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1. Time and space singularities

1. TIME AND SPACE SINGULARITIES

Let q(t, x , y) ∈ Car((0,T )× (0,∞)×R). We say that q has a time
singularity at the point t = 0 (t = T ) if there exists (x , y) ∈ (0,∞)×R
such that

ε∫
0

|q(t, x , y)| dt =∞

( T∫
T−ε

|q(t, x , y)| dt =∞

)

for all sufficiently small ε > 0.
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1. Time and space singularities

If limx→0+ |q(t, x , y)| =∞ for a.e. t ∈ [0,T ] and some y ∈ R then we say
that q has a space singularity at the point x = 0.
We give a finer classification of space singularities. We say that q has a
weak (a strong) space singularity at x = 0 if there exists y ∈ R such that

η∫
0

|q(t, x , y)| dx <∞

( η∫
0

|q(t, x , y)|dx =∞

)

for a.e. t ∈ [0,T ] and all sufficiently small η > 0.
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1. Time and space singularities

EXAMPLE. The function

q(t, x , y) =
y

tα(T − t)βxγ
, α, β, γ ∈ [1,∞)

has a time singularity at t = 0,T and a strong space singularity at x = 0
(if γ ∈ (0, 1) then q has a weak space singularity at x = 0).
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2. Mixed problem with time and space singularities

2. MIXED PROBLEM WITH TIME AND SPACE
SINGULARITIES

The solvability of the mixed BVP

u′′ = h(t, u, u′), u(0) = 0, u′(T ) = 0

in the set C 0[0,T ] ∩ AC 1
log (0,T ) was considered by Agarwal and

O’Regan (2003), Kiguradze (2003), Kiguradze and Shekhter (1987),
O’Reagan (1990), Wang and Gao (2000), Zheng, Su and Zhang
(2005), ...
in the set AC 1[0,T ] by Agarwal and O’Regan (2003), Agarwal and
Staněk (2003), Kelevedjiev (1999), Rach̊unková (2006) ...
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2. Mixed problem with time and space singularities

Berestycki, Lions and Peletier (1981), Castro and Sudhasree (1994),
Gidas, Ni and Nirenberg (1981) considered

u′′ − n − 1

1− t
u′ + g(1− t, u) = 0, u(0) = 0, u′(1) = 0

(radially symmetric solutions of nonlinear elliptic PDE)

Bertsch and Ughi (1990)

u′′ =
n − 1

1− t
u + γ

|u′|2

u
− 1, u(0) = 0, u′(1) = 0.

Zhou and Cai (2007 - preprint)

u′′ = λ
u

1− t
+ γ
|u′|2

u
− f (t).
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2. Mixed problem with time and space singularities

We consider the singular mixed boundary value problem

u′′ = p(u′)[f (t, u, u′)− r(t)], (1)

u(0) = 0, u′(T ) = 0, (2)

where

(H1) p ∈ C 0(−a, a) is positive, 0 < a ≤ ∞,

(H2) f ∈ Car((0,T )×D), D = (0,∞)×R,

0 ≤ f (t, x , y) ≤ A

[
xη0 + |y |γ0

tµ0
+

|y |γ1

(T − t)µ1
+
|y |γ

xη

]
+ h(x , y)

for a.e. t ∈ [0,T ] and all (x , y) ∈ D, where h ∈ C 0([0,∞)×R) is
nonnegative, h(x , 0) = 0 for x ∈ [0,∞) and A, η0, µi , γi , γ and η are
positive constants, µ0 < 2η0, µi ≤ γi (i = 0, 1), γ ≥ 2η,
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2. Mixed problem with time and space singularities

(H3) r ∈ L1[0,T ],
r(t) ≥ r∗ > 0 for a.e. t ∈ [0,T ],

and

min

{ 0∫
−a

ds

p(s)
,

a∫
0

ds

p(s)

}
>

T∫
0

r(t) dt.

(H4) if µ1 ≥ 1 in (H2), then ∃ ν ∈ (0,T ) and ∃ω ∈ C 0[0, a), ω(0) = 0,
ω > 0 on (0, a) such that

f (t, x , y) ≥ ω(|y |)
(T − t)µ1

for a.e. t ∈ [ν,T ] and all x ∈ (0, 1 + aT ), y ∈ (−a, a).

() Hejnice 2007 9 / 24



2. Mixed problem with time and space singularities

We say that u ∈ AC 1[0,T ] is a positive solution of problem (1), (2) if
u > 0 on (0,T ], u satisfies (2) and
u′′(t) = p(u′(t))[f (t, u(t), u′(t))− r(t)] holds for a.e. t ∈ [0,T ].

