Neumann boundary value problem with ϕ -Laplacian

Workshop on Differential Equations September 16–20, 2007

Vladimír Polášek Department of Mathematics Tomas Bata University in Zlin Neumann boundary value problem with d-Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Introduction to problem

Motivation Problem that we study Lower and upper functions, solution

2 Existence results

Conditions of the sign type Onesided growth conditions Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Motivation

 $\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f(t, u, u')$

- non-Newtonian fluid theory, diffusion of flows in a porous medium, image processing
- $\operatorname{div}(|\nabla u|^{p-2}\nabla u) n$ -dimensional *p*-Laplacian

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem

Motivation

Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Motivation

 $\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f(t, u, u')$

- non-Newtonian fluid theory, diffusion of flows in a porous medium, image processing
- $\operatorname{div}(|\nabla u|^{p-2}\nabla u) n$ -dimensional *p*-Laplacian

p-Laplacian

 $(|v'|^{p-2}v')' = f(t, v, v')$

 radially symmetric solutions of equations with multi-dimensional *p*-Laplacian, turbulent flow of a gas in a porous medium

• $u \rightarrow (|u'|^{p-2}u')'$, p > 1 – one-dimensional *p*-Laplacian

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem

Motivation

Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Motivation

 $\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f(t, u, u')$

- non-Newtonian fluid theory, diffusion of flows in a porous medium, image processing
- div $(|\nabla u|^{p-2}\nabla u) n$ -dimensional *p*-Laplacian

p-Laplacian

 $(|v'|^{p-2}v')' = f(t, v, v')$

- radially symmetric solutions of equations with multi-dimensional *p*-Laplacian, turbulent flow of a gas in a porous medium
- $u \rightarrow (|u'|^{p-2}u')'$, p > 1 one-dimensional *p*-Laplacian

ϕ -Laplacian

 $u \to (\phi(u'))'$

- $\phi:\mathbb{R}\to\mathbb{R}$ is an increasing homeomorphism, $\phi(\mathbb{R})=\mathbb{R}$

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem

Motivation

Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Assumptions

- T > 0, $[0, T] \subset \mathbb{R}$, $A, B \in \mathbb{R}$
- $\phi: \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism, $\phi(\mathbb{R}) = \mathbb{R}$
- $f:[0,T]\times\mathbb{R}^2\to\mathbb{R}$

Definition

The function f satisfies the Carathéodory conditions on the set $[0,T]\times \mathbb{R}^2$ if

- $f(\cdot, x, y) : [0, T] \to \mathbb{R}$ is measurable for all $(x, y) \in \mathbb{R}^2$,
- $f(t, \cdot, \cdot) : \mathbb{R}^2 \to \mathbb{R}$ is continuous for a.e. $t \in [0, T]$,
- for each compact set $K \subset \mathbb{R}^2$ there is a function $m_K \in L_1[0,T]$ such that $|f(t,x,y)| \leq m_K(t)$ for a.e. $t \in [0,T]$ and all $(x,y) \in K$.

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation

Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Boundary value problem

$$(\phi(u'))' = f(t, u, u'),$$
 (Eq)
 $u'(0) = A, \quad u'(T) = B.$ (NC)

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation

Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Definition

Functions $\sigma_1, \sigma_2 : [0, T] \to R$ are respectively *lower and upper functions* of problem (Eq), (NC) if $\phi(\sigma'_i) \in AC[0, T]$ for $i \in \{1, 2\}$ and

$$\begin{split} (\phi(\sigma'_1(t)))' &\geq f(t,\sigma_1(t),\sigma'_1(t)), \quad (\phi(\sigma'_2(t)))' \leq f(t,\sigma_2(t),\sigma'_2(t)), \\ \text{for a.e.} t \in [0,T], & \text{for a.e.} t \in [0,T], \\ \sigma'_1(0) &\geq A, \sigma'_1(T) \leq B, & \sigma'_2(0) \leq A, \sigma'_2(T) \geq B. \end{split}$$

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Definition (solution of (Eq), (NC))

A function $u : [0,T] \to \mathbb{R}$ with $\phi(u') \in AC[0,T]$ is called a solution of problem (Eq), (NC) if u satisfies

 $(\phi(u'(t)))' = f(t, u(t), u'(t))$

for a.e. $t \in [0, T]$ and fulfils (NC).

