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We consider the boundary value problem

u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR, (2)

where f : IR× [0, 1]× IR → IR is a continuous function such that

f (t, 0, 0) = 0, f (t, 1, 0) = 0 for t ∈ IR. (3)

Since u0(t) ≡ 0 and u1(t) ≡ 1 are the solutions of Eq. (1),

a solution of this equation satisfying conditions (2) is said to be a

transitional solution.

In the paper,

G. Ja. Ljubarskĭı, On solutions of “smoothed shock

wave” type of nonlinear equations. (Russian) Uspekhi

Mat. Nauk 17 (1962), No. 1, 183–189,

such a kind of solutions is also called smoothed shock wave type.
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

Problems of the type (1), (2) arise in the investigation of transi-

tional processes when a physical system transits from an unstable

equilibrium state into a stable one. See

K. Zoller, Zur stuktur des verdichtungsstosses. (Ger-

man) Z. Physik 130 (1951), 1–38.

They also meet in the study of travelling wave solutions of reaction-

diffusion-convection equations of the type

vτ + (h(v))vx = (D(v)vx)x + g(v) , τ ≥ 0, x ∈ IR,

where g(u) is a positive nonlinear term in ]0, 1[, vanishing at 0 and

1, more precisely, in searching for solutions satisfying v(τ, x) =

u(x + cτ ) for some constant c ∈ IR (the wave speed) and function

u ∈ C2(IR) (the wave profile), connecting the stationary states 0 (the

unstable equilibrium) and 1 (the stable one). See, e.g.,

A. Volpert, V. Volpert and V. Volpert, Travelling wave

solutions of parabolic systems. In Trans. of Math. Monogr.,

Vol. 140, Amer. Math. Soc., Providence, Rhode Island, 1994,

for an extensive treatment and a wide bibliography on the subject,

and

L. Malaguti and C. Marcelli, Travelling wavefronts in

reaction-diffusion equations with convection effects and

non-regular terms. Math. Nachr. 242 (2002), 1–17,

for a recent contribution about equations with convection effects.
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

A simple but interesting particular case of Eq. (1) is the differential

equation

u′′ = p0(t)u
′ + p(t)g(u), (4)

arising from the mathematical biology. Here p0, p : IR → IR and

g : [0, 1] → [0, 1] are continuous functions, and

g(0) = g(1) = 0, 0 < g(x) < 1 for 0 < x < 1.



5

u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

In the monograph

Yu. A. Klokov, Boundary value problems with a con-

dition at infinity for equations of mathematical physics.

(Russian) Riga, 1963,

and in the papers

1. M. A. Krasnosel’skĭı and G. Ja. Ljubarskĭı, Transi-

tional solutions of non-linear equations. (Russian) Izv.

Vyssh. Uchebn. Zaved., Matematika 1962, No. 4(29), 81–85;

2. G. Ja. Ljubarskĭı, On solutions of “smoothed shock

wave” type of nonlinear equations. (Russian) Uspekhi

Mat. Nauk 17 (1962), No. 1, 183–189;

3. G. Ja. Ljubarskĭı, A boundary-value problem on

the axis for an nth-order non-linear equation. (Russian)

Dokl. Akad. Nauk SSSR 149 (1963), No. 3, 521–524;

4. L. Malaguti and C. Marcelli, Heteroclinic orbits in

plane dynamical systems. Arch. Math. (Brno) 38 (2002),

No. 3, 183–200,

the existence of transitional solutions was studied in the autonomous

case when Eq. (1) has the form

u′′ = g1(u, u′)u′ − g2(u) or u′′ = g(u, u′).

In the non-autonomous case, problem (1), (2) was investigated in

the paper

L. Malaguti, C. Marcelli, and N. Partsvania, On tran-

sitional solutions of second order nonlinear differential

equations. J. Math. Anal. Appl. 303 (2005), No. 1, 258-

273.
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR; (2)

u′′ = p0(t)u
′ + p(t)g(u), (4)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

In this report, we give new results on the solvability and unsolv-

ability of problem (1), (2), and namely of problem (4), (2).

