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Cauchy problem

Question

Find a solution of an FDE possessing the prescribed properties

In the case of an ODE, the Cauchy problem is the most natural choice. For
FDE studied insufficiently even in the case of a scalar first order linear
equation

Issues
The operator of translation along the trajectories is undefined
The notion of a local solution does not make sense
The tools of the ODE theory do not work (e. g., the classical existence
and uniqueness theorems)
The non-local character of an equation complicates the application of
approximate methods
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Cauchy problem setting
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Formulation

Formulation involving initial functions

Find a u : [a, b] → R such that

u′(t) = r(t) u(η(t)) + g(t), t ∈ [a, b], (1)
u(s) = ψ(s) for s 6∈ [a, b], (2)

where r : [a, b] → R, η : [a, b] → R, g : [a, b] → R and ψ : R \ [a, b] → R
are given functions.

u′(t) = h(t) u(ω(t)) + q(t), t ∈ [a, b], (3)
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u(s) = ψ(s) for s 6∈ [a, b], (2)

where r : [a, b] → R, η : [a, b] → R, g : [a, b] → R and ψ : R \ [a, b] → R
are given functions.

Modern formulation (  Perm Seminar on FDE; 1980s)

u′(t) = h(t) u(ω(t)) + q(t), t ∈ [a, b], (3)

where h(t) := χη(t)r(t), ω(t) := η(t)χη(t) + a (1− χη(t)),

q(t) :=

{
g(t) if η(t) ∈ [a, b],
g(t) + r(t)ψ(η(t)) if η(t) 6∈ [a, b],

and χη(t) = 1 if η(t) ∈ [a, b], χη(t) = 0 if η(t) 6∈ [a, b].



∃! Positivity Application Differential inequalities

Formulation

Formulation involving initial functions

Find a u : [a, b] → R such that

u′(t) = r(t) u(η(t)) + g(t), t ∈ [a, b], (1)
u(s) = ψ(s) for s 6∈ [a, b], (2)

where r : [a, b] → R, η : [a, b] → R, g : [a, b] → R and ψ : R \ [a, b] → R
are given functions.

Modern formulation (  Perm Seminar on FDE; 1980s)

The “tailless” form of (1), (2)

u′(t) = h(t) u(ω(t)) + q(t), t ∈ [a, b], (3)

where ω : [a, b] → [a, b] is measurable and q ∈ L1([a, b],R).
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A scalar differential equation with an argument deviation

Find an absolutely continuous u : [a, b] → R such that

u′(t) = h(t) u(ω(t)) + q(t), t ∈ [a, b], (4)

where ω : [a, b] → [a, b] is measurable and q ∈ L1([a, b],R).

For the new equation (4) to make sense, it suffices to assume the
integrability of r and g, the measurability of η in (1), and the continuity
of ψ in (2).

The function ω in (3) transforms [a, b] into itself, and thus the
additional conditions of type (2) are redundant.
The Cauchy problem for Eq. (3) is posed at a single point τ ∈ [a, b]:

u(τ) = c.
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Initial value problem for FDE

Complications

Method of steps applies to the Volterra type equations only

Few sharp and efficient solvability conditions are known
The majority of the results available concerns first order scalar
equations
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The Cauchy problem for a system of n linear first order FDEs with n2

argument transformations

Find absolutely continuous uk : [a, b] → R, k = 1, 2, . . . , n, such that

u′k(t) =
n∑

j=1

rkj(t) uj(ωkj(t)) + qk(t), t ∈ [a, b], k = 1, 2, . . . , n, (5)

uk(τ) = ck, k = 1, 2, . . . , n, (6)

where rkj : [a, b] → R, k, j = 1, 2, . . . , n, and qk : [a, b] → R,
k = 1, 2, . . . , n, are Lebesgue integrable functions, and ωkj, k, j = 1, 2, . . . , n,
are arbitrary measurable functions mapping [a, b] into itself.

Important difference from the ODE theory

Without additional assumptions, the Cauchy problem (5), (6) may not have
a unique solution even in the class of scalar linear equations with constant
coefficients.
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k = 1, 2, . . . , n, are Lebesgue integrable functions, and ωkj, k, j = 1, 2, . . . , n,
are arbitrary measurable functions mapping [a, b] into itself.

