DAUGAVPILS UNIVERSITY Department of Natural Sciences and Mathematics

1

A. Gritsans, F. Sadyrbaev

NONLINEAR EIGENVALUE PROBLEMS

Workshop Diff. Equations Hejnice, 16th-20th September 2007

Contents

1	1 Introduction												3			
2	2 One parameter problems														7	
3	Two-parameter problems															
	3.1	\Pr	oblem												8	
	3.2	Ass	sumpti	ions											8	
	3.3	For	mulas	for the	nonli	near s	spectru	m							9	
	3.4	Sa	mples	of time	maps		••••								10	
4	Some properties of spectra													14		
	4.1	.1 Monotone $u(\lambda), v(\mu)$														
	4.2	No	n-mon	otone u	$(\ddot{\lambda}), v($	(μ) .									17	
	4.3	No	nmonc	otonicity	over	u.v=	1								18	
	4.4	No	nmonc	otonicity	bene	ath u	,v=1								22	
R	efere	nces	5												30	
C	Conter	nts	First	Last	•		Back	:	Clo	ose	F	ull	Sc	reen		

1 Introduction

Nonlinear eigenvalue problems of the type:

$$x'' = -\lambda f(x), \quad x(0) = 0, \ x(1) = 0, \tag{1}$$

(most recently P. Korman et al. [2], looking for multiple positive solutions).

We consider a two-parameter nonlinear problem:

$$x'' = -\lambda f(x^+) + \mu g(x^-), \quad x(0) = 0, \ x(1) = 0, \tag{2}$$

where f, g are positive valued Lipschitz functions such that f(0) = g(0) = 0.

The same equation in alternative form

$$x'' = \begin{cases} -\lambda f(x), & \text{if } x \ge 0\\ \mu g(-x), & \text{if } x < 0. \end{cases}$$
(3)

If f = g = x one has the Fučik equation: $x'' = -\lambda x^{+} + \mu x^{-}, \quad x(0) = 0, \ x(1) = 0,$ (4)μ 300 F_4^+ 250 F_3^+ 200 150 F_2^+ F_3^- 100 $F_2^ F_1^+$ 50 $F_1^ F_0^-$ 50 100 150 200 250 300 **Fig. 1.** The classical (λ, μ) Fučik spectrum. Close Contents First Last Back Full Screen

$$\begin{array}{l} \text{no zeros in } (0,1), x'(0) > 0: \ F_0^+ = \left\{ (\lambda, \mu): \ \lambda = \pi^2, \ \mu \ge 0 \right\}, \\ \text{no zeros in } (0,1), x'(0) < 0: \ F_0^- = \left\{ (\lambda, \mu): \lambda \ge 0, \ \mu = \pi^2 \right\}, \\ \text{one zero in } (0,1), x'(0) > 0: \ F_1^+ = \left\{ (\lambda; \mu): \ \frac{\pi}{\sqrt{\lambda}} + \frac{\pi}{\sqrt{\mu}} = 1 \right\}, \\ \text{one zero in } (0,1), x'(0) < 0: \ F_1^- = \left\{ (\lambda; \mu): \ \frac{\pi}{\sqrt{\mu}} + \frac{\pi}{\sqrt{\lambda}} = 1 \right\}, \\ \text{two zeros in } (0,1), x'(0) > 0: \ F_2^+ = \left\{ (\lambda; \mu): \ \frac{2\pi}{\sqrt{\lambda}} + \frac{1}{\sqrt{\mu}} = 1 \right\}, \\ \text{two zeros in } (0,1), x'(0) < 0: \ F_2^- = \left\{ (\lambda; \mu): \ \frac{\pi}{\sqrt{\lambda}} + 2\frac{1}{\sqrt{\mu}} = 1 \right\}. \end{array}$$

Back

Close

Full Screen

and so on.

Contents

First

Last

-

►

The sample problem:

Contents

First

Last

$$x'' = -\lambda(x^+)^{2\alpha+1} + \mu(x^-)^{2\beta+1}, \quad x(0) = 0, \ x(1) = 0, \tag{5}$$

Back

Close

Full Screen

6

2 One parameter problems

The nonlinear one-parameter eigenvalue problem:

$$x'' = -\lambda x^3, \quad x(0) = 0, \ x(1) = 0.$$
 (6)

Looking for solutions without zeros in (0, 1):

Contents

First

Last

for any $\lambda > 0$ there exists a positive valued in (0, 1) solution x(t). The value $\max_{[0,1]} x(t) := ||x||$ and λ relate as

$$||x|| \cdot \lambda = 2\sqrt{2} \cdot \int_0^1 \frac{dx}{\sqrt{1 - x^4}}.$$

Therefore $F_0^+ = \left\{ (\lambda, \mu) : 0 < \lambda < +\infty, \ \mu \ge 0 \right\}$ for the problem (5).

