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x′(t) = F (x)(t), (1)

x(a) = c (2)

F : C([a, b]; Rn) → L([a, b]; Rn) is a continuous operator such that

sup
n‚‚F (u)(·)

‚‚ : u ∈ C([a, b]; Rn), ‖u‖C ≤ r
o
∈ L([a, b]; R+) for r > 0,

c ∈ Rn

Solution:

Absolutely continuous vector function x : [a, b] → Rn satisfying the system (1) almost
everywhere on [a, b] and verifying the initial condition (2).

Remark. Since F is (in general) non-Volterra operator

solutions of (1) have to be understood as global ones,

notions like local solution and extendability of solutions have no sense.

Problem:

To find conditions on F under which the problem (1), (2) is solvable (uniquely).
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x′(t) = F (x)(t), (1)

x(a) = c (2)

Method of proofs of the main results

the nonlinear system (1) is compared with a suitable linear one

to get solvability of the problem (1), (2) we apply the lemma on a priory
estimate by I. Kiguradze, B. Půža (published in CMJ, 1997)

to find a priory estimate of solutions of auxiliary problems we use the theorems
on differential inequalities
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x′(t) = `(x)(t) + q(t) (3)

` : C([a, b]; Rn) → L([a, b]; Rn) is a linear bounded operator, q ∈ L([a, b]; Rn)

Components of the linear operator ` can be defined as follows:

For any i ∈ {1, . . . , n} and u ∈ C([a, b]; Rn) we denote by `i(u) the i-th
component of the vector funcion `(u). Then

`i : C([a, b]; Rn) → L([a, b]; R) for i = 1, . . . , n.

For any i, k ∈ {1, . . . , n} and z ∈ C([a, b]; R) we put

`ik(z) = `i

`
zk

´
, where zk ≡

0BBBBBBBB@

0
...
z
0
...
0

1CCCCCCCCA
}k-th

Then
`ik : C([a, b]; R) → L([a, b]; R) for i, k = 1, . . . , n,

are linear bounded operators.
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x′(t) = `(x)(t) + q(t)

l

x′1(t) = `11(x1)(t) + `12(x2)(t) + · · ·+ `1n(xn)(t) + q1(t),

x′2(t) = `21(x1)(t) + `22(x2)(t) + · · ·+ `2n(xn)(t) + q2(t)

...

x′n(t) = `n1(x1)(t) + `n2(x2)(t) + · · ·+ `nn(xn)(t) + qn(t),



x′(t) = `(x)(t) + q(t) (3)

Definition. We say that the theorem on differential inequalities holds for the system
(3) if the implication

u ∈ AC([a, b]; Rn)
u′(t) ≥ `(u)(t) for a. e. t ∈ [a, b]
u(a) ≥ 0

9=; =⇒ u(t) ≥ 0 for t ∈ [a, b]

is true. We write ` ∈ Sn.

Remark. The following assertions are equivalent:

1 ` ∈ Sn

2 the problem (3), u(a) = c has a unique solution for every q ∈ L([a, b]; Rn),
c ∈ Rn and

c ≥ 0, q(t) ≥ 0 for a. e. t ∈ [a, b] =⇒ u(t) ≥ 0 for t ∈ [a, b]

3 the operator K` is inverse positive in the set B, where
B = {x ∈ AC([a, b]; Rn) : x(a) ≥ 0} and K` : B → L([a, b]; Rn) is defined by

K`(v)(t) := v′(t)− `(v)(t) for a. e. t ∈ [a, b]
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x′ = P (t)x + q(t) (4)

P = (pik)n
i,k=1 : [a, b] → Rn×n is an integrabe matrix function, q ∈ L([a, b]; Rn)

If n = 1 then the theorem on differential inequalities holds for the equation (4)
without any additional assumptions

If n ≥ 2 then the theorem on differential inequalities holds for the system (4)
provided that

pik(t) ≥ 0 for a. e. t ∈ [a, b], i, k = 1, . . . , n, i 6= k. (5)

x′(t) = `(x)(t) + q(t) (3)

Remark. If (3) is not “ordinary system” then (in general) some additional
assumptions have to be imposed on the operator ` even in the scalar case.
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Theorem A. Let ` ∈ Pn.