In contrast to the theorems proven in the paper

L. Malaguti, C. Marcelli, and N. Partsvania, On tran-

sitional solutions of second order nonlinear differential

equations. J. Math. Anal. Appl. 303 (2005), No. 1, 258-

273,

these results solve the question on the solvability of problem (4), (2)

even in the case where either the condition

p0(t)p(t) < 0 for t ∈ IR

is violated, or the above condition is satisfied and

inf
{∣∣∣∣

p(t)

p0(t)

∣∣∣∣ : t ∈ IR
}

= 0.
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

Note that problem (1), (2) is closely related to the well-known

results on the existence of solutions of Eq. (1) satisfying the condition

γ1(t) ≤ u(t) ≤ γ2(t) for t ∈ IR,

where γi : IR → IR (i = 1, 2) are prescribed continuous functions

such that

γ1(t) ≤ γ2(t) for t ∈ IR,

obtained in the papers

1. Z. Opial, Sur les intégrales bornées de l’équation

u′′ = f (t, u, u′). (French) Ann. Polon. Math. 4 (1958), No.

3, 314–324;

2. I. T. Kiguradze, Some singular boundary value prob-

lems for second order nonlinear ordinary differential

equations. (Russian) Differentsial’nye Uravnenija 4 (1968),

No. 10, 1753–1773;

3. I. T. Kiguradze and B. L. Shekhter, Singular bound-

ary value problems for second-order ordinary differen-

tial equations. (Russian) Itogi Nauki i Tekhniki, Sovrem.

Probl. Mat., Novĕıshie Dostizh. 30 (1987), 105–201; trans-

lated in J. Soviet Math. 43 (1988), No. 2, 2340–2417.
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR; (2)

f (t, 0, 0) = 0, f (t, 1, 0) = 0 for t ∈ IR. (3)

The existence theorems obtained by us are based on Proposition

1 below which, in its turn, is a certain modification of Theorem 5.1

proven in the work

I. T. Kiguradze and B. L. Shekhter, Singular bound-

ary value problems for second-order ordinary differen-

tial equations. (Russian) Itogi Nauki i Tekhniki, Sovrem.

Probl. Mat., Novĕıshie Dostizh. 30 (1987), 105–201; trans-

lated in J. Soviet Math. 43 (1988), No. 2, 2340–2417.

Precisely, we essentially use the following

Proposition 1. Let along with (3) the condition

σf (t, x, y) sgn y≥−h(t)(1+y2) for t ∈ IR, 0≤x≤1, y∈ IR (5)

be fulfilled, where σ ∈ {−1, 1}, and h : IR → [0, +∞[ is a continu-

ous function. Let, moreover, there exist numbers ti (i = 1, 2) and

twice continuously differentiable functions γ1 : [t1, +∞[→ [0, 1]

and γ2 : ]−∞, t2] → [0, 1] such that t2 ≤ t1,

γ1(t1)=0, γ′1(t1)≥0, f (t, γ1(t), γ
′
1(t))≤γ′′1 (t) for t≥ t1, (61)

γ2(t2)=1, γ′2(t2)≥0, f (t, γ2(t), γ
′
2(t))≥γ′′2 (t) for t≤ t2, (62)

lim
t→+∞ γ1(t) = 1, lim

t→−∞ γ2(t) = 0. (7)

Then problem (1), (2) is solvable.
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

We investigate the question of solvability of problem (1), (2) in the

case where the function f satisfies either the inequalities

f (t, x, y)≥cy−c2

4
x for t≤−a, 0≤x≤1, 0≤y≤ c

2
, (8)

−h(t)(1 + y2) ≤ f (t, x, y) ≤ c1y − f0(t, x) (9)

for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0,

or the inequalities

f (t, x, y)≤−cy+
c2

4
(1−x) for t≥a, 0≤x≤1, 0≤y≤ c

2
, (8′)

−c1y + f0(t, x) ≤ f (t, x, y) ≤ h(t)(1 + y2) (9′)

for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0,

where a, c, and c1 are positive numbers, and f0 : IR×[0, 1] → [0, +∞[

and h : IR → [0, +∞[ are continuous functions.

