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a'(t) = F()(t),
z(a) =c

F: C([a,b];R™) — L([a,b];R™) is a continuous operator such that
sup{HF(u)()H cu € C([a,b; R™), Jullc < r} € L([a,b]; Ry)

ceR™

for r > 0,
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Solution:

Absolutely continuous vector function z : [a, b] — R"™ satisfying the system (1) almost
everywhere on [a, b] and verifying the initial condition (2).
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Remark. Since F is (in general) non-Volterra operator
@ solutions of (1) have to be understood as global ones,

@ notions like local solution and extendability of solutions have no sense.
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Problem:
To find conditions on F under which the problem (1), (2) is solvable (uniquely). J
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o the nonlinear system (1) is compared with a suitable linear one
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a'(t) = F(z)(t), (1)
z(a) =c (2)

Method of proofs of the main results

o the nonlinear system (1) is compared with a suitable linear one

e to get solvability of the problem (1), (2) we apply the lemma on a priory
estimate by I. Kiguradze, B. Puza (published in CMJ, 1997)

e to find a priory estimate of solutions of auxiliary problems we use the theorems
on differential inequalities




@' (t) = (x)(t) + q(t)

£:C(la,b;R™) — L([a,b];R™) is a linear bounded operator,

q € L([a,b;R™)



z'(t) = L(2)(t) + q(t) ®3)

£: C([a,b];R™) — L([a,b]; R™) is a linear bounded operator, ¢ € L([a,b]; R"™)

Components of the linear operator ¢ can be defined as follows:

e Forany i € {1,...,n} and u € C([a,b]; R™) we denote by ¢;(u) the i-th
component of the vector funcion £(u). Then

4 : C([a,b];R™) — L([a,b;R) fori=1,...,n.
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£: C([a,b];R™) — L([a,b]; R™) is a linear bounded operator, ¢ € L([a,b]; R"™)

Components of the linear operator ¢ can be defined as follows:

e Forany i € {1,...,n} and u € C([a,b]; R™) we denote by ¢;(u) the i-th
component of the vector funcion £(u). Then

4 : C([a,b];R™) — L([a,b;R) fori=1,...,n.

e For any ¢,k € {1,...,n} and z € C([a, b]; R) we put

}k-th

N e

lin(2) = Ci(21), where 2% =

o

0
Lik : C([a,b]; R) — L([a,b];R) forik=1,...,n,

Then

are linear bounded operators.



o'(t) = £(=)(t) + q(t)

21 (t) = L1 (1) (8) + lra(z2) () + - - - + Lin(zn) () + @1 (D),
z5(t) = La1 (1) (t) + Loz (22) () + - - - + Lan(n) () + ¢2(t)

@ (t) = 1 (21)(8) + Lna(22) () + -+ + lnn (@n) () + an (D),




@'(t) = L(=)(t) + q(t) ®3)

Definition. We say that the theorem on differential inequalities holds for the system
(3) if the implication

u € AC([a, b]; R™)
u'(t) > L(u)(t) for a.e.t € [a,b] = wu(t) >0 fort€ [a,b]
u(a) >0

is true. We write ¢ € S™.
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Definition. We say that the theorem on differential inequalities holds for the system
(3) if the implication
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u'(t) > L(u)(t) for a.e.t € [a,b] = wu(t) >0 fort€ [a,b]
u(a) >0

is true. We write £ € S".
Remark. The following assertions are equivalent:

Qles”
@ the problem (3), u(a) = c has a unique solution for every g € L([a, b];R"),
c € R™ and
¢ >0, q(t) >0 fora.e.t€[a,b] = w(t)>0 forte€ [a,b

@ the operator K is inverse positive in the set B, where
B ={z € AC([a,b;R") : z(a) > 0} and K, : B — L([a,b];R™) is defined by

Ko(v)(t) :=v'(t) — £(v)(t) for a.e. t € [a,b]



z' = P(t)x + q(t)

P = (Pik)?,kzl :

[a,b] — R™ ™ is an integrabe matrix function,

q € L([a, b]; R")



a' = P(t)z +q(t) (4)

P = (pir)ir=1 : [a,b] = R"*™ is an integrabe matrix function, ¢ € L([a, b];R")

o If n =1 then the theorem on differential inequalities holds for the equation (4)
without any additional assumptions
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P = (pir)ir=1 : [a,b] = R"*™ is an integrabe matrix function, ¢ € L([a, b];R")

o If n =1 then the theorem on differential inequalities holds for the equation (4)
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e If n > 2 then the theorem on differential inequalities holds for the system (4)
provided that

pi(t) >0 fora.e.t €la,b], i,k=1,...,n, i #k. (5)

@'(t) = £(=)(t) + q(t) 3)

Remark. If (3) is not “ordinary system” then (in general) some additional
assumptions have to be imposed on the operator ¢ even in the scalar case.
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Theorem A. Let £ € P". Then ¢ € S™ if and only if there exists v € AC([a, b];R"™)

such that

~v(t) >0 fort € [a,b],
v (t) > £(y)(t) for a.e. t € [a,b].

Theorem B. Let —¢ € P™. Then ¢ € S™ if and only if
Q lip=0 for 4,k=1,...,n,i#k,
Q lyeS for i=1,...,n.