Then ` ∈ Sn if and only if there exists γ ∈ AC([a, b]; Rn)
such that

γ(t) > 0 for t ∈ [a, b], (6)

γ′(t) ≥ `(γ)(t) for a. e. t ∈ [a, b]. (7)

Theorem B. Let −` ∈ Pn. Then ` ∈ Sn if and only if

1 `ik ≡ 0 for i, k = 1, . . . , n, i 6= k,

2 `ii ∈ S1 for i = 1, . . . , n.

Theorem C. Let ` = `0 − `1, where `0, `1 ∈ Pn. Then

`0 ∈ Sn, −`1 ∈ Sn =⇒ ` ∈ Sn.
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x′(t) = F (x)(t), (1)

x(a) = c (2)

Theorem. Let there exist `0, `1 ∈ Pn and q∗ ∈ L([a, b]; Rn
+) such that the inequality

Sgn(v(t))
h
F (v)(t) + `1(v)(t)

i
≤ `0(|v|)(t) + q∗(t) for a. e. t ∈ [a, b] (8)

holds on the set C([a, b]; Rn) and, moeover,

`0 ∈ Sn, −`1 ∈ Sn. (9)

Then the problem (1), (2) has at least one solution.

Remark. −`1 ∈ Sn =⇒ the operator `1 is “diagonal”, i.e., `ik ≡ 0 for i 6= k.
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x′(t) = F (x)(t), (1)

x(a) = c (2)

Theorem. Let there exist ` ∈ P1 and q∗ ∈ L([a, b]; R+) such that the inequality

F (v)(t) · sgn(v(t)) ≤ `(‖v‖)(t) + q∗(t) for a. e. t ∈ [a, b] (10)

holds on the set C([a, b]; Rn) and, moeover,

` ∈ S1. (11)

Then the problem (1), (2) has at least one solution.

x′ = f(t, x), x(a) = c (12)

Corollary. Let there exist p ∈ L([a, b]; R+) and h ∈ L([a, b]; R) such that

f(t, x) · sgn(x) ≤ p(t)‖x‖+ h(t) for a. e. t ∈ [a, b] and all x ∈ Rn. (13)

Then the problem (12) has at least one solution.
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Wintner’s type theorem. Let there exist p ∈ L([a, b]; R+) and h ∈ L([a, b]; R) such
that

f(t, x) · sgn(x) ≤ p(t)‖x‖+ h(t) for a. e. t ∈ [a, b] and all x ∈ Rn. (13)

Then every nonextendable solution of (12) is defined on the interval [a, b].



x′(t) = F (x)(t), (1)

x(a) = c (2)

Theorem. Let there exist
` ∈ P1 ∩ S1

such that, for any u, v ∈ C([a, b]; Rn), the inequalityh
F (u)(t)− F (v)(t)

i
· sgn

`
u(t)− v(t)

´
≤ `(‖u− v‖)(t) for a. e. t ∈ [a, b] (14)

holds. Then the problem (1), (2) has a unique solution.

x′ = f(t, x), x(a) = c (15)

Osgood’s type corollary. Let there exist p ∈ L([a, b]; R+) such thath
f(t, x)− f(t, y)

i
· sgn(x− y) ≤ p(t)‖x− y‖ for a. e. t ∈ [a, b] and all x, y ∈ Rn. (16)

Then the problem (15) is uniquely solvable.
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Remarks.

The results presented can be generalized for the boundary condition

x(a) = ϕ(x)

where ϕ : C([a, b]; Rn) → R is a continuous operator. The assumptions on ϕ has
the form of one-sided restrictions, e. g.,

Sgn
`
u(a)

´
ϕ(u) ≤ c for u ∈ C([a, b]; Rn)

with c ≥ 0.

If F is a Volterra operator, i. e., for every t0 ∈ ]a, b] and x, y ∈ C([a, b]; Rn)
satisfying

x(t) = y(t) for t ∈ [a, t0]

the relation
F (x)(t) = F (y)(t) for a. e. t ∈ [a, t0]

holds, then local solvability, extendability of solutions, and the existence of global
solutions can be studied.

Results well-known for the ordinary nonlinear systems was generalized for the
problem (1), (2) with a singular Volterra operator in works by I. Kiguradze and
Z. Sokhadze.
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x(a) = ϕ(x)

where ϕ : C([a, b]; Rn) → R is a continuous operator. The assumptions on ϕ has
the form of one-sided restrictions, e. g.,

Sgn
`
u(a)

´
ϕ(u) ≤ c for u ∈ C([a, b]; Rn)

with c ≥ 0.

