Matrix theory and the solvability of nonlinear difference equations

Petr Stehlík¹

¹Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic

WDE, September 2007, Hejnice, Czech Republic

Continuous x Discrete Problems

$$\begin{cases} (-1)^n \Delta^{2n} x(k-n) + q(k)x(k) = g(k,x(k)), & k = 1,2,...,N, \\ \Delta^i x(1-n) = \Delta^i x(N+1-n), & i = 0,...,2n-1, \end{cases}$$
(1)

$$\begin{cases} (-1)^n \Delta^{2n} x(k-n) + q(k)x(k) = g(k,x(k)), & k = 1,2,...,N, \\ \Delta^i x(1-n) = \Delta^i x(N+1-n), & i = 0,...,2n-1, \end{cases}$$
(1)

$$(-1)^n \Delta^{2n} x(k-n) = \sum_{i=0}^{2n} (-1)^{i+n} {2n \choose i} x(k-n+i)$$

$$\begin{cases} (-1)^n \Delta^{2n} x(k-n) + q(k)x(k) = g(k, x(k)), & k = 1, 2, ..., N, \\ \Delta^i x(1-n) = \Delta^i x(N+1-n), & i = 0, ..., 2n-1, \end{cases}$$
(1)

$$(-1)^n \Delta^{2n} x(k-n) = \sum_{i=0}^{2n} (-1)^{i+n} {2n \choose i} x(k-n+i)$$

$$A_{2n}x = G(x)$$

$$\begin{cases} (-1)^n \Delta^{2n} x(k-n) + q(k)x(k) = g(k,x(k)), & k = 1,2,...,N, \\ \Delta^i x(1-n) = \Delta^i x(N+1-n), & i = 0,...,2n-1, \end{cases}$$
(1)

$$(-1)^n \Delta^{2n} x(k-n) = \sum_{i=0}^{2n} (-1)^{i+n} {2n \choose i} x(k-n+i)$$

$$(\overline{A}_{2n}+Q)x=G(x)$$

Matrix formulation

$$(\overline{A}_{2n}+Q)x=G(x)$$

Matrix formulation

$$(\overline{A}_{2n}+Q)x=G(x)$$
, where $\overline{A}_{2n}=$

$$\begin{bmatrix} a_n & a_{n+1} & \dots & a_{2n-1} & a_{2n} & & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_{n+1} & \dots & a_{2n-1} & a_{2n} & & a_0 & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & & \ddots & \ddots & & \vdots \\ a_1 & \dots & a_{n-1} & a_n & a_{n+1} & \dots & a_{2n-1} & a_{2n} & & a_0 \\ a_0 & a_1 & \dots & a_{n-1} & a_n & a_{n+1} & \dots & a_{2n-1} & a_{2n} & & \vdots \\ & & & \ddots & \ddots & \ddots & & \ddots & \ddots & \ddots & \ddots \\ & & & a_0 & a_1 & \dots & a_{n-1} & a_n & a_{n+1} & \dots & a_{2n-1} & a_{2n} \\ a_{2n} & & & a_0 & a_1 & \dots & a_{n-1} & a_n & a_{n+1} & \dots & a_{2n-1} \\ \vdots & \ddots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{n+1} & \dots & & a_{2n} & & & a_0 & a_1 & \dots & a_{n-1} & a_n & a_{n+1} \\ a_{n+1} & \dots & & a_{2n} & & & a_0 & a_1 & \dots & a_{n-1} & a_n & a_{n+1} \\ \end{bmatrix}$$

where
$$a_i = (-1)^{n+i} \binom{2n}{i}$$

Properties of matrices I

$$\overline{A}_2 := \begin{bmatrix} 2 & -1 & & & -1 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ -1 & & & -1 & 2 \end{bmatrix}$$

Properties of matrices I

$$\overline{A}_2 := egin{bmatrix} 2 & -1 & & & -1 \ -1 & 2 & -1 & & & \ & \ddots & \ddots & \ddots & \ & & -1 & 2 & -1 \ -1 & & & -1 & 2 \end{bmatrix}$$

Eigenvalues of \overline{A}_2 are

$$\lambda_m = 4 \sin^2\left(\frac{m\pi}{N}\right), \quad \text{for} \quad m = 0, 1, \dots, \frac{N}{2}, \text{if } N \text{ is even}$$

Properties of matrices I

$$\overline{A}_2 := egin{bmatrix} 2 & -1 & & & -1 \ -1 & 2 & -1 & & & \ & \ddots & \ddots & \ddots & \ & & -1 & 2 & -1 \ -1 & & & -1 & 2 \end{bmatrix}$$