From assumption (H2) it follows that f (t, x , y) admits a time singularity
at t = 0 and/or t = T and a strong space singularity at x = 0. Hence
problem (1), (2) admits mixed singularities.
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2. Mixed problem with time and space singularities

REMARKS.
1) Under assumption (H1), (1) can be written in the form

(φ(u′))′ = f (t, u, u′)− r(t),

where φ(y) =

y∫
0

ds

p(s)
for y ∈ (−a, a).

2) If µ1 ∈ (0, 1) in (H2), then f ∈ Car((0,T ]×D).
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3. Existence of positive solutions

3. EXISTENCE OF POSITIVE SOLUTIONS

THEOREM 1. Let (H1)− (H4) hold. Then there exists a positive
solution u ∈ AC 1[0,T ] of problem (1), (2).

COROLLARY 1. Let (H1)− (H4) hold. Then for all λ > 0, the problem

u′′ = p(u′)[λf (t, u, u′)− r(t)], x(0) = 0, x ′(T ) = 0

has a positive solution u ∈ AC 1[0,T ].
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3. Existence of positive solutions

EXAMPLE. Let ε = ±1. Consider the differential equation

u′′ =
1

1 + ε(u′)2

(
uα

tµ0
+

|u′|β

(T − t)µ1
+
|u′|γ

uη
+ |u′|νeu − r(t)

)
, (3)

where α, µ0, µ1, β, η, ν are positive numbers, µ0 < 2α, µ1 ≤ β, γ ≥ 2η,
and r ∈ L1[0,T ], r(t) ≥ r∗ > 0 for a.e. t ∈ [0,T ]. In addition, if ε = −1

then
∫ T
0 r(t) dt < 2

3 . By Theorem 1, problem (3), (2) has a positive
solution u ∈ AC 1[0,T ].
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3. Existence of positive solutions

Proof of Theorem 1. The proof is based on a combination of the
method of lower and upper functions with a regularization and a
sequential technique. In limit processes the Fatou lemma is used.
Step 1. Regularization
By (H3), there exists S ∈ (0, a) such that

min
{∫ 0

−S

ds

p(s)
,

∫ S

0

ds

p(s)

}
>

∫ T

0
r(t) dt.

Define p̂, χ ∈ C 0(R) by the formulas

p̂(y) =


p(S) for y > S ,

p(y) for |y | ≤ S ,

p(−S) for y < −S ,

χ(y) =


1 for |y | ≤ S ,

2− |y |S for S < |y | ≤ 2S ,

0 for |y | > 2S .
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3. Existence of positive solutions

Let ε∗ be a positive constant such that

ε∗ < min
{

1,
T

4
, 2η0−µ0

√
r∗
4A

}
For each ε ∈ (0, ε∗) define σε : R→ [ε2,∞) by

σε(x) =


1 + ST for x > 1 + ST ,

x for ε2 < x ≤ 1 + ST ,

ε2 for x ≤ ε2.

Let {tn} ⊂ (T − ε∗,T ) be an increasing sequence such that
limn→∞ tn = T and inequality in (H2) holds for t = tn, (x , y) ∈ D and
n ∈ N. Put εn := T − tn. Finally, let

fn(t, x , y) =

{
f (t, x , y) for t ∈ (0, tn), (x , y) ∈ D,

f (tn, x , y) for t ∈ [tn,T ], (x , y) ∈ D.
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3. Existence of positive solutions

Consider the regular mixed problem

u′′ = χ(u′)p̂(u′)[fn(t, σεn(u), u′)− r(t)], (4)

u(εn) = ε2n, u′(T ) = 0, (5)

on the interval [εn,T ].
Step 2. A priori bounds
We show that if un ∈ AC 1[εn,T ] is a solution of (4), (5), then

ε2n ≤ un(t) < 1 + ST for t ∈ [εn,T ], (6)

|u′n(t)| < S for t ∈ [εn,T ]. (7)

Step 3. Lower function of (4), (5)
We prove that there exists n∗ ∈ N and C∗ ∈ (0, 1) such that the function

αn(t) =

{
C∗[(t − εn)(2T − t − 3εn) + εn]2 for t ∈ [εn, tn],

C∗[(2tn − T )2 + T − tn]2 for t ∈ (tn,T ]

is a lower function of (4), (5) for n ≥ n∗.
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3. Existence of positive solutions

Step 4. Existence of a solution of (4), (5)
We prove that for all n ≥ n∗ there exists a solution un ∈ AC 1[εn,T ] of
problem (4), (5) satisfying (6), (7) and the inequality

un(t) ≥ αn(t) for t ∈ [εn,T ]. (8)

Here we apply the method of lower and appear functions with the lower
function αn(t) and the upper function β(t) := (2T 2 + 1)2 + 2St.