Theorem C. Let £ = £y — {1, where £o,¢1 € P". Then

bheS", -6 eS8 — (8"



Theorem. Let there exist £o,¢1 € P™ and ¢* € L([a,b]; R} ) such that the inequality
Sen(v(t)) | F(v)(t) + @1(v)(t)] < Lo(Jv))(®) + ¢ (t) for a.e.t € [a,b] (8)

holds on the set C([a, b]; R") and, moeover,
by e S", —4, €8". 9)

Then the problem (1), (2) has at least one solution.
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Then the problem (1), (2) has at least one solution.

Remark. —¢; € S® =— the operator ¢; is “diagonal”, i.e., £;x = 0 for ¢ # k.
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Corollary. Let there exist p € L([a,b];R4) and h € L([a, b]; R) such that
ft,z) - sgn(z) < p(t)||z|| + h(t) for a.e.t € [a,b] and all x € R". (13)

Then the problem (12) has at least one solution.
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Wintner’s type theorem. Let there exist p € L([a,b];R4) and h € L([a, b]; R) such
that
ft,x) - sgn(x) < p(t)||z|| + h(t) for a.e.t € [a,b] and all x € R". (13)

Then every nonextendable solution of (12) is defined on the interval [a, b].



' (t) = F(z)(t), 1)
z(a) =c (2)
Theorem. Let there exist
teP'ns'
such that, for any u,v € C([a,b];R"), the inequality
F(u)(t) — F(U)(t)] -sgn (u(t) —v(t)) < (|lu—v|)(t) fora.e.t € [a,b] (14)

holds. Then the problem (1), (2) has a unique solution.



Theorem. Let there exist
teP'ns'

such that, for any u,v € C([a,b];R"), the inequality
[F(u)(t) - F(U)(t)] csgn (u(t) — o(t)) < L(lu—vl)(t) forae t€lab]  (14)

holds. Then the problem (1), (2) has a unique solution.

' = f(t,z), z(a) =c (15)

Osgood’s type corollary. Let there exist p € L([a,b]; R4 ) such that
[f(t,x) — 1, y)] csgn(z—y) < p(t)|lz—yl| for a.e. t € [a,b] and all z,y € R™. (16)

Then the problem (15) is uniquely solvable.
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Remarks.

@ The results presented can be generalized for the boundary condition

where ¢ : C([a,b]; R") — R is a continuous operator. The assumptions on ¢ has
the form of one-sided restrictions, e. g.,

Sgn (u(a))e(u) <c¢ for u € C([a,b];R")

with ¢ > 0.
e If F is a Volterra operator, i.e., for every ¢o €]a,b] and z,y € C([a, b];R")
satisfying
z(t) = y(t) fort € [a,to]
the relation
F(z)(t) = F(y)(t) for a.e.t € [a,to]
holds, then local solvability, extendability of solutions, and the existence of global
solutions can be studied.

o Results well-known for the ordinary nonlinear systems was generalized for the
problem (1), (2) with a singular Volterra operator in works by I. Kiguradze and
Z. Sokhadze.
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Definition. P" is the set of linear operators ¢ for which
L(v)(t) >0 fora.e. t € [a,b
provided that v € C([a, b];R™) is such that

v(t) >0 fort € [a,b].

LeP" <= UlpeP' forik=1,...,n

Example. Let £: C([a,b];R?) — L([a,b]; R?) is given by the formula

def (hn (t)v1 (Tn (t)) + hi2(t)ve (le(t))

Ho)®) = hai (t)v (T21(t)) + haa(t)ve (7’22(t))> for a.e.t € la, b,

where h;, € L([a,b];R) and 7 : [a,b] — [a,b] are measurable functions (i, k = 1, 2).
Then, for any ¢, k € {1,2} and z € C([a, b]; R), we have
Lin(2)(t) = hik(t)z(1ik(t)) for a.e. t € [a,b].

Moreover,
leP? — hik(t) >0 for a.e. t € [a,b].



If £ = (zk)j=, € R™ then we put

sgn T 0 N 0
0 sgnra ... 0
Sgn(z) = . .

0 0 c.. SENTy,



= > puOwe (i (®) + £t (0, 22(0), 21 (0 (1), w2(pa(®))) = 1,2, (17)

zi(a) =c, 1=1,2, (18)

Corollary. Let there exist g1, g2 € L([a,b]; R+) such that, for any z1, z2,y1,y2 € R,
the inequalities

fi(t,xl,xg,yhyz) sgnz; < ¢;i(t) fora.e.t € [a,b], i=1,2

hold. If, moreover,
Tii(t) <t fora.e.t €a,b], i =1,2,

t 1 t 1
/ [p11(8)]-ds < =, / [p22(8)]-ds < = for a.e. t € [a,b],
T11(t) € T22(t) €
and
T12(t) 1 T21(t) 1
/ p(s)ds < =, / p(s)ds < = for a.e. t € [a,b],
t € t €
where

) = max {[pu1 (0)]+ + pr2(0)], [p22(D)]+ + 21 ()]} for ave. ¢ € [a,b].

Then the problem (17), (18) has at least one solution.



If £ = (zk)j=, € R™ then we put

sgn xry
sgn xo
sgn(z) =

Sgn Ty,



21(t) = pr(®)w2(7(1)) + g1(£)e ™ 72O |25 ()] (1) + a1 (1), 19)
25 (t) = p2(t)z1 (T(1)) — g2(t)e " ™2 Dy (t)]z2(t) + ¢a(t),
z1(a) =c1, w2(a) =co (20)

Corollary. The problem (19), (20) has at least one solution provided that
g1(t) < g2(t) for a.e. t € [a,b]

and
7(t)

JECIE

t

| =

where ot
p(t) = max {|p1(t)], [p2(t)|} for a.e. t € [a,b].