If F is a Volterra operator, i. e., for every t0 ∈ ]a, b] and x, y ∈ C([a, b]; Rn)
satisfying

x(t) = y(t) for t ∈ [a, t0]

the relation
F (x)(t) = F (y)(t) for a. e. t ∈ [a, t0]

holds, then local solvability, extendability of solutions, and the existence of global
solutions can be studied.

Results well-known for the ordinary nonlinear systems was generalized for the
problem (1), (2) with a singular Volterra operator in works by I. Kiguradze and
Z. Sokhadze.





x′1(t) = 3x3
2(t)− x1

„
a + b

2

«
+ sin t,

x′2(t) = x2(b)

Z b

a

x1(s) ds− ex1(t)x2(t)x2(t)



Definition. Pn is the set of linear operators ` for which

`(v)(t) ≥ 0 for a. e. t ∈ [a, b]

provided that v ∈ C([a, b]; Rn) is such that

v(t) ≥ 0 for t ∈ [a, b].

` ∈ Pn ⇐⇒ `ik ∈ P1 for i, k = 1, . . . , n

Example. Let ` : C([a, b]; R2) → L([a, b]; R2) is given by the formula

`(v)(t)
def
=

 
h11(t)v1

`
τ11(t)

´
+ h12(t)v2

`
τ12(t)

´
h21(t)v1

`
τ21(t)

´
+ h22(t)v2

`
τ22(t)

´! for a. e. t ∈ [a, b],

where hik ∈ L([a, b]; R) and τik : [a, b] → [a, b] are measurable functions (i, k = 1, 2).
Then, for any i, k ∈ {1, 2} and z ∈ C([a, b]; R), we have

`ik(z)(t) = hik(t)z
`
τik(t)

´
for a. e. t ∈ [a, b].

Moreover,
` ∈ P2 ⇐⇒ hik(t) ≥ 0 for a. e. t ∈ [a, b].
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If x = (xk)n
k=1 ∈ Rn then we put

Sgn(x) =

0BBB@
sgn x1 0 . . . 0

0 sgn x2 . . . 0
...

...
. . .

...
0 0 . . . sgn xn

1CCCA .



x′i(t) =
2X

k=1

pik(t)xk

`
τik(t)

´
+ fi

“
t, x1(t), x2(t), x1(µi1(t)), x2(µi2(t))

”
, i = 1, 2, (17)

xi(a) = ci, i = 1, 2, (18)

Corollary. Let there exist q1, q2 ∈ L([a, b]; R+) such that, for any x1, x2, y1, y2 ∈ R,
the inequalities

fi

`
t, x1, x2, y1, y2

´
sgn xi ≤ qi(t) for a. e. t ∈ [a, b], i = 1, 2

hold. If, moreover,
τii(t) ≤ t for a. e. t ∈ [a, b], i = 1, 2,

Z t

τ11(t)

[p11(s)]−ds ≤ 1

e
,

Z t

τ22(t)

[p22(s)]−ds ≤ 1

e
for a. e. t ∈ [a, b],

and Z τ12(t)

t

p(s)ds ≤ 1

e
,

Z τ21(t)

t

p(s)ds ≤ 1

e
for a. e. t ∈ [a, b],

where

p(t)
def
= max

˘
[p11(t)]+ + |p12(t)|, [p22(t)]+ + |p21(t)|

¯
for a. e. t ∈ [a, b].

Then the problem (17), (18) has at least one solution.



If x = (xk)n
k=1 ∈ Rn then we put

sgn(x) =

0BBB@
sgn x1

sgn x2

...
sgn xn

1CCCA .



x′1(t) = p1(t)x2

`
τ(t)

´
+ g1(t)e

x1(t)x2(t)|x2(t)|x1(t) + q1(t),

x′2(t) = p2(t)x1

`
τ(t)

´
− g2(t)e

x1(t)x2(t)|x1(t)|x2(t) + q2(t),
(19)

x1(a) = c1, x2(a) = c2 (20)

Corollary. The problem (19), (20) has at least one solution provided that

g1(t) ≤ g2(t) for a. e. t ∈ [a, b]

and
τ(t)Z
t

ep(s)ds ≤ 1

e
,

where ep(t)
def
= max

˘
|p1(t)|, |p2(t)|

¯
for a. e. t ∈ [a, b].


