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In the present paper we establish new effective conditions which guarantee, 
respectively, the boundedness, uniform stability and uniform asymptotic stability of 
solutions of nonlinear differential systems with delay.

Throughout the paper, the use will be made of the following notation:
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Consider the differential system
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For the system (1) , we consider the Cauchy problem
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Theorem 1Theorem 1Theorem 1Theorem 1. Let there exist nonnegative constants                         and     
nonnegative functions                               and         such 
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Theorem 2.  Theorem 2.  Theorem 2.  Theorem 2.  Let there exist nonnegative constants                          and        and 
nonnegative functions                                           and        
,                        such that the inequalities (8) are satisfied on                    and the 
inequalities 

(14)             

along with (9) are satisfied on                 . Let, moreover,

(15)

Where                                                           (16)            

and let the conditions (12) and                           be fulfilled. Then every 
noncontinuable solution of the problem        (1), (2) is defined on                        and is 
vanishing at infinity. 

( ), 1, ,ik i k n=l L γ
[ [( ) [ [( )0 , , ,loc ik locg L a g L a∈ +∞ ∈ +∞

[ [( ), ,i locf L a∈ +∞ [ [, na R+∞ ×

( ) ( ) ( ), , 1, , ,i ikt t t t i k nτ γ τ γ− ≤ − ≤ = L ( ) ( ) ( )0 0 1, ,ig t g t i n≥ = L

[ [,a +∞

( ) ( ) ( )
( )

0 0 0

0

sup exp :
ai

t t t

i i i

s t

g x dx f s ds f s ds t a
τ

   − + ≥ < +∞  
   

∫ ∫ ∫% % ( )1, ,i n= L

( ) ( ) ( ) ( )0 0exp 1, , ,
t

i i

a

f t g s ds f t i n
 

= = 
 
∫% L

[ [,a +∞
( )0

a

g x dx
+∞

= +∞∫

(1)

for  (2)

(8)

(9)

,      where                                                        (12)

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )0 1 1, , , 1, ,i i i i i i n inx t g t x t f t x t x t i nτ τ τ′ + = =L L

( ) ( )i ix t c t= ( ) ( )0, 1,i it a x a c i n< = = L

( ) ( ) ( ) ( )1 0
1

, , , 1, , ,
n

i n ik k i
k

f t x x g t x f t i n
=

≤ + =∑L L

( ) ( ) ( ) ( )( ) ( )
( )

( )0 0 0 , 1, ,
ai

t

ik i ik ik k ik i

t

g t g t g s g s ds g t i k n
τ

δ+ + ≤ =∫ l L

( ) 1r <L ( )
, 1

,
n

ik i k=
= lL



Theorem 3.  Theorem 3.  Theorem 3.  Theorem 3.  Let there exist constants                                       and 
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Theorem 4.Theorem 4.Theorem 4.Theorem 4. Let there exist constants                                    and 
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As an example, let us consider the linear differential system
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From  Theorem 3  we have 
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Theorem 4  results in
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