Eigenvalues of \overline{A}_2 are

$$\lambda_m = 4 \sin^2\left(\frac{m\pi}{N}\right), \quad \text{for} \quad m = 0, 1, \dots, \frac{N-1}{2}, \text{if } N \text{ is odd}$$

Properties of matrices II

$$\bullet \ \overline{A}_{2n} = \overline{A}_2^n$$

$$\sum_{m=0}^{k} (-1)^{m+1} \binom{2}{m} (-1)^{n+k+m} \binom{2n}{k-m} = (-1)^{n+1+k} \sum_{m=0}^{k} \binom{2}{m} \binom{2n}{k-m}$$
$$= (-1)^{n+1+k} \binom{2(n+1)}{k}.$$

Properties of matrices II

 $\bullet \ \overline{A}_{2n} = \overline{A}_2^n$

$$\sum_{m=0}^{k} (-1)^{m+1} \binom{2}{m} (-1)^{n+k+m} \binom{2n}{k-m} = (-1)^{n+1+k} \sum_{m=0}^{k} \binom{2}{m} \binom{2n}{k-m}$$
$$= (-1)^{n+1+k} \binom{2(n+1)}{k}.$$

• eigenvalues of \overline{A}_{2n} are the *n*-th powers of eigenvalues of \overline{A}_2 .

$$(\lambda_m^n I - \overline{A}_{2n}) v_m = \left(\lambda_m I - \overline{A}_2\right) \left(\lambda_m^{n-1} I + \lambda^{n-2} \overline{A}_2 + \ldots + \lambda \overline{A}_2^{n-2} + \overline{A}_2^{n-1}\right) v_m = o,$$

Application of Degree Theory

Theorem

Let us suppose that

$$q(k) \ge 0$$
 for all $k = 1, 2, \dots, N$, $q(\overline{k}) > 0$ for some $\overline{k} \in \{1, 2, \dots, N\}$.

Moreover, let us assume that for all k = 1, 2, ..., N, the functions g_k are continuous and that there exists R > 0 such that for each u with $0 < |u| \le R$:

$$ug_k(u) \leq 0.$$

Then the problem (1) has a solution.

Application of Degree Theory

Theorem

Let us suppose that

$$q(k) \ge 0$$
 for all $k = 1, 2, ..., N$, $q(\overline{k}) > 0$ for some $\overline{k} \in \{1, 2, ..., N\}$.

Moreover, let us assume that for all k = 1, 2, ..., N, the functions g_k are continuous and that there exists R > 0 such that for each u with $0 < |u| \le R$:

$$ug_k(u) \leq 0.$$

Then the problem (1) has a solution.

Application of Degree Theory

Theorem

Let us suppose that

$$q(k) \ge 0$$
 for all $k = 1, 2, ..., N$,

Moreover, let us assume that for all k = 1, 2, ..., N, the functions g_k are continuous and that there exists R > 0 such that for each u with $0 < |u| \le R$:

$$ug_k(u) < 0$$
.

Then the problem (1) has a solution.

Comparison of results

Green function + L&U solutions	uniqueness
Atici, Cabada 2003	$g_k > 0$
Atici, Guseinov 1999	
Henderson 1989	

Comparison of results

Green function + L&U solutions	uniqueness
Atici, Cabada 2003	$g_{k} > 0$
Atici, Guseinov 1999	
Henderson 1989	
Matrix formulation + degree theory	no monotonicity
	$a\equiv 0$

Application of variational methods

$$F(x) := \frac{1}{2} \langle A_{2n}x, x \rangle - \widetilde{G}(x)$$

Application of variational methods

$$F(x) := \frac{1}{2} \langle A_{2n}x, x \rangle - \widetilde{G}(x)$$

Theorem

Let $q \ge 0$ be satisfied. Let us suppose that $g: \{1, 2, \dots, N\} \times \mathbb{R} \to \mathbb{R}$ is a function such that for each $k = 1, 2, \dots, N$:

- (I) $g_k \in L^1_{loc}(\mathbb{R})$,
- (L) there exists M > 0 such that

$$\lim_{u\to\infty}g_k(u)\leq -M,\quad and\lim_{u\to-\infty}g_k(u)\geq M.$$

Then BVP (1) has a solution.