In order to make the problem reasonable one should impose additional conditions. Let us require that

$$|x'(0)| = 1.$$

Back

Close

Full Screen

3 Two-parameter problems

3.1 Problem

$$x'' = -\lambda f(x^{+}) + \mu g(x^{-}), \quad x(0) = 0, \ x(1) = 0, \quad |x'(0)| = 1.$$
(7)

3.2 Assumptions

(A1) the first zero $t_1(\alpha)$ of a solution to the Cauchy problem

$$u'' = -f(u), \quad u(0) = 0, \ u'(0) = \alpha$$
 (8)

exists for any $\alpha > 0$.

(A2) the first zero $\tau_1(\beta)$ of a solution to the Cauchy problem

$$v'' = g(-v), \quad v(0) = 0, \ v'(0) = -\beta$$
 (9)

exists for any $\beta > 0$.

3.3 Formulas for the nonlinear spectrum

In presence of the conditions (A1) and (A2) the first branches of the spectrum are:

$$\begin{split} F_0^+ &= \left\{ \begin{pmatrix} \lambda, \mu \end{pmatrix} : \ \lambda \text{ is a solution of } \frac{1}{\sqrt{\lambda}} t_1 \left(\frac{1}{\sqrt{\lambda}} \right) = 1, \quad \mu \ge 0 \right\}, \\ F_0^- &= \left\{ \begin{pmatrix} \lambda, \mu \end{pmatrix} : \lambda \ge 0, \ \mu \text{ is a solution of } \frac{1}{\sqrt{\mu}} \tau_1 \left(\frac{1}{\sqrt{\mu}} \right) = 1 \right\}, \\ F_1^+ &= \left\{ \begin{pmatrix} \lambda; \mu \end{pmatrix} : \quad \frac{1}{\sqrt{\lambda}} t_1 \left(\frac{1}{\sqrt{\lambda}} \right) + \frac{1}{\sqrt{\mu}} \tau_1 \left(\frac{1}{\sqrt{\mu}} \right) = 1 \right\}, \\ F_1^- &= \left\{ \begin{pmatrix} \lambda; \mu \end{pmatrix} : \quad \frac{1}{\sqrt{\mu}} \tau_1 \left(\frac{1}{\sqrt{\mu}} \right) + \frac{1}{\sqrt{\lambda}} t_1 \left(\frac{1}{\sqrt{\lambda}} \right) = 1 \right\}, \\ F_2^+ &= \left\{ \begin{pmatrix} \lambda; \mu \end{pmatrix} : \quad 2 \frac{1}{\sqrt{\lambda}} t_1 \left(\frac{1}{\sqrt{\lambda}} \right) + \frac{1}{\sqrt{\mu}} \tau_1 \left(\frac{1}{\sqrt{\mu}} \right) = 1 \right\}, \\ F_{2i}^- &= \left\{ \begin{pmatrix} \lambda; \mu \end{pmatrix} : \quad \frac{1}{\sqrt{\mu}} \tau_1 \left(\frac{1}{\sqrt{\mu}} \right) + 2 \frac{1}{\sqrt{\lambda}} t_1 \left(\frac{1}{\sqrt{\lambda}} \right) = 1 \right\}. \end{split}$$

3.4 Samples of time maps

Let equation be

$$x'' = -(r+1)x^r, \quad r > 0.$$
(10)

Then

$$t_1\left(\frac{1}{\sqrt{\lambda}}\right) = 2A\,\lambda^{\frac{r-1}{2(r+1)}}, \quad A = \int_0^1 \frac{1}{\sqrt{1-\xi^{r+1}}}\,d\xi, \tag{11}$$

- t_1 is decreasing in λ for $r \in (0, 1)$,
- t_1 is constant for r = 1,
- t_1 is increasing in λ for r > 1.

The function

$$u(\lambda) = \frac{1}{\sqrt{\lambda}} t_1\left(\frac{1}{\sqrt{\lambda}}\right) = 2A \,\lambda^{-\frac{1}{r+1}}$$

is decreasing for r > 0.