Everywhere below, we use the following notation

f0∗(t, x)=min {f0(t, s) : x≤s≤1−x} for t∈ IR, 0<x<
1

2
. (10)



10

u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR; (2)

f (t, 0, 0) = 0, f (t, 1, 0) = 0 for t ∈ IR. (3)

f (t, x, y)≥cy−c2

4
x for t≤−a, 0≤x≤1, 0≤y≤ c

2
, (8)

−h(t)(1 + y2) ≤ f (t, x, y) ≤ c1y − f0(t, x) (9)

for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0.

Theorem 1. Let along with (3), (8), and (9) the condition

0∫

−∞
f0∗(s, x) ds = +∞ for 0 < x < 1/2 (111)

be fulfilled. Let, moreover, either

+∞∫

0

f0∗(s, x) ds = +∞ for 0 < x < 1/2, (112)

or there exist λ ∈ ]0, 1[ , δ ∈ ]0, 1[ , and ai ∈ IR (i = 1, 2) such that

a1 < a2 and

f0(t, x) ≥ δ(1− x)λ for a1 ≤ t ≤ a2, 1− δ ≤ x ≤ 1. (12)

Then problem (1), (2) has at least one solution satisfying the con-

dition

u′(t) > 0 for t ∈ {s ∈ IR : u(s) < 1}. (13)
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR; (2)

f (t, 0, 0) = 0, f (t, 1, 0) = 0 for t ∈ IR. (3)

f (t, x, y)≤−cy+
c2

4
(1−x) for t≥a, 0≤x≤1, 0≤y≤ c

2
, (8′)

−c1y + f0(t, x) ≤ f (t, x, y) ≤ h(t)(1 + y2) (9′)

for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0,
0∫

−∞
f0∗(s, x) ds = +∞ for 0 < x < 1/2, (111)

+∞∫

0

f0∗(s, x) ds = +∞ for 0 < x < 1/2. (112)

Theorem 1 ′. Let conditions (3), (8′), (9′), and (112) be ful-

filled. Let, moreover, either condition (111) hold or there exist

λ ∈ ]0, 1[ , δ ∈ ]0, 1[ , and ai ∈ IR (i = 1, 2) such that a1 < a2 and

f0(t, x) ≥ δxλ for a1 ≤ t ≤ a2, 0 ≤ x ≤ δ. (12′)

Then problem (1), (2) has at least one solution satisfying the con-

dition

u′(t) > 0 for t ∈ {s ∈ IR : u(s) > 0}. (13′)
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Suppose

f (t, x, y) = p0(t)y + p(t)g(x), f0(t, x) = |p(t)|g(x),

and

h(t) = |p0(t)| + |p(t)|.
Evidently, if the inequalities

g(1) = 0, 0 < g(x) ≤ x for 0 < x < 1, (14)

p0(t)≤c1, p(t)≤0 for t∈IR, p0(t)≥c, p(t)≥−c2

4
for t≤−a (15)

hold, where a > 0, c > 0, and c1 ∈ [c, +∞[ , then f satisfies

conditions

f (t, 0, 0) = 0, f (t, 1, 0) = 0 for t ∈ IR, (3)

f (t, x, y)≥cy−c2

4
x for t≤−a, 0≤x≤1, 0≤y≤ c

2
, (8)

−h(t)(1 + y2) ≤ f (t, x, y) ≤ c1y − f0(t, x) (9)

for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0.

In the case, where

g(0) = 0, 0 < g(x) ≤ 1− x for 0 < x < 1, (14′)

p0(t)≥−c1, p(t)≥0 for t∈IR, p0(t)≤−c, p(t)≤c2

4
for t≥a (15′)

with a > 0, c > 0, and c1 ∈ [c, +∞[ , the function f satisfies

conditions (3),

f (t, x, y)≤−cy+
c2

4
(1−x) for t≥a, 0≤x≤1, 0≤y≤ c

2
, (8′)

−c1y + f0(t, x) ≤ f (t, x, y) ≤ h(t)(1 + y2) (9′)

for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0.
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u′′ = p0(t)u
′ + p(t)g(u), (4)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

Thus Theorems 1 and Theorem 1′, respectively, imply the follow-

ing corollaries.