Application of variational methods

$$F(x) := \frac{1}{2} \langle A_{2n}x, x \rangle - \widetilde{G}(x)$$

Theorem

Let $q \ge 0$ be satisfied. Let us suppose that $g: \{1, 2, \dots, N\} \times \mathbb{R} \to \mathbb{R}$ is a function such that for each $k = 1, 2, \dots, N$:

- (I) $g_k \in L^1_{loc}(\mathbb{R})$,
- (L) there exists M > 0 such that

$$\lim_{u\to\infty}g_k(u)\leq -M,\quad and\lim_{u\to-\infty}g_k(u)\geq M.$$

Then BVP (1) has a solution.

Uniqueness

Theorem

Let us suppose that $g:\{1,2,\ldots,N\}\times\mathbb{R}\to\mathbb{R}$ is a function such that for each $k=1,2,\ldots,N$ the assumptions (I), (L) hold and that

(M) g_k is nonincreasing,

If $q \ge 0$ and $q(\overline{k}) > 0$ for some $\overline{k} \in \{1, 2, ..., N\}$, then the solution of (1) is unique.

Uniqueness

Theorem

Let us suppose that $g:\{1,2,\ldots,N\}\times\mathbb{R}\to\mathbb{R}$ is a function such that for each $k=1,2,\ldots,N$ the assumptions (I), (L) hold and that

(M) g_k is nonincreasing,

If $q \ge 0$ and $q(\overline{k}) > 0$ for some $\overline{k} \in \{1, 2, ..., N\}$, then the solution of (1) is unique.

Moreover, if

(M') g_k is strictly decreasing,

then the solution is unique also in the case when $q \equiv 0$.

Comparison of results

Green function + L&U solutions	uniqueness
Atici, Cabada 2003	$g_k > 0$
Atici, Guseinov 1999	no limit conditions
Henderson 1989	
Matrix formulation + degree theory	no monotonicity
	$q\equiv 0$
	no limit conditions

Comparison of results

Green function + L&U solutions	uniqueness
Atici, Cabada 2003	$g_k > 0$
Atici, Guseinov 1999	no limit conditions
Henderson 1989	
Matrix formulation + degree theory	no monotonicity
	$ q \equiv 0$
	no limit conditions
Matrix formulation + var.methods	no continuity required
	uniqueness, even if $q\equiv 0$

Extensions - Sturm - Liouville

boundary conditions

$$\left\{ \begin{array}{l} (-1)^n \Delta^n (\Delta^n x(k-n)) = f(k,x(k)), \quad k = 1,2,\ldots,N, \\ x(1-n+i) = C_i, \quad x(N+n-i) = D_i, \quad i = 0,\ldots,n-1. \end{array} \right.$$

Extensions - Sturm - Liouville

boundary conditions

$$\left\{ \begin{array}{l} (-1)^n \Delta^n (\Delta^n x(k-n)) = f(k,x(k)), \quad k=1,2,\ldots,N, \\ x(1-n+i) = C_i, \quad x(N+n-i) = D_i, \quad i=0,\ldots,n-1. \end{array} \right.$$

different operators

$$\begin{cases} (-1)^n \Delta^n (p(k-n)\Delta^n x(k-n)) = f(k,x(k)), & k = 1,2,\ldots,N, \\ x(1-n+i) = C_i, & x(N+n-i) = D_i, & i = 0,\ldots,n-1. \end{cases}$$

Extensions - Sturm - Liouville

boundary conditions

$$\left\{ \begin{array}{l} (-1)^n \Delta^n (\Delta^n x(k-n)) = f(k,x(k)), \quad k=1,2,\ldots,N, \\ x(1-n+i) = C_i, \quad x(N+n-i) = D_i, \quad i=0,\ldots,n-1. \end{array} \right.$$

different operators

$$\begin{cases} (-1)^n \Delta^n (p(k-n)\Delta^n x(k-n)) = f(k,x(k)), & k = 1,2,\ldots,N, \\ x(1-n+i) = C_i, & x(N+n-i) = D_i, & i = 0,\ldots,n-1. \end{cases}$$

variable steps

$$\begin{cases} -\left(p(\rho(t))x^{\Delta}(\rho(t))\right)^{\Delta} + q(t)x(t) = f(t, x(t)), & \text{on } [a, b]_{\mathbb{T}} \\ \alpha x(\rho(a)) - \beta x^{\Delta}(\rho(a)) = C, & \gamma x(\sigma(b)) + \delta x^{\Delta}(b) = D, \end{cases}$$

Final remarks

Fučík spectrum - Margulies & Margulies (1999) study matrix equations

$$Ax = ax^+ + bx^-,$$

where A is 2×2 matrix

Final remarks

Fučík spectrum - Margulies & Margulies (1999) study matrix equations

$$Ax = ax^+ + bx^-,$$

where A is 2×2 matrix

Thank you for your attention