If f(x) is a piece-wise linear function like in the picture then exact formulas are known for computation of t_1

1. if $0 \le \alpha \le \sqrt{2F(a_1)}$, then $t_1(\alpha) = \pi \sqrt{\frac{a_1}{b_1}}$;

2. if
$$\sqrt{2F(a_1)} \le \alpha \le \sqrt{2F(a_2)}$$
, then
 $t_1(\alpha) = 2\sqrt{\frac{a_1}{b_1}} \arcsin \frac{\sqrt{a_1b_1}}{\alpha} + \sqrt{\frac{a_2 - a_1}{b_1 - b_2}} \ln \frac{D_2(\alpha)}{\left(-2b_1 + 2\sqrt{\frac{b_1 - b_2}{a_2 - a_1}}\sqrt{\alpha^2 - a_1b_1}\right)^2},$

3. if
$$\alpha \geq \sqrt{2F_2(a_2)}$$
, then

$$\begin{split} t_1(\alpha) &= 2\sqrt{\frac{a_1}{b_1}} \arcsin\frac{\sqrt{a_1b_1}}{\alpha} + \sqrt{\frac{a_3 - a_2}{b_3 - b_2}} \left[\pi - 2 \arcsin\frac{2b_2}{\sqrt{D_3(\alpha)}} \right] + \\ &+ 2\sqrt{\frac{a_2 - a_1}{b_1 - b_2}} \ln \left| \frac{-b_2 + \sqrt{\frac{b_1 - b_2}{a_2 - a_1}}\sqrt{\alpha^2 - a_1b_1 - (a_2 - a_1)(b_1 + b_2)}}{-b_1 + \sqrt{\frac{b_1 - b_2}{a_2 - a_1}}\sqrt{\alpha^2 - a_1b_1}} \right| \,, \end{split}$$

where

$$D_2(\alpha) = 4 \frac{b_1 - b_2}{a_1 - a_2} \alpha^2 + 4b_1 \frac{a_1 b_2 - a_2 b_1}{a_1 - a_2}, \quad D_3(\alpha) = 4 \frac{b_2 - b_3}{a_2 - a_3} \alpha^2 + 4b_1 \frac{a_1 b_2 - a_2 b_1}{a_1 - a_2}$$

$$+4\frac{-a_2b_1b_2+a_1b_2^2+a_3b_2^2+a_2b_1b_3-a_1b_2b_3+a_2b_2b_3}{a_2-a_3}.$$

The first zero function is asymptotically linear:

$$\lim_{\alpha \to +\infty} t_1(\alpha) = \sqrt{\frac{a_3 - a_2}{b_3 - b_2}} \pi.$$

4 Some properties of spectra

Let

Contents

First

Last

$$u(\lambda) := \frac{1}{\sqrt{\lambda}} t_1\left(\frac{1}{\sqrt{\lambda}}\right) \quad v(\mu) := \frac{1}{\sqrt{\mu}} \tau_1\left(\frac{1}{\sqrt{\mu}}\right). \tag{13}$$

Spectrum is a union of the roots of equations

$$\begin{aligned} u(\lambda) &+ v(\mu) &= 1, \qquad F_1^{\pm} \\ 2u(\lambda) &+ v(\mu) &= 1, \qquad F_2^{+} \\ u(\lambda) &+ 2v(\mu) &= 1, \qquad F_2^{-} \\ 2u(\lambda) &+ 2v(\mu) &= 1, \qquad F_3^{\pm} \\ 3u(\lambda) &+ 2v(\mu) &= 1, \qquad F_4^{+} \\ 2u(\lambda) &+ 3v(\mu) &= 1, \qquad F_4^{-} \\ \cdots \end{aligned}$$
(14)

Back

Close

Full Screen

The coefficients at $u(\lambda)$ and $v(\mu)$ give the numbers of "positive" and "negative" humps of the respective eigenfunctions.

4.1 Monotone $u(\lambda), v(\mu)$

Contents

First

Last

15

Let $\lambda_1, \lambda_2, \lambda_3$ be points of intersection of $u(\lambda), 2u(\lambda), 3u(\lambda)$ ("red" curves) and the horizontal line u = 1. Respectively μ_1, μ_2, μ_3 for "blue" curves.

Close

Back

Full Screen

The branches F_1^{\pm} coincide and look like hyperbola with the vertical asymptote at $\lambda = \lambda_1$ and horizontal asymptote at $\mu = \mu_1$.

The branch F_2^+ has the vertical asymptote at $\lambda = \lambda_2$ and horizontal asymptote at $\mu = \mu_1$.

The branch F_2^- has the vertical asymptote at $\lambda = \lambda_1$ and horizontal asymptote at $\mu = \mu_2$. The branches F_2^+ and F_2^- need not to cross at the bisectrix unless $g \equiv f(-x)$.

