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Motivation

div(|∇u|p−2∇u) = f(t, u, u′)

• non-Newtonian fluid theory, diffusion of flows in a porous
medium, image processing

• div(|∇u|p−2∇u) – n-dimensional p-Laplacian

p-Laplacian

(|v′|p−2v′)′ = f(t, v, v′)

• radially symmetric solutions of equations with
multi-dimensional p-Laplacian, turbulent flow of a gas in a
porous medium

• u → (|u′|p−2u′)′, p > 1 – one-dimensional p-Laplacian

φ-Laplacian

u → (φ(u′))′

• φ : R → R is an increasing homeomorphism, φ(R) = R
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Assumptions

• T > 0, [0, T ] ⊂ R, A,B ∈ R
• φ : R → R is an increasing homeomorphism, φ(R) = R
• f : [0, T ]× R2 → R

Definition

The function f satisfies the Carathéodory conditions on the set
[0, T ]× R2 if

• f(·, x, y) : [0, T ] → R is measurable for all (x, y) ∈ R2,
• f(t, ·, ·) : R2 → R is continuous for a.e. t ∈ [0, T ],
• for each compact set K ⊂ R2 there is a function mK ∈ L1[0, T ]

such that |f(t, x, y)| ≤ mK(t) for a.e. t ∈ [0, T ] and all
(x, y) ∈ K.
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Formulation of the problem

Boundary value problem

(φ(u′))′ = f(t, u, u′), (Eq)

u′(0) = A, u′(T ) = B. (NC)
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Lower and upper functions

Definition

Functions σ1, σ2 : [0, T ] → R are respectively lower and upper
functions of problem (Eq), (NC) if φ(σ′i) ∈ AC[0, T ] for i ∈ {1, 2}
and

(φ(σ′1(t)))
′ ≥ f(t, σ1(t), σ′1(t)),

for a.e.t ∈ [0, T ],
σ′1(0) ≥ A, σ′1(T ) ≤ B,

(φ(σ′2(t)))
′ ≤ f(t, σ2(t), σ′2(t)),

for a.e.t ∈ [0, T ],
σ′2(0) ≤ A, σ′2(T ) ≥ B.
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Solution of Neumann problem

Definition (solution of (Eq), (NC))

A function u : [0, T ] → R with φ(u′) ∈ AC[0, T ] is called
a solution of problem (Eq), (NC) if u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (NC).



Neumann boundary
value problem with

φ-Laplacian

Introduction to problem
Motivation

Problem that we study

Lower and upper functions,
solution

Existence results
Conditions of the sign type

Onesided growth conditions

Summary

wde.8

Bounded right-hand sides of equations

Theorem

Let σ1, σ2 be respectively lower and upper functions of (Eq),
(NC) and let σ1 ≤ σ2 on [0, T ]. Let there is f0 ∈ L1[0, T ] such
that |f(t, x, y)| ≤ f0(t) for a.e. t ∈ [0, T ] and for all
(x, y) ∈ [σ1(t), σ2(t)]× R. Then problem (Eq), (NC) has a
solution u ∈ C1[0, T ] with φ(u′) ∈ AC[0, T ] such that

σ1 ≤ u ≤ σ2 on [0, T ].

Proof:
• application of the Schauder fixed point to a modified

problem
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Conditions of the sign type

Theorem

Let σ1, σ2 be respectively lower and upper functions of (Eq),
(NC) and let σ1 ≤ σ2 on [0, T ]. Let there exist functions
ϕ1, ϕ2 ∈ C[0, T ] such that φ(ϕ1), φ(ϕ2) ∈ AC[0, T ] and

ϕ1(0) ≤ A,ϕ1(T ) ≤ B, ϕ2(0) ≥ A,ϕ2(T ) ≥ B,
ϕ1(t) ≤ σ′i(t) ≤ ϕ2(t) on [0, T ], i = 1, 2.

Furthermore, let ϕ1, ϕ2 satisfy inequalities

f(t, x, ϕ1(t)) ≤ (φ(ϕ1(t)))′, f(t, x, ϕ2(t)) ≥ (φ(ϕ2(t)))′

for a.e. t ∈ [0, T ] and for all x ∈ [σ1(t), σ2(t)]. Then the problem
(Eq), (NC) has a solution u ∈ C1[0, T ] such that

σ1 ≤ u ≤ σ2, ϕ1 ≤ u′ ≤ ϕ2 on [0, T ]. (∗)
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Basic ideas of proof

•
(φ(u′))′ = f(t, u, u′), (Eq)

u′(0) = A, u′(T ) = B (NC)

•

F1(t, u, v) =


f(t, u, ϕ2) + v−ϕ2

v−ϕ2+1 , v > ϕ2,

f(t, u, v), ϕ1 ≤ v ≤ ϕ2,

f(t, u, ϕ1) + v−ϕ1
|v−ϕ1|+1 , v < ϕ1

• auxiliary problem

(φ(x′))′ = F1(t, x, x′),
x′(0) = A, x′(T ) = B

• solution u of auxiliary problem satisfies the inequality

σ1 ≤ u ≤ σ2 on [0, T ]

• it can be proved that

ϕ1 ≤ u′ ≤ ϕ2 on [0, T ]
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Example{(
|x′|p−2x′

)′ = (x′k − signx′) · t + xq + tr − 1,

x′(0) = 1, x′(1) = −1,

k, q ∈ N are odd, p > 2, r ≥ 0.

