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2n-th order periodic problem

1-n 1 N N+n

{ (—1)"A2%"x(k — n) 4+ g(k)x(k) = g(k, x(k)), k=1,2,...,N,
A'x(1 —n) = A'x(N+1—n), i=0,....,2n—1,
(1)
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2n-th order periodic problem

1-n 1 N N+n

{ (—1)"A27x(k — n) + q(k)x(k) = g(k, x(k)), k=1,2,....N,
A'x(1 —n)=Ax(N+1—n), i=0,....2n—1,
(1)
2n
(—1)"2%7x(k —n) =3 (~1)*" (2,-”) X(k—n+1)

i=0
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2n-th order periodic problem

1-n 1 N N+n

{ (—1)"A27x(k — n) + q(k)x(k) = g(k, x(k)), k=1,2,....N,
A'x(1 —n)=Ax(N+1—n), i=0,....2n—1,
(1)
2n
(—1)"2%7x(k —n) =3 (~1)*" (2,-”) X(k—n+1)

i=0
Aonx = G(x)
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2n-th order periodic problem

1-n 1 N N+n

{ (—=1)"A27x(k — n) + q(k)x(k) = g(k, x(k)), k=1,2,...,N,
Alx(1 —=n)=AX(N+1—-n), i=0,...,2n—1,
(1)
2n
(—1)"A2%(k — n) = 3 (~1)"*" <2i”> x(k—n+i)

i=0
(A2n + Q)x = G(x)
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Matrix formulation

(Azn+ Q)x = G(x)
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Matrix formulation

(A2 + Q)x = G(x), where Ay, =

[ an  apyt an—1 azn ap ai an—1

an—1 an an1 e aon—1 aon o ap—2

ay <e-an—1 an ant1 <o 2p—1 azn ao

ao ay e an—1 an ant1 e don—1 aon

do ay e an—1 an ant1 e don—1 aon
azn ao a an—1 an an41 don—1

ao a . an—1 an an1

L a@nti don o ay an—1 an

where g; = (—1)" (2’.”)
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Properties of matrices |

2 -1 —1
-1 2 -1
Zg =
1 2 -1
|1 -1 2 |

Stehlik Solvability of nonlinear difference equations



Properties of matrices |

2 -1 —1
1 2 -1
Az = S
1 2 1
1 -1 2 |

Eigenvalues of A, are

)\m:4sin2(%), for m—0,1,...,gl,ifNiseven
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Properties of matrices |

2 -1 —1
1 2 -1
A =
1 2 1
1 -1 2 |

Eigenvalues of A, are

Am = 45sin? (%) for m—0,1,...,N;1,ifNisodd
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Properties of matrices |l

o A=A,
mio(—ﬂmﬂ (5]) (—1)nthem (k 2J7m) = (—1)mHIHk mio fi) (k 3nm)
( 1)n+1+k (2 n;,—1 ‘
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Properties of matrices |l

° Ay = Zg
K

Z(_1)m+1 (5]) (_1)n+k+m (k 2J7m) _ (_1)n+1+k i

m=0

@ eigenvalues of Ay, are the n-th powers of eigenvalues of
As.

—n—1

= = _ o —n—2
(A 1~ Apn)Vim = (AmlfAz) ()\"m Y AN"2hy .+ ARy C 4+ Ay ) Vin = 0,
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Application of Degree Theory

Theorem

Let us suppose that
q(k) >O0forallk =1,2,...,N, q(k) > 0forsomek € {1,2,...,N}.

Moreover, let us assume that forallk =1,2,..., N, the
functions gy are continuous and that there exists R > 0 such
that for each u with 0 < |u| < R:

ugk(u) <0.

Then the problem (1) has a solution.

Stehlik Solvability of nonlinear difference equations



Application of Degree Theory

Theorem

Let us suppose that
q(k) >O0forallk =1,2,...,N, q(k) > 0forsomek € {1,2,...,N}.

Moreover, let us assume that forallk =1,2,..., N, the
functions gy are continuous and that there exists R > 0 such
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Application of Degree Theory

Theorem

Let us suppose that

q(k) > 0forallk =1,2,...,N,

Moreover, let us assume that for all k = 1,2,... N, the
functions gy are continuous and that there exists R > 0 such
that for each u with 0 < |u| < R:

ugk(u)<O0.