The terms qk, k = 1, 2, . . . , n, contain everything that does not explicitly
concern the operator of the equation (in particular, the initial functions).

Important difference from the ODE theory

Without additional assumptions, the Cauchy problem (5), (6) may not have
a unique solution even in the class of scalar linear equations with constant
coefficients.
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Example

The simplest scalar equation

u′(t) =
u(b)
b− a

+ q(t), t ∈ [a, b], (7)

where q : [a, b] → R is such that∫ b

a
q(s) ds 6= 0,

has no solutions u satisfying the condition

u(a) = 0. (8)

The coefficient (b− a)−1 in (7) becomes arbitrarily small when the length of
the interval increases to ∞.

“Passing to the limit” leads one to the uniquely solvable problem (8) for the
equation u′ = q with q ∈ L1; loc([a,+∞))? No “passing to the limit” is
possible.
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Theorem 1 (A. R., 2005)

Let there exist some constants {γk | k = 1, 2, . . . , n} ⊂ (0,+∞) and
α ∈ [1,+∞) for which at least one of the following conditions be satisfied:

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

1

γk |t − τ |α−1

n∑
j=1

γj |rkj(t)| |ωkj(t)− τ |α < α, (9)

max
k=1,2,...,n

sup
t∈[a,b]\{τ}

sign (t − τ)
γk |t − τ |α

n∑
j=1

γj

∫ t

τ

|rkj(s)| |ωkj(s)− τ |αds < 1. (10)

Then the initial value problem (5), (6) is uniquely solvable for arbitrary
constants {ck | k = 1, 2, . . . , n} ⊂ R and integrable functions
qk : [a, b] → R, k = 1, 2, . . . , n.
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Optimality of conditions of the theorem

None of the non-strict inequalities assumed in Theorem 1 cannot be replaced
by the corresponding non-strict inequality because after such a replacement
the corresponding assertions are lost. For example, the condition

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

1

γk |t − τ |α−1

n∑
j=1

γj |rkj(t)| |ωkj(t)− τ |α ≤ α, (11)

which is a weakened version of condition (9), does not guarantee the unique
solvability of problem (5), (6) for arbitrary forcing terms.

The conditions obtained in this way, as a rule, are optimal.
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j=1

γj |rkj(t)| |ωkj(t)− τ |α ≤ α, (11)

which is a weakened version of condition (9), does not guarantee the unique
solvability of problem (5), (6) for arbitrary forcing terms.

The theorem quoted is not an exceptional case:

The conditions obtained in this way, as a rule, are optimal.
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Theorem 2 (A. R., 2005)

Let there exist some constants {γk | k = 1, 2, . . . , n} ⊂ (0,+∞) and
α ∈ [1,+∞) such that

vrai max
t∈[a,b]\{τ}

n∑
l=1

|rkl(t)|
γk |t − τ |α−1

n∑
j=1

γj

∣∣∣∣∣
∫ ωkl(t)

τ

|rlj(s)||ωlj(s)− τ |αds

∣∣∣∣∣ < α.

for all k = 1, 2, . . . , n. Then the initial value problem

u′k(t) =
n∑

j=1

rkj(t) uj(ωkj(t)) + qk(t), t ∈ [a, b], (12)

uk(τ) = ck, k = 1, 2, . . . , n, (13)

is uniquely solvable for arbitrary {ck | k = 1, 2, . . . , n} ⊂ R and
{qk, k = 1, 2, . . . , n} ⊂ L1([a, b],R).
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Let there exist some constants α ∈ [1,+∞) and {γk | k = 1, 2, . . . , n} ⊂
(0,+∞) such that

vrai max
t∈[a,b]\{τ}

n∑
l=1

|rkl(t)|
γk |t − τ |α−1

n∑
j=1

γj

∣∣∣∣∣
∫ ωkl(t)

τ

|rlj(s)||ωlj(s)− τ |αds

∣∣∣∣∣ ≤ α.