Functions

σ1(t) = −t2 + t− 2p, σ2(t) = −t2 + t + 2

are respectively lower and upper functions of the problem. For

some C >
(

2.25q+1
p−1

) 1
p−2

+ 2 and D >
(

(2p)q+2
p−1

) 1
p−2

+ 1, for
t ∈ [0, 1], let us define

ϕ1(t) = t− C, ϕ2(t) = −t + D.

Then the right-hand side of the equation satisfies the
conditions of the previous theorem and therefore it follows the
existence of the solutions satisfying inequalities (∗).
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Preliminary lemma

Lemma

Let σ1, σ2 be respectively lower and upper functions of (Eq),
(NC) and let σ1 ≤ σ2 on [0, T ]. Let there exist a continuous
function ω : [0,∞) → (0,∞) such that

∫ φ(−1)

−∞

ds

ω(|φ−1(s)|)
= ∞,

∫ ∞

φ(1)

ds

ω(|φ−1(s)|)
= ∞, (∗∗)

and let k ∈ L1[0, T ] be nonnegative a.e. on [0, T ]. Then there
exists µ∗ > 0 such that for each function u ∈ C1[0, T ] fulfiling
(NC) and inequalities

σ1 ≤ u ≤ σ2 on [0, T ],
(φ(u′(t)))′ ≤ ω(|u′(t)|)(k(t) + |u′(t)|) for a.e. t ∈ [0, T ],

the following estimate holds

|u′(t)| < µ∗ for all t ∈ [0, T ].
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Basic ideas of proof

• |u′(0)| ≤ 1 + max{|A|, |B|} = c0

|u′(T )| ≤ 1 + max{|A|, |B|} = c0

• r = ‖σ1‖∞ + ‖σ2‖∞, ∃ µ1, µ∗ ∈ (c0,∞), µ1 < µ∗:∫ φ(µ1)

φ(c0)

ds

ω(|φ−1(s)|)
> r + ‖k‖L1[0,T ]∫ φ(−c0)

φ(−µ∗)

ds

ω(|φ−1(s)|)
> r + ‖k‖L1[0,T ]

• these inequalities and the other asssumptions in theorem
imply that

u′(t) < µ1 ∀ t ∈ [0, T ]

• similarly it can be proved

u′(t) > −µ∗ ∀ t ∈ [0, T ]
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Onesided growth conditions

Theorem

Let σ1, σ2 be respectively lower and upper functions of the
problem (Eq), (NC) and let σ1 ≤ σ2 on [0, T ]. Let a continuous
function ω : [0,∞) → (0,∞) satisfy (∗∗), k ∈ L1[0, T ] be
nonnegative a.e. on [0, T ] and

f(t, x, y) ≤ ω(|y|)(k(t) + |y|)
for a.e. t ∈ [0, T ] and every (x, y) ∈ [σ1(t), σ2(t)]× R.

Then the problem (Eq), (NC) has a solution u such that
σ1 ≤ u ≤ σ2 on [0, T ].
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Basic ideas of proof

• r∗ = ‖σ1‖∞ + ‖σ2‖∞ + max{µ∗, ‖σ′1‖∞, ‖σ′2‖∞}

• χ(s, r∗) =

 1 if 0 ≤ s ≤ r∗

2− s
r∗ if r∗ < s < 2r∗

0 if s ≥ 2r∗

• F2(t, x, y) = χ(|x|+ |y|, r∗) · f(t, x, y) has a Lebesgue
integrable majorant

• auxiliary problem

(φ(x′(t))) = F2(t, x, x′), (NC)

has a solution u, σ1 ≤ u ≤ σ2 on [0, T ]

• (φ(u′(t)))′ = F2(t, u(t), u′(t)) ≤ ω(|u′(t)|)(k(t) + |u′(t)|)
for a.e t ∈ [0, T ]
⇒ |u′(t)| ≤ µ∗ ∀ t ∈ [0, T ] ⇒ ‖u‖∞ + ‖u′‖∞ < r∗

⇒ F2(t, u, u′) = f(t, u, u′) for a.e. t ∈ [0, T ].
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Example{(
|x′|p−2 · x′

)′ = 1√
t

(
(x′)p−1 − 1

)
+ xm + (x′)p,

x′(0) = 1, x′(1) = −1,

p, m ∈ N - odd, p > 1

Functions σ1(t) = −t2 + t− C, σ2(t) = −t2 + t + D with a
large positive C,D ∈ R are respectively lower and upper
functions of the problem. We have

φ−1(x) = |x|
1

p−1 signx, ω(s) = 1 + sp−1,∫∞
1

ds
ω(|φ−1(s)|) = ∞,

∫ −1

−∞
ds

ω(|φ−1(s)|) = ∞,

f(t, x, y) =
1√
t

(
yp−1 − 1

)
+ xm + yp

≤ 1√
t
(|y|p−1 + 1) + (σm

2 (t) + |y|)(|y|p−1 + 1) ≤

≤ (1 + |y|p−1)(
1√
t

+ σm
2 (t) + |y|) = ω(|y|)(k(t) + |y|).
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Summary

• The φ-Laplacian generalizes certain operators from
applications, in particular the p-Laplacian operator.

• The sufficient conditions of solvability of Neumann
boundary value problem with φ-Laplacian were presented.

Thank You For Your Attention.
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