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We will consider the singular problem

(1) (tnu′)′ + tnf (t, u) = 0,

(2) lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,

where n ∈ N, n ≥ 2, a0 ∈ (0,∞), a1,A ∈ [0,∞), and f (t, x) is
continuous on (0, 1]× (0,∞) and can have a time singularity at
t = 0 and a space singularity at x = 0.
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Consider the equation

(3) (t3u′)′ + t3(
1

8u2
− µ

u
− λ2

2
t2γ−4) = 0,

where µ ≥ 0, λ > 0, γ > 1.
Problem (3),(2) arises in the theory of shallow membrane caps and
is a special case of problem (1),(2),where

f (t, x) =
1

8x2
− µ

x
− λ2

2
t2γ−4.

Dickey (Quart.Appl.Math. 1989),
Johnson (Quart.Appl.Math. 1997),
Kannan and O’Regan (J.Inequal.Appl. 2000),
Rachůnková, Koch, Pulverer, Weinmüller (JMAA 2007).
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Consider the equation

(4) u′′ +
3

t
u′ +

q(t)

u2
= 0,

where q is continuous on [0, 1] and positive on (0, 1).
Problem (4),(2) describes a behaviour of symmetric circular
membranes and can be easily transformed to a special case of
problem (1),(2), where

f (t, x) =
q(t)

x2
.

Agarwal and O’Regan (Dyn.Contin.Discrete Impuls.Syst. 2003).
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An infinite interval problem of the form

(5) z ′′ +
1

s3

(
λ2

8sγ−2
− 1

32z2
+

µ

4z

)
= 0, 1 < s <∞,

(6) z is bounded for s →∞, b0z(1)− b1z
′(1−) = A,

can be transformed to problem (3),(2) by the substitution s = 1
t2 ,

z(s) = u(t). Problem (5),(6) arises in the membrane theory and
for A > 0 was solved by

Baxley and Robinson (J.Comp.Appl.Math. 1998),
Agarwal and O’Regan (Int.J.Non-Lin.Mech. 2004).
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Assume that f (t, x) is continuous on (0, 1]× (0,∞).

Definition

The function f has a time singularity at t = 0 if∫ ε

0
|f (t, x)|dt = ∞ for some x > 0 and for each ε ∈ (0, 1).

The function f has a space singularity at x = 0 if

lim sup
x→0+

|f (t, x)| = ∞ for t ∈ (0, 1).
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Example

From nonlinear PDEs to singular ODEs. Consider the Dirichlet
problem

∆u + g(r , u) = 0 on Ω, u|Γ = 0,

where ∆ is the Laplace operator, Ω is the open unit disk in Rn

centered at the origin, Γ is its boundary and r is the radial distance
from the origin. When searching for positive radially symmetric
solutions to this problem, we get the singular problem for an
ordinary differential equation of the form

u′′ +
n − 1

t
u′ + g(t, u) = 0, u′(0) = 0, u(1) = 0.

Berestycki, Lions and Peletier (Ind.Univ.Math.J. 1981),

Gidas, Ni and Nirenberg (Adv.Math.Suppl.Studies 1981).
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Example

In certain problems in fluid dynamics and boundary layer theory
the generalized Emden-Fowler equation

u′′ + ψ(t)u−λ = 0

arises. Here λ > 0, ψ ∈ C (0, 1) and ψ 6∈ L1[0, 1].

Callegari and Friedman (J.Math.Anal.Appl. 1968),

Callegari and Nachman (J.Math.Anal.Appl. 1978),

Callegari and Nachman (SIAM J.Appl.Math. 1980).
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We are interested in positive solutions of problem (1),(2).

Definition

A function u is called a positive solution of problem (1),(2), if:

u ∈ C [0, 1] ∩ C 2(0, 1),

u(t) > 0 for t ∈ (0, 1),

(tnu′(t))′ + tnf (t, u(t)) = 0 for t ∈ (0, 1),

limt→0+ tnu′(t) = 0, a0u(1) + a1u
′(1−) = A.
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Definition

A function σ is called a lower function of problem (1), (2), if:

σ ∈ C [0, 1] ∩ C 2(0, 1),

(tn(σ′(t)))′ + tnf (t, σ(t)) ≥ 0 for t ∈ (0, 1),

limt→0+ tnσ′(t) ≥ 0, a0σ(1) + a1σ
′(1−) ≤ A.

If all the inequalities are reversed, then σ is called an upper funtion
of problem (1), (2).

Note that tnσ′(t) can be unbounded at the endpoints t = 0, t = 1.
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Some monographs using the method of lower and upper functions
for regular problems:

Coster and Habets, Springer 1996, Elsevier 2004,

Ladde, Lakshmikantham and Vatsala, Pitman 1995,

Vasiliev and Klokov, Zinatne 1978.

Some monographs which have extended this method on singular
problems:

Kiguradze and Shekhter, Viniti 1987,

Rachůnková, Staněk and Tvrdý, Elsevier 2006.
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In the next three theorems we assume that:

σ1 and σ2 are lower and upper functions of problem (1),(2),

0 < σ1(t) ≤ σ2(t) for t ∈ (0, 1),

∃p < 2 such that limt→0+ tph(t) <∞,

where h(t) = sup{|f (t, x)| : σ1(t) ≤ x ≤ σ2(t)}.