for all k = 1, 2, . . . , n.
Then the initial value problem

u′k(t) =
n∑

j=1

rkj(t) uj(ωkj(t)) + qk(t), t ∈ [a, b], (14)

uk(τ) = ck, k = 1, 2, . . . , n, (15)

is uniquely solvable for arbitrary {ck | k = 1, 2, . . . , n} ⊂ R and {qk, k =
1, 2, . . . , n} ⊂ L1([a, b],R).
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Monotone dependence of a solution on perturbations

Under additional conditions, one can claim not only the unique solvability of
problem

u′k(t) =
n∑

j=1

rkj(t) uj(ωkj(t)) + qk(t), t ∈ [a, b], (16)

uk(τ) = ck, k = 1, 2, . . . , n, (17)

but also a kind of the monotone dependence of its solution on qk,
k = 1, 2, . . . , n, and ck, k = 1, 2, . . . , n.

1 Existence of Green’s operator for (16), (17)
2 Positivity of Green’s operator
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Theorem 3 (A. R., 2005)

Let vrai mint∈[a,b] rkj(t) sign (t − τ) ≥ 0 for all k, j. Moreover, let there exist
α ∈ [1,+∞) and {γk | k = 1, 2, . . . , n} ⊂ (0,+∞) such that, for every
k = 1, 2, . . . , n, at least one of the following conditions is satisfied:

vrai max
t∈[a,b]\{τ}

sign (t − τ)

γk |t − τ |α−1

n∑
j=1

γjrkj(t) |ωkj(t)− τ |α < α, (18)

sup
t∈[a,b]\{τ}

1
γk |t − τ |α

n∑
j=1

γj

∫ t

τ

rkj(s) |ωkj(s)− τ |αds < 1. (19)

Then the Cauchy problem (5), (6) has a unique solution for all
{(ck, qk) | k = 1, 2, . . . , n} ⊂ R× L1([a, b],R). If, moreover,

min
t∈[a,b]

∫ t

τ

qk(s)ds ≥ −ck (20)

for all k, then the solution u = (uk)n
k=1 of problem (5), (6) is non-negative.
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Optimality

The conditions assumed in Theorem 3 are optimal and cannot be weakened.

A counterexample: the scalar linear equation

u′(t) =
α |t − τ |α−1

|θ − τ |α
sign (t − τ) u(θ), t ∈ [a, b], (21)

where θ ∈ [a, b] \ {τ} and α ∈ [1,+∞).
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Optimality

The conditions assumed in Theorem 3 are optimal and cannot be weakened.

A counterexample: the scalar linear equation

u′(t) =
α |t − τ |α−1

|θ − τ |α
sign (t − τ) u(θ), t ∈ [a, b], (21)

where θ ∈ [a, b] \ {τ} and α ∈ [1,+∞).

The weakened versions of the conditions are satisfied
The Cauchy problem

u(τ) = 0

for Eq. (21) has the family of solutions

u(t) = λ |t − τ |α , t ∈ [a, b],

where λ ∈ R is arbitrary.
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An integral functional equation

The methods developed also allow one to study other problems

Another application

Unique solvability conditions for the equation

x(t) =
∫ 1

0
h(t, s) x(ω(s)) ds + q(t), t ∈ [0, 1], (22)

where q ∈ C([0, 1],R), h(t, ·) ∈ L1([0, 1],R) for all t ∈ [0, 1],
h(·, s) ∈ C([0, 1],R) for a. e. s ∈ [0, 1], and ω : [0, 1] → [0, 1] is measurable.
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x(t) =
∫ 1

0
h(t, s) x(ω(s)) ds + q(t), t ∈ [0, 1], (23)

where q ∈ C([0, 1],R), ω is measurable, h(t, ·) ∈ L1([0, 1],R) for all
t ∈ [0, 1], and h(·, s) ∈ C([0, 1],R) for a. e. s ∈ [0, 1].

