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1 Introduction

Nonlinear eigenvalue problems of the type:
" = 7)\f(33), :L'(O) =0, (E(l) =0, (1)

(most recently P. Korman et al. [2], looking for multiple positive
solutions).

We consider a two-parameter nonlinear problem:
o = =Af(a") +pg(z™), 2(0)=0, z(1) =0, (2)
where f, g are positive valued Lipschitz functions such that f(0) =
9(0) = 0.

The same equation in alternative form

n | =Af(x), if >0
= { pg(—z), it z<O0. (3)
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If f = g = x one has the Fucik equation:

" =Xt +pxT, 2(0) =0, z(1) =0,
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Fig. 1. The classical (A, u) Fuéik spectrum.
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no zeros in (0,1),2'(0) > 0:

no zeros in (0,1),2'(0) < 0:

one zero in (0,1),2'(0) > 0:
one zero in (0,1),2'(0) <0 :
two zeros in (0,1),2'(0) > 0:

two zeros in (0,1),2'(0) < 0:

and so on.
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The sample problem:

" o__ +\2a+1 —\26+1
= —=\z™) + p(z7) , x(0)=0, z(1) =0,
H Super (a=0.1) + Super (3=0.15)
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2 One parameter problems

The nonlinear one-parameter eigenvalue problem:
" = -3, 2(0) =0, 2(1) =0. (6)

Looking for solutions without zeros in (0,1):
for any A > 0 there exists a positive valued in (0, 1) solution z(t). The
value maxpg 1) z(t) := ||z|| and X relate as

Voda
-/\=2\/§~/ —_—
iz 0 VIl

Therefore FO+ = {()\,M) P 0< A< Hoo, pu > O} for the problem
(5)-

In order to make the problem reasonable one should impose addi-
tional conditions. Let us require that

2/(0)] = L.
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3 Two-parameter problems

3.1 Problem

= M) +pgla™), 2(0)=0, 21) =0, [(O)=1. (7)

3.2 Assumptions
(A1) the first zero t1(«) of a solution to the Cauchy problem
u’ =—f(u), u(0)=0, u'(0)=a (8)

exists for any a > 0.
(A2) the first zero 71 () of a solution to the Cauchy problem

v =g(=v), v(0)=0, v'(0)=-3 (9)
exists for any § > 0.
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3.3 Formulas for the nonlinear spectrum

In presence of the conditions (A1) and (A2) the first branches of
the spectrum are:

Ff = {(/\,u) : Ais a solution of \%h(%) =1, pu> O},

Fy = {(/\,u) : A >0, pis a solution of \/lﬁﬁ(\/lﬁ) = 1},
Ff:{()\;ﬂ): 1)\151(\/1X)+\}ﬁ7'1(\}ﬁ):1}7
Flz{()\;u): l‘Ltn(\/lﬁ)—i—\lf)\h(l)\):l}a
F;{(A;m: 21/\t1(1/\)+\}ﬁﬁ( 1M)1},
Fz_i:{()‘QN)5 iﬂﬁ(%)—i—Z%tl( 1)\):1}.
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3.4 Samples of time maps

Let equation be
' =—(r+1)z2", r>0. (10)
Then

1 1 ! 1
t (—) = 2A\CFD A:/ —dE,
WA 0 /1—¢&rtt
t1 is decreasing in A for r € (0,1),
ty is constant for r =1,
ty is increasing in A for r > 1.

The function

is decreasing for r > 0.
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If f(x) is a piece-wise linear function like in the picture then exact
formulas are known for computation of ;
10

-1 1 2 3 4 5 6

Fig. 3. Function f(x).
Let ¢1(a) be the first positive zero of a solution of the IVP

2 = —f( ), 2(0)=0, a'(0)=a>0. (12)

Denote F(x fo s) ds. Direct calculations show that
1. if 0 < a < /2F(aq), then t;(a) = 7, /%;
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2. if \/2F(a1) < a < y/2F(az), then
Vaib
o

a .
t1(a) =2 b arcsin
Az — ay

b1 —b

3. if « > /2F5(as), then

b - 2b
ti(a) =2 N aresin Vaib + \/a3 92 1~ 2aresin —2
by a bg — b2 D3 ()

as — aq 71)24’@/%\/&270&[)17(&27&1)(b1+b2)
+24/ In

by — b2 NI S v

az—ai

D
In 2(a) P
2 (<2m 2y /s VaT—ah)

_|_
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where
by —b by — b
Dy(a) =4 272242 4 gp, . Di(a)=4>—>
ap — as ap — az o — asg

arby — agby

a2+

—a2b1b2 + alb% + a3b§ + a2b1b3 — albgbg + a2b2b3
az — as .