Corollary 1. Let along with (14) and (15) the condition
0∫

−∞
p(s) ds = −∞ (161)

be fulfilled. Let, moreover, either
+∞∫

0

p(s) ds = −∞, (162)

or there exist λ ∈ ]0, 1[ such that

lim inf
x→1

(1− x)−λg(x) > 0. (17)

Then (4), (2) has at least one solution satisfying the condition

u′(t) > 0 for t ∈ {s ∈ IR : u(s) < 1}. (13)

Corollary 1 ′. Let along with (14′) and (15′) the condition
+∞∫

0

p(s) ds = +∞ (181)

be fulfilled. Let, moreover, either
0∫

−∞
p(s) ds = +∞, (182)

or there exist λ ∈ ]0, 1[ such that

lim inf
x→0

x−λg(x) > 0. (17′)

Then (4), (2) has at least one solution satisfying the condition

u′(t) > 0 for t ∈ {s ∈ IR : u(s) > 0}. (13′)
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u′′ = f (t, u, u′), (1)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

Now we give theorems on the unsolvability of problem (1), (2).

Theorem 2. Let there exist numbers i ∈ {1, 2}, c > 0, and

continuous functions ` : IR× [0, 1]× IR → IR and q : IR → [0, +∞[

such that

(−1)if (t, x, y)≤`(t, x, y)y for t∈ IR, 0≤x≤1, y∈ IR, (19)

f (t, x, y)≥cy−q(t)(1−x) for t∈ IR, 0≤x≤1, y≥0, (20)

and
+∞∫

0

q(s) ds < +∞. (21)

Then problem (1), (2) has no solution.

Theorem 2 ′. Let there exist numbers i ∈ {1, 2}, c > 0, and

continuous functions ` : IR× [0, 1]× IR → IR and q : IR → [0, +∞[

such that along with (19) the following conditions are fulfilled:

f (t, x, y) ≤ −cy + q(t)x for t ∈ IR, 0 ≤ x ≤ 1, y ≥ 0,

and
0∫

−∞
q(s) ds < +∞.

Then problem (1), (2) has no solution.
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u′′ = p0(t)u
′ + p(t)g(u), (4)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

g(1) = 0, 0 < g(x) ≤ x for 0 < x < 1, (14)
0∫

−∞
p(s) ds = −∞, (161)

+∞∫

0

p(s) ds = −∞. (162)

Corollary 1 and Theorem 2 imply the following proposition.

Corollary 2. Let along with (14) and (161) the following in-

equalities

c ≤ p0(t) ≤ c1, p(t) ≤ 0 for t ∈ IR, p(t) ≥ −c2

4
for t ≤ −a

be fulfilled, where a > 0, c > 0, and c1 ∈ [c, +∞[ . Let, moreover,

lim sup
x→1

g(x)

1− x
< +∞.

Then for the solvability of problem (4), (2) the necessary and suf-

ficient condition is (162).
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u′′ = p0(t)u
′ + p(t)g(u), (4)

lim
t→−∞u(t) = 0, lim

t→+∞u(t) = 1, 0 ≤ u(t) ≤ 1 for t ∈ IR. (2)

g(0) = 0, 0 < g(x) ≤ 1− x for 0 < x < 1, (14′)
+∞∫

0

p(s) ds = +∞, (181)

0∫

−∞
p(s) ds = +∞. (182)

Corollary 1′ and Theorem 2′ yield the following proposition.

Corollary 2 ′. Let along with (14′) and (181) the following

conditions

−c1 ≤ p0(t) ≤ −c, p(t) ≥ 0 for t ∈ IR, p(t) ≤ c2

4
for t ≥ a

hold, where a > 0, c > 0, and c1 ∈ [c, +∞[ . If, moreover,

lim sup
x→0

g(x)

x
< +∞,

then for the solvability of problem (4), (2) the necessary and suf-

ficient condition is (182).
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Remark. According to Corollary 2, it is evident that we cannot

assume λ ≥ 1 in the condition

lim inf
x→1

(1− x)−λg(x) > 0 (17)

of Corollary 1.

Analogously, according to Corollary 2′, it is evident that we cannot

assume λ ≥ 1 in the condition

lim inf
x→0

x−λg(x) > 0 (17′)

of Corollary 1′.