Theorem 4 (A. R., 2005)

Let there exist some constants τ ∈ [0, 1] and γ ≥ 0 such that

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t)− τ |γ

∫ 1

0
|ω(s)− τ |γ |h(ω(t), s)| ds < 1, (24)

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t)− τ |γ

∫ 1

0
|h(ω(t), s)| ds < +∞. (25)

In the case where mésω−1(τ) > 0, assume also that

h(τ , s) = 0 for a. e. s ∈ [0, 1]. (26)

Then Eq. (23) has a unique solution for all q ∈ C([0, 1],R).
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Power argument transformation

x(t) =
∫ 1

0
h(t, s) x(sα) ds + q(t), t ∈ [0, 1], (27)

where α ∈ (0,+∞), q ∈ C([0, 1],R).

Corollary 5

Let the following conditions be satisfied for some τ ∈ [0, 1] and
γ ∈ [0,+∞):

sup
t∈[0,1]\{τ}

1
|t − τ |γ

∫ 1

0
|sα − τ |γ |h(t, s)| ds < 1, (28)

sup
t∈[0,1]\{τ}

1
|t − τ |γ

∫ 1

0
|h(t, s)| ds < +∞. (29)

Then Eq. (27) has a unique solution for an arbitrary q ∈ C([0, 1],R).
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x(t) =
∫ 1

0
h(t, s) x(sα) ds + q(t), t ∈ [0, 1], (27)

where α ∈ (0,+∞), q ∈ C([0, 1],R).

Corollary 6

Equation (27) is uniquely solvable for arbitrary continuous q provided that
there exists some τ ∈ [0, 1] for which

vrai max
s∈[0,1]

sup
t∈[0,1]\{τ}

∣∣∣∣h(t, s)
t − τ

∣∣∣∣ < α+ 1

2ατ 1+ 1
α − (α+ 1) τ + 1

. (30)
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Power argument transformation

Corollary 6

Equation (27) is uniquely solvable for arbitrary continuous q provided that
there exists some τ ∈ [0, 1] for which

vrai max
s∈[0,1]

sup
t∈[0,1]\{τ}

∣∣∣∣h(t, s)
t − τ

∣∣∣∣ < α+ 1

2ατ 1+ 1
α − (α+ 1) τ + 1

. (30)

The conditions indicated cannot be weakened. A counterexample:

x(t) =
(α+ 1) |t − τ |

2ατ 1+ 1
α − τ (α+ 1) + 1

∫ 1

0
x(sα) ds, t ∈ [0, 1],

where α ∈ (0,+∞) and τ ∈ [0, 1] are certain constants.
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A theorem on differential inequalities

u′k(t) = (lku) (t) + qk(t), t ∈ [a, b], k = 1, 2, . . . , n;
uk(τ) = ck, k = 1, 2, . . . , n,

where n ∈ N, lk : C ([a, b],Rn) → L1 ([a, b],R), k = 1, 2, . . . , n, are
bounded linear operators, −∞ < a ≤ τ ≤ b < +∞, ck, k = 1, 2, . . . , n are
constants, and qk : [a, b] → R, k = 1, 2, . . . , n are Lebesgue integrable.

Definition 7

We say that p : C([a, b],Rn) → L1([a, b],R) is τ -positive if

vrai min
t∈[a,b]

(pu)(t) sign (t − τ) ≥ 0

for any u = (uk)n
k=1 with non-negative components.
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A solution is an absolutely continuous function u = (uk)n
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u′k(t) = (lku) (t) + qk(t), t ∈ [a, b], k = 1, 2, . . . , n; (31)
uk(τ) = ck, k = 1, 2, . . . , n (32)

Theorem 8 (A. R., 2003)

Let lk : C([a, b],Rn) → L1([a, b],R), k = 1, 2, . . . , n be τ -positive. Let there
exists an absolutely continuous y = (yk)n

k=1 : [a, b] → Rn

yk(τ) = 0, k = 1, 2, . . . , n, (33)
yk(t) > 0, t ∈ [a, b] \ {τ}, k = 1, 2, . . . , n, (34)

and a % ∈ (1,+∞) such that

min
k=1,2,...,n

vrai min
t∈[a,b]

(y′k(t)− % (lky)(t)) sign (t − τ) ≥ 0. (35)

Then (31), (32) is uniquely solvable for any forcing terms. If, in addition,

min
k=1,2,...,n

min
t∈[a,b]

∫ t

τ

qk(s)ds ≥ −ck,

then its solution is non-negative.
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Thank you
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