Neumann boundary value problem with d-Laplacian

Introduction to problem Motivation Problem that we study

Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Theorem

Let σ_1 , σ_2 be respectively lower and upper functions of (Eq), (NC) and let $\sigma_1 \leq \sigma_2$ on [0,T]. Let there is $f_0 \in L_1[0,T]$ such that $|f(t,x,y)| \leq f_0(t)$ for a.e. $t \in [0,T]$ and for all $(x,y) \in [\sigma_1(t), \sigma_2(t)] \times \mathbb{R}$. Then problem (Eq), (NC) has a solution $u \in C^1[0,T]$ with $\phi(u') \in AC[0,T]$ such that

 $\sigma_1 \leq u \leq \sigma_2 \text{ on } [0,T].$

Proof:

 application of the Schauder fixed point to a modified problem Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Theorem

Let σ_1 , σ_2 be respectively lower and upper functions of (Eq), (NC) and let $\sigma_1 \leq \sigma_2$ on [0,T]. Let there exist functions $\varphi_1, \varphi_2 \in C[0,T]$ such that $\phi(\varphi_1), \phi(\varphi_2) \in AC[0,T]$ and

 $\begin{array}{ll} \varphi_1(0) \leq A, \varphi_1(T) \leq B, \quad \varphi_2(0) \geq A, \varphi_2(T) \geq B, \\ \varphi_1(t) \leq \sigma'_i(t) \leq \varphi_2(t) \quad \textit{on} [0,T], i = 1, 2. \end{array}$

Furthermore, let φ_1, φ_2 satisfy inequalities

 $f(t, x, \varphi_1(t)) \le (\phi(\varphi_1(t)))', \quad f(t, x, \varphi_2(t)) \ge (\phi(\varphi_2(t)))'$

for a.e. $t \in [0,T]$ and for all $x \in [\sigma_1(t), \sigma_2(t)]$. Then the problem (Eq), (NC) has a solution $u \in C^1[0,T]$ such that

$$\sigma_1 \le u \le \sigma_2, \quad \varphi_1 \le u' \le \varphi_2 \qquad \text{on } [0,T].$$
 (*)

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Summary

(Eq)

(NC)

$$F_{1}(t, u, v) = \begin{cases} f(t, u, \varphi_{2}) + \frac{v - \varphi_{2}}{v - \varphi_{2} + 1}, & v > \varphi_{2}, \\ f(t, u, v), & \varphi_{1} \le v \le \varphi_{2}, \\ f(t, u, \varphi_{1}) + \frac{v - \varphi_{1}}{|v - \varphi_{1}| + 1}, & v < \varphi_{1} \end{cases}$$

 $(\phi(u'))' = f(t, u, u'),$

 $u'(0) = A, \quad u'(T) = B$

• auxiliary problem

$$(\phi(x'))' = F_1(t, x, x'),$$

 $x'(0) = A, \quad x'(T) = B$

• solution u of auxiliary problem satisfies the inequality

 $\sigma_1 \leq u \leq \sigma_2$ on [0,T]

it can be proved that

$$\varphi_1 \leq u' \leq \varphi_2 \text{ on } [0,T]$$

Example

$$\begin{cases} \left(|x'|^{p-2}x'\right)' = (x'^k - \operatorname{sign} x') \cdot t + x^q + t^r - 1, \\ x'(0) = 1, \quad x'(1) = -1, \end{cases}$$

 $k,q\in \mathbb{N} \text{ are odd}, \ p>2, \ r\geq 0.$

Functions

$$\sigma_1(t) = -t^2 + t - 2p, \quad \sigma_2(t) = -t^2 + t + 2$$

are respectively lower and upper functions of the problem. For some $C > \left(\frac{2.25^q+1}{p-1}\right)^{\frac{1}{p-2}} + 2$ and $D > \left(\frac{(2p)^q+2}{p-1}\right)^{\frac{1}{p-2}} + 1$, for $t \in [0,1]$, let us define

$$\varphi_1(t) = t - C, \quad \varphi_2(t) = -t + D.$$

Then the right-hand side of the equation satisfies the conditions of the previous theorem and therefore it follows the existence of the solutions satisfying inequalities (*).

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Preliminary lemma

Lemma

Let σ_1 , σ_2 be respectively lower and upper functions of (Eq), (NC) and let $\sigma_1 \leq \sigma_2$ on [0,T]. Let there exist a continuous function $\omega : [0,\infty) \to (0,\infty)$ such that

$$\int_{-\infty}^{\phi(-1)} \frac{ds}{\omega(|\phi^{-1}(s)|)} = \infty, \quad \int_{\phi(1)}^{\infty} \frac{ds}{\omega(|\phi^{-1}(s)|)} = \infty, \quad (**)$$

and let $k \in L_1[0,T]$ be nonnegative a.e. on [0,T]. Then there exists $\mu_* > 0$ such that for each function $u \in C^1[0,T]$ fulfiling (NC) and inequalities

$$\begin{split} \sigma_1 &\leq u \leq \sigma_2 \quad on \; [0,T], \\ (\phi(u'(t)))' &\leq \omega(|u'(t)|)(k(t) + |u'(t)|) \quad \text{for a.e. } t \in [0,T], \end{split}$$

the following estimate holds

$$|u'(t)| < \mu_*$$
 for all $t \in [0, T]$.

