1(t) = 0 is a lower function,

σ2(t) = ct is an upper function

of the regular problems (Rk) for each k.
Then using the existence theorem for regular problem we get

0 ≤ uk(t) ≤ ct

for each solution uk of the problem (Rk). Moreover we can find
ω > 0 such that

uk(t) ≥ ωt for each t ∈ [0,T ] and almost each k ∈ N.
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The existence theorem

Step 3. We can find a convergent subsequence of the sequence
{uk} and prove that its limit is a solution of the problem (1), (2).
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Example

Example Let α, β ∈ (0,∞). Then, by the existence theorem the
problem

u′′+(u−α+uβ+t2+1)(1−(u′)3) = 0, u(0) = 0, u′(1) = −(u(1))2

has a solution u ∈ AC 1[0, 1] such that

0 < u(t) ≤ t for each t ∈ (0, 1].

Irena Rachůnková, Jan Tomeček Singular problem for ODE’s



References

O’Regan, D.: Upper and lower solutions for singular problems
arising in the theory of membrane response of a spherical cap.
Nonlinear Anal. 47 (2001), 1163–1174.
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