Then the problem (1) has a solution.
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Comparison of results

Green function + L&U solutions unigueness
Atici, Cabada 2003 gk >0
Atici, Guseinov 1999
Henderson 1989
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Comparison of results

Green function + L&U solutions
Atici, Cabada 2003
Atici, Guseinov 1999
Henderson 1989

uniqueness
gk >0

Matrix formulation + degree theory

no monotonicity
g=0
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Application of variational methods

F(x) := % (Aonx, X) — G(X)
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Application of variational methods

1 ~

F(x) 1= 5 (Aonx, %) G(x)

Theorem

Let g > 0 be satisfied. Let us suppose that
g {1,2,...,N} xR — R is a function such that for each
=1,2,...,N:

(I) gk € Lloc( )
(L) there exists M > 0 such that

uIim gk(u) < —M, andulirp gk(u) > M.

Then BVP (1) has a solution.




Application of variational methods

1 ~

F(x) 1= 5 (Aonx, %) G(x)

Theorem

Let g > 0 be satisfied. Let us suppose that
g {1,2,...,N} xR — R is a function such that for each
=1,2,...,N:

(I) gk € L}OC( );
(L) there exists M > 0 such that

uIim gk(u) < —M, andulirp gk(u) > M.

Then BVP (1) has a solution.




Uniqueness

Theorem

Let us suppose thatg : {1,2,...,N} x R — R is a function
such that foreach k =1,2,..., N the assumptions (l), (L) hold
and that

(M) gk is nonincreasing,

If g > 0 and q(k) > 0 for some k € {1,2,..., N}, then the
solution of (1) is unique.
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Uniqueness

Theorem

Let us suppose thatg : {1,2,...,N} x R — R is a function
such that foreach k =1,2,..., N the assumptions (l), (L) hold
and that

(M) gk is nonincreasing,

If g > 0 and q(k) > 0 for some k € {1,2,..., N}, then the
solution of (1) is unique.
Moreover, if

(M) g is strictly decreasing,

then the solution is unique also in the case when g = 0.
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Comparison of results

Green function + L&U solutions
Atici, Cabada 2003
Atici, Guseinov 1999
Henderson 1989

uniqueness
gk >0
no limit conditions

Matrix formulation + degree theory

no monotonicity
g=0
no limit conditions
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Comparison of results

Green function + L&U solutions
Atici, Cabada 2003
Atici, Guseinov 1999
Henderson 1989

uniqueness
gk >0
no limit conditions

Matrix formulation + degree theory

no monotonicity
g=0
no limit conditions

Matrix formulation + var.methods

no continuity required
uniqueness, evenif g =0
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Extensions - Sturm - Liouville

@ boundary conditions

(—)"AY(Ax(k - n)) = f(k,x(K)), k=1,2,...,N,
x(1=n+i)=C;, x(N+n—-i)=D;, i=0,...,n—1.

Stehlik Solvability of nonlinear difference equations



Extensions - Sturm - Liouville

@ boundary conditions
(=1)"AN(A"x(k — n)) = f(k,x(k)), k=1,2,...,N,
{ x(1=n+i)=C;, x(N+n—-i)=D;, i=0,...,n—1.
@ different operators

{ (=1)"A"(p(k — n)A"x(k — n)) = f(k,x(k)), k=1,2,...,N,
x(1—n+i)=C;, x(N+n—-i=D;, i=0,...,n—1.
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Extensions - Sturm - Liouville

@ boundary conditions

(=1)"A"(A"x(k — n)) = f(k,x(k)), k=1,2,...,N,
x(1—=n+1i)=Cj x(N+n—/):D,, i=0,...,n—1.

@ different operators

{ (=1)"A"(p(k — n)A"x(k — n)) = f(k,x(k)), k=1,2,...,N,
x(1—n+i)=C;, x(N+n—-i=D;, i=0,...,n—1.

@ variable steps

— (P(p(1))X2 (p(1)))" +OI(T)X(1): f(t, x(t)), on|[a, bl
ax(p(a)) = fx*(p(a)) = C, yx(a(b)) + 6x4(b) = D,
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Final remarks

Fucik spectrum - Margulies & Margulies (1999) study matrix
equations
Ax = ax™ + bx~,

where A is 2 x 2 matrix
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Final remarks

Fucik spectrum - Margulies & Margulies (1999) study matrix
equations
Ax = ax™ + bx~,

where A is 2 x 2 matrix

Thank you for your attention
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