Note that:

σ1 and σ2 can vanish at t = 0 and t = 1,

f can have singularities at t = 0 and x = 0,

therefore h can be unbounded, i.e.

lim sup
t→0+

h(t) = ∞, lim sup
t→1−

h(t) = ∞.
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(1) (tnu′)′ + tnf (t, u) = 0,

(2) lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,

Theorem

Let h be bounded on [0, 1]. Then problem (1), (2) has a positive
solution u which moreover belongs to C 1[0, 1] and satisfies
u′(0) = 0 and

(7) σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, 1].

Theorem 1 can be proved by the arguments which are used for
regular problems.
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Theorem

Let h be bounded at t = 1. Further assume that

lim sup
t→0+

h(t) = ∞

and that there is δ1 ∈ (0, 1) such that

(8) (tnσ′1(t))
′ ≥ 0, (tnσ′2(t))

′ ≤ 0 for t ∈ (0, δ1).

Then problem (1), (2) has a positive solution u which moreover
belongs to C 1(0, 1] and satisfies estimate (7).
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Theorem

Let h be bounded at t = 0. Further assume that

lim sup
t→1−

h(t) = ∞, σ1(1) = σ2(1)

and that there are δ2 ∈ (0, 1), K ∈ R such that

(9) (tnσ′1(t))
′ ≥ K , (tnσ′2(t))

′ ≤ K for t ∈ (1− δ2, 1).

Then A = 0 and problem (1), (2) has a positive solution u which
moreover belongs to C 1[0, 1) and satisfies estimate (7) and
u′(0) = 0.
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We use the following approach to prove Theorems 2 and 3:

the singular problem (1), (2) is approximated by a sequence of
solvable regular problems,

a sequence {un} of solutions of the regular problems is
generated,

a convergence of a suitable subsequence {ukn} is investigated
and a limit u = limn→∞ ukn is obtained,

the type of the convergence determines the properties of u
and implies that u is a solution of the original singular
problem (1), (2).
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Constant lower and upper functions

If A > 0 and if there exist 0 < r1 ≤ A
a0

and r2 ≥ A
a0

such that

(10) f (t, r1) ≥ 0, f (t, r2) ≤ 0 for t ∈ (0, 1),

then the constant function σ1(t) ≡ r1 is a lower function of
problem (1), (2), and the constant function σ2(t) ≡ r2 is an upper
function of problem (1), (2).
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We demonstrate the application of Theorems 1–3 on the problem

(11) (tnu′)′ + tn

(
a

u2m
− b

um
− ct2η

)
= 0,

(2) lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,

where a > 0, b, c ≥ 0, η > −1, m, n ∈ N, n ≥ 2, a0 > 0,
a1,A ≥ 0.

We can find lower and upper functions (nonconstant in general) for
all values of the parameters.

c , 1− t, 1− t2, t−
η
m , (1− t2)

1
2m
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For simplicity we show how to find lower and upper functions just
for the problem

(11) (tnu′)′ + tn

(
a

u2m
− b

um
− ct2η

)
= 0,

(12) lim
t→0+

tnu′(t) = 0, u(1) = A,

where b > 0.
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I. We assume: A > 0.

ax2 − bx − c = 0, x1 =
b +

√
b2 + 4ac

2a
,

c1 = min

{
A,

1
m
√

x1

}
, c2 = max

{
A, m

√
a

b

}
, c3 = max

{
A,

1
m
√

x1

}
.

η ≥ 0 : h is bounded

σ1(t) = c1, σ2(t) = c2, t ∈ [0, 1],

η ∈ (−1, 0) : h is unbounded at t = 0

σ1(t) = c1t
− η

m , σ2(t) = c3, t ∈ [0, 1].
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II. We assume: A = 0.

ax2 − bx − c = 0, x1 =
b +

√
b2 + 4ac

2a
,

∃c1 ∈
(

0,
1

m
√

x1

)
, ∃c2 >

m

√
a

b

η ≥ 0 : h is unbounded at t = 1

σ1(t) = c1(1− t2), σ2(t) = c2(1− t2)
1

2m , t ∈ [0, 1],

η ∈ (−1, 0) : h is unbounded both at t = 0 and at t = 1

σ1(t) = c1t
− η

m (1− t), σ2(t) = c2(1− t2)
1

2m , t ∈ [0, 1].
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Similar lower and upper functions can be found for other values of
parameters b and a1. Then, by Theorems 1–3, we get the
following existence result for the problem

(11) (tnu′)′ + tn

(
a

u2m
− b

um
− ct2η

)
= 0,

(2) lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,

where a > 0, b, c ≥ 0, η > −1, m, n ∈ N, n ≥ 2, a0 > 0,
a1,A ≥ 0.
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Theorem

Problem (11), (2) has a positive solution u such that

η > −1
2 =⇒ u(0) > 0, u′(0+) = 0,

η = −1
2 =⇒ u(0) > 0, u′(0+) = c

n ,

η < −1
2 =⇒ u(0) ≥ 0, u′(0+) = ∞,

and

A > 0 =⇒ u′(1−) ∈ R,

A = 0, a1 > 0 =⇒ u′(1−) ∈ R,

A = 0, a1 = 0 =⇒ u′(1−) = −∞.
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