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Basic ideas of proof

•
$$|u'(0)| \le 1 + \max\{|A|, |B|\} = c_0$$

 $|u'(T)| \le 1 + \max\{|A|, |B|\} = c_0$

•
$$r = \|\sigma_1\|_{\infty} + \|\sigma_2\|_{\infty}, \ \exists \ \mu_1, \ \mu_* \in (c_0, \infty), \ \mu_1 < \mu_*$$
:

$$\int_{\phi(c_0)}^{\phi(\mu_1)} \frac{ds}{\omega(|\phi^{-1}(s)|)} > r + ||k||_{L_1[0,T]}$$
$$\int_{\phi(-\mu_*)}^{\phi(-c_0)} \frac{ds}{\omega(|\phi^{-1}(s)|)} > r + ||k||_{L_1[0,T]}$$

 these inequalities and the other assumptions in theorem imply that

 $u'(t) < \mu_1 \; \forall \; t \in [0,T]$

similarly it can be proved

$$u'(t) > -\mu_* \ \forall \ t \in [0,T]$$

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Theorem

Let σ_1 , σ_2 be respectively lower and upper functions of the problem (Eq), (NC) and let $\sigma_1 \leq \sigma_2$ on [0,T]. Let a continuous function $\omega : [0,\infty) \to (0,\infty)$ satisfy (**), $k \in L_1[0,T]$ be nonnegative a.e. on [0,T] and

$$\begin{split} f(t,x,y) &\leq \omega(|y|)(k(t) + |y|) \\ & \text{for a.e. } t \in [0,T] \text{ and every } (x,y) \in [\sigma_1(t),\sigma_2(t)] \times \mathbb{R}. \end{split}$$

Then the problem (Eq), (NC) has a solution u such that $\sigma_1 \leq u \leq \sigma_2$ on [0, T].

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

•
$$r^* = \|\sigma_1\|_{\infty} + \|\sigma_2\|_{\infty} + \max\{\mu_*, \|\sigma_1'\|_{\infty}, \|\sigma_2'\|_{\infty}\}$$

• $\chi(s, r^*) = \begin{cases} 1 & \text{if } 0 \le s \le r^* \\ 2 - \frac{s}{r^*} & \text{if } r^* < s < 2r^* \\ 0 & \text{if } s \ge 2r^* \end{cases}$

• $F_2(t,x,y) = \chi(|x|+|y|,r^*) \cdot f(t,x,y)$ has a Lebesgue integrable majorant

• auxiliary problem

$$(\phi(x'(t))) = F_2(t, x, x'), \quad (NC)$$

has a solution u, $\sigma_1 \leq u \leq \sigma_2$ on [0,T]

• $(\phi(u'(t)))' = F_2(t, u(t), u'(t)) \le \omega(|u'(t)|)(k(t) + |u'(t)|)$ for a.e $t \in [0, T]$ $\Rightarrow |u'(t)| \le \mu_* \quad \forall t \in [0, T] \Rightarrow ||u||_{\infty} + ||u'||_{\infty} < r^*$ $\Rightarrow F_2(t, u, u') = f(t, u, u')$ for a.e. $t \in [0, T]$. Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Example

$$\begin{cases} \left(|x'|^{p-2} \cdot x'\right)' = \frac{1}{\sqrt{t}} \left((x')^{p-1} - 1\right) + x^m + (x')^p, \\ x'(0) = 1, \quad x'(1) = -1, \end{cases}$$

 $p,m\in\mathbb{N}$ - odd, p>1

Functions $\sigma_1(t) = -t^2 + t - C$, $\sigma_2(t) = -t^2 + t + D$ with a large positive $C, D \in \mathbb{R}$ are respectively lower and upper functions of the problem. We have

$$\begin{split} \phi^{-1}(x) &= |x|^{\frac{1}{p-1}} \operatorname{sign} x, \ \omega(s) = 1 + s^{p-1}, \\ \int_{1}^{\infty} \frac{ds}{\omega(|\phi^{-1}(s)|)} &= \infty, \ \int_{-\infty}^{-1} \frac{ds}{\omega(|\phi^{-1}(s)|)} = \infty, \end{split}$$

$$\begin{split} f(t,x,y) &= \frac{1}{\sqrt{t}} \left(y^{p-1} - 1 \right) + x^m + y^p \\ &\leq \frac{1}{\sqrt{t}} (|y|^{p-1} + 1) + (\sigma_2^m(t) + |y|) (|y|^{p-1} + 1) \leq \\ &\leq (1 + |y|^{p-1}) (\frac{1}{\sqrt{t}} + \sigma_2^m(t) + |y|) = \omega(|y|) (k(t) + |y|) \end{split}$$

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions

Summary

).

- The ϕ -Laplacian generalizes certain operators from applications, in particular the *p*-Laplacian operator.
- The sufficient conditions of solvability of Neumann boundary value problem with φ-Laplacian were presented.

Thank You For Your Attention.

Neumann boundary value problem with ϕ -Laplacian

Introduction to problem Motivation Problem that we study Lower and upper functions, solution

Existence results Conditions of the sign type Onesided growth conditions