() Hejnice 2007 17 / 24



3. Existence of positive solutions

Step 5. Existence of a positive solution of (1), (2)
By Step 4, for each n ≥ n∗ there exists a solution un ∈ AC 1[εn,T ] of
(4), (5) satisfying inequalities (6)-(8). By the Arzelà-Ascoli theorem, the
diagonalization principle and the Fatou lemma, we can choose a function
û ∈ C 0(0,T ] ∩ C 1(0,T ) and a subsequence {kn} of {n} such that

lim
n→∞

ukn(t) = û(t) locally uniformly on (0,T ],

lim
n→∞

u′kn
(t) = û′(t) locally uniformly on (0,T ).

We can show that there exists u ∈ AC 1[0,T ] such that u = û on (0,T ]
and that u(0) = 0 is a solution of (1) on [0,T ]. Here we distinguish if
µ1 ∈ (0, 1) or µ1 ≥ 1. Finally, by (H4), we show that u′(T ) = 0.
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4. Existence of the positive maximal solution

4. EXISTENCE OF THE POSITIVE MAXIMAL
SOLUTION

Let conditions (H1)− (H4) be satisfied. Then Theorem 1 guarantees the
existence of a solution u ∈ AC 1[0,T ] of problem (1), (2) fulfilling u(t) > 0
for t ∈ (0,T ]. Define

A = {u ∈ AC 1[0,T ] : u is a positive solution of problem (1), (2)}.

Then A is a nonempty set. We say that u ∈ A is the maximal positive
solution of problem (1), (2) if u ≥ u on [0,T ] for each u ∈ A.

() Hejnice 2007 19 / 24



4. Existence of the positive maximal solution

It is obvious that if problem (1), (2) has the maximal positive solution,
then is unique. In order to prove the existence of the maximal positive
solution of problem (1), (2) we use generalized lower and upper functions
of the differential equation

u′′ = χ(u′)p̂(u′)[f (t, u, u′)− r(t)] (9)

on intervals of the type [t1, t2] ⊂ [0,T ], where the functions χ and p̂ are
given in Section 3.
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4. Existence of the positive maximal solution

Let [t1, t2] ⊂ [0,T ]. By Kiguradze and Shekher (1987), we say that a
positive function γ ∈ AC [t1, t2] is a generalized lower (upper) function of
the differential equation (9) on the interval [t1, t2] if

(i) γ′ can be written in the form γ′(t) = ξ(t) + ξ0(t) where
ξ ∈ AC [t1, t2] and ξ0 : [t1, t2]→ R is nondecreasing (nonincreasing)
and its derivative vanishes a.e. on [t1, t2],

(ii) the inequality

γ′′(t) ≥ χ(γ′(t))γ̂′(t))[f (t, γ(t), γ′(t))− r(t)]

(γ′′(t) ≤ χ(γ′(t))γ̂′(t))[f (t, γ(t), γ′(t))− r(t)])

holds for a.e t ∈ [t1, t2].

Let us choose u∗ ∈ A and put

A∗ = {u ∈ A : u(t) ≥ u∗(t) for t ∈ [0,T ]}.
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4. Existence of the positive maximal solution

THEOREM 2. Assume that conditions (H1)− (H4) hold. Then there
exists the maximal positive solution of problem (1), (2).
Proof. Step 1. We show that each u ∈ A satisfies the inequality

|u′(t)| < S for t ∈ [0,T ].

and if {un} ⊂ A∗, then there exist its subsequence {ukn} and u ∈ A∗ such
that limn→∞ ukn(t) = u(t) uniformly on [0,T ].
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4. Existence of the positive maximal solution

Step 2. Put

M = sup
{∫ T

0
u(t) dt : u ∈ A∗

}
.

Then M < ST 2. Let {un} ⊂ A∗ be such that

lim
n→∞

∫ T

0
un(t) dt = M.

In view of Step 1 there exist u ∈ A∗ and a subsequence {ukn} of {un}
such that limn→∞ ukn(t) = u(t) uniformly on [0,T ]. Hence

M =

∫ T

0
u(t) dt.
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4. Existence of the positive maximal solution

Step 3. We will proof that u is the maximal positive solution of problem
(1), (2). To prove this, suppose the contrary. Then there exists z ∈ A∗
such that either
(i) z > u on (t1, t2), 0 < t1 < t2 < T , and z(tj) = u(tj) for j = 1, 2 or
(ii) z > u on (0, t3), 0 < t3 < T , and z(t3) = u(t3) or
(iii) z > u on (t4,T ), 0 < t4 < T , and z(t4) = u(t4).
We now consider separately cases (i)-(iii). Applying the method of
generalized lower and upper functions together and a sequential technique
we show that there exist w ∈ A∗ such that w(t) ≥ max{u(t), z(t)} for

t ∈ [0,T ]. Hence
∫ T
0 w(t) dt > M, which is impossible.
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