The branches F_3^{\pm} coincide and have the vertical asymptote at $\lambda = \lambda_2$ and horizontal asymptote at $\mu = \mu_2$.

The branch F_4^+ has the vertical asymptote at $\lambda = \lambda_3$ and horizontal asymptote at $\mu = \mu_2$.

The branch F_4^- has the vertical asymptote at $\lambda = \lambda_2$ and horizontal asymptote at $\mu = \mu_3$. The branches F_4^+ and F_4^- need not to cross at the bisectrix.

Back

Close

Full Screen

Contents

First

Last

4.2 Non-monotone $u(\lambda), v(\mu)$

It is possible that the functions $u(\lambda) = \frac{1}{\sqrt{\lambda}} t_1\left(\frac{1}{\sqrt{\lambda}}\right)$ and $v(\mu) := \frac{1}{\sqrt{\mu}} \tau_1\left(\frac{1}{\sqrt{\mu}}\right)$ are non-monotone.

Then spectra may differ essentially from those in the monotone case.

Remark. Suppose that $iu(\lambda)$ and $iv(\mu)$ are monotonically decreasing starting from some λ_{\bigstar} and μ_{\bigstar} , $iu(\lambda_{\bigstar}) = 1$, $iv(\mu_{\bigstar}) = 1$, where *i* is some positive integer. Then branches F_{2i-1}^{\pm} and higher $(F_n^{\pm}, n > 2i - 1)$ behave like those in the monotone case.

4.3 Nonmonotonicity over u,v=1

Consider equation $x'' = -\lambda f(x) + \mu f(-x)$, where f(x) is a piecewise linear function depicted in Fig. 3., parameters of the piece-wise linear function f(x) are

Fig. 8. The branch F_0^+ in the (λ, μ) -plane.

The branch F_0^+ consists of three vertical lines which corresponds to three solutions of the equation $\frac{1}{\sqrt{\lambda}}t_1(\frac{1}{\sqrt{\lambda}})=1.$

Fig. 9.The branch F_0^- in the (λ, μ) -plane.

Last

Contents

First

The branch F_0^- consists of horizontal lines which correspond to solutions of the equation $\frac{1}{\sqrt{\mu}}\tau_1(\frac{1}{\sqrt{\mu}}) = 1.$

Back

Close

Full Screen

Fig. 10. The branches $F_1^+ = F_1^-$ in the (λ, μ) -plane.Properties of the branches F_1^{\pm} depend on solutions of the equation $u(\lambda) + v(\mu) = 1$. A set of solutions of this equation consists of exactly three components due to non-monotonicity of the functions **Contents First** a Last) \blacktriangleleft **Back Close Full Screen**

4.4 Nonmonotonicity beneath u,v=1

Consider equation $x'' = -\lambda f(x) + \mu f(-x)$, where f(x) is a piecewise linear function depicted in Fig. 3., parameters of the piece-wise linear function f(x) are

Contents First Last **4 >** Back Close Full Screen

23

Fig. 15. The branch $F_1^+ = F_1^-$ Case max + min > 1.

Contents First Last

Fig. 16.

- Red $F_1^+ = F_1^-$, $F_3^+ = F_3^-$, $F_5^+ = F_5^-$, the branch $F_1^+ = F_1^-$ consists of 2 components.
- Blue F_2^+ , F_4^+ , the branch F_2^+ consists of 2 components.

Contents₁ First | Last h ◀] ► Back Close ₁ Full Screen

Contents First Last

Fig. 21. $u(\lambda)$ -red, $v(\mu)$ -blue.

Fig. 22. The branch F_1^+ .

Fig. 23. $u(\lambda)$ -red, $v(\mu)$ -blue.

Fig. 24. The branch F_1^+ .

References

Contents

First

Last

- A. Gritsans and F. Sadyrbaev. On nonlinear eigenvalue problems. Proceedings LU MII "Mathematics. Differential Equations", vol. 6 (2006), 76 - 86.
- [2] P. Korman. Global solution branches and exact multiplicity of solutions for two-point boundary value problems. In: Handbook of Diff. Equations, ODE, Vol. III. Elsevier - North Holland, Amsterdam, 2006, 548 - 606. 3
- [3] F. Sadyrbaev and A. Gritsans. Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations. Nonlinear Analysis: Modelling and Control, 2007, 12, No.2, 253 - 267.
- [4] R. Schaaf. Global solution branches of two-point boundary value problems. Lect. Notes Math. 1458. Springer-Verlag, Berlin - Heidelberg - New York, 1990.

Back

Close

Full Screen