+4

The first zero function is asymptotically linear:

asz — az

lim 1 (a) = .
L h(e) =45 7,
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4 Some properties of spectra

Let
1 1 1 1
u(\) = ﬁtl(ﬁ) o(p) = ﬁﬁ(ﬁ). (13)
Spectrum is a union of the roots of equations
u(A) 4+ o(p) =1, F
2u(N) + wv(p) =1, Fy
W)+ () =1, Fy
2u(\) + 2v(p) =1, Ff (14)
3u(A) + 20(p) =1, F;f
2u(A) + 3v(p) =1, Fy

The coefficients at u(\) and v(p) give the numbers of “positive” and
“negative” humps of the respective eigenfunctions.
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4.1 Monotone u(\), v(u)

u@
\ \ ~
\ ~
1
~ -
0.8 - —
-
0.6 T -
0.4 —
0.2 T

Fig. 4. The graphs of Fig. 5.The graphs of
u(N), 2u(\), 3u(A). v(1), 20(1). 30(p).

Let A1, A2, A3 be points of intersection of u(A), 2u(N), 3u(A) (“red”

curves) and the horizontal line v = 1. Respectively pi, po, pg for
“blue” curves.
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The branches Fli coincide and look like hyperbola with the vertical
asymptote at A = A\; and horizontal asymptote at u = p;.

The branch F; has the vertical asymptote at A = Ao and horizon-
tal asymptote at pu = p.

The branch F; has the vertical asymptote at A = A; and horizon-
tal asymptote at = po. The branches F," and F;” need not to cross
at the bisectrix unless g = f(—zx).

The branches F3i coincide and have the vertical asymptote at A =
Ao and horizontal asymptote at pu = po.

The branch Fj has the vertical asymptote at A = A3 and horizon-
tal asymptote at pu = ps.

The branch F, has the vertical asymptote at A = Ay and horizon-
tal asymptote at 4 = 3. The branches F," and F; need not to cross
at the bisectrix.
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4.2 Non-monotone u(\),v(u)

It is possible that the functions u(X\) = %tl (%) and v(p) =

#n (#) are non-monotone.
Then spectra may differ essentially from those in the monotone
case.
Remark. Suppose that iu(A) and sv(p) are monotonically de-
creasing starting from some Ay and piy, iu(Ax) = 1, iv(px) = 1,
where ¢ is some positive integer. Then branches F;i1 and higher

(FF, n > 2i—1) behave like those in the monotone case.
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4.3 Nonmonotonicity over u,v=1

Consider equation " = —Af(z) + pf(—x), where f(z) is a piece-
wise linear function depicted in Fig. 3., parameters of the piece-wise
linear function f(x) are

a; = 0]., as = 03, as = 031,

by =9, by = 0.5, b3 = 150.
f ) vti(v). 1
40 2
35 1.75
30 1.5
25 1.25
20 1
15 0.75 L/
10 0.5
5 0.25

005 01 015 02 02 03 * 25 5 7.5 10 12.5 15 17.5 '

Fig. 6. The graph of y = f(z). Fig. 7. The graphs of

y=7ti(y) and y = 1.
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Fig. 8. The branch F in the (), u)-plane.

The branch FO+ consists of three vertical lines which corresponds
to three solutions of the equation %tl(\%) =1
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Fig. 9.The branch F; in the (A, u)-plane.
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The branch Fj;~ consists of horizontal lines which correspond to
< fone i D P
solutions of the equation \/ﬁﬁ( \/ﬁ) =1
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Fig. 10.The branches F;" = F| in
the (A, p)-plane.Properties of the
branches Fli depend on solutions of
the equation u(\) +v(p) = 1. A set of
solutions of this equation consists of
exactly three components due to

non-monotonicity of the functions
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4.4 Nonmonotonicity beneath u,v=1

Consider equation " = —Af(z) + pf(—x), where f(z) is a piece-
wise linear function depicted in Fig. 3., parameters of the piece-wise
linear function f(x) are

a; = 0]., as = 02, as = 022,
by =0.2, by = 0.1, by = 120.
ty(y) o
P
3- 5 1.75
3 1.5
25 1.25
2 1
1.5 0.75
1 0.5k
0.5 0.25
0.5 1 1.5 2 2.5 37 R TR S el
Fig. 11.Funkcija t1 (7). Fig. 12.Funkcija

u(y) =yt (7).
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Fig. 13.Funkcija ¢ (—) Fig. 14.Funkcija %tl (—)

Contents First

20

30 40 50 10 20 30 a0 "

1 1

A A

Last J 1 Back Close Full Screen



100

80

60

40

20

20

40

60

80

100

Fig. 15.The branch F;” = F,” Case maz + min > 1.
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Fig. 16.
e Red F," = F[, FJf = F;, - = Fy, the branch F;" = F|
consists of 2 components.

e Blue F,f, F;, the branch F," consists of 2 components.
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Fig. 17.u(\)-red, v(u)-blue. Fig. 18.The branch F;t.
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max + min =1
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Fig. 19.u(\)-red, v(u)-blue. Fig. 20.The branch F;t.
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Fig. 21.u(\)-red, v(u)-blue. Fig. 22.The branch F;t.
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Fig. 23.u(\)-red, v(u)-blue. Fig. 24.The branch F;t.
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