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A survey based on presentations at several recent meetings

I. Historical remarks

The early beginning of the study of differential equations is closely connected
with the discovery and development of the infinitesimal calculus by G. W. Leibnitz
(1646 – 1716) and I. Newton (1643 – 1727). The integration factor and the method
of variation of parameters were introduced by J. Bernoulli in 1691 and 1693, the
special equation

y′ = a(x)y2 + b(x)y + c(x)

was studied by J. P. Riccati in 1724, solutions of linear equations with constant
coefficients were discovered by L. Euler in 1750. Among significant contributors of
this period there were Ch. Huygens, J. L. d’Alembert, A. C. Clairaut, J. Wallis, B.
Taylor, J. Stirling, C. MacLaurin, P. S. Laplace, J. L. Lagrange, G. Monge, J. and
D. Bernoulli, J. Liouville, E. Weyr, A. Cauchy, and S. Lie. The study of differential
equations was often connected with problems in physics, astronomy, engineering
and also with the development of other parts of mathematics, especially geometry.

In each area of mathematics there is a significant step consisting in investigating
not only particular, single, individual objects, but in considering connections among
these objects, such as transformations, deformations of the objects one into another.

For linear differential equations this step was done in 1834 by E. E. Kummer [4],
who was the first who considered a transformation, a substitution of the form
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z(t) = f(t)y(h(t)) (1)

converting solutions y = y(x) of a second order linear differential equation

y′′ + p1(x)y′ + p0(x)y = 0

into solutions z = z(t) of another equation of the same kind,

z′′ + q1(t)z
′ + q0(t)z = 0.

Nonlinear 3rd order equations expressing the relations among the coefficients of the
equations and involving functions f and h from the transformation are now called
the Kummer equations as well as the transformation itself.

Also higher order linear differential equations, their invariants and canonical
forms were studied by F. Brioschi, A. R. Forsyth, E. Laguerre, E. Forsyth [3],
just to mention only some of them. They considered the transformation (1) still
involving two functions as already introduced by Kummer. Perhaps the best known
result from the second half of the XIXth century is the so-called Laguerre-Forsyth
canonical form of linear differential equations of the n-th order

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p0(x)y = 0

characterized by vanishing of the coefficients of the (n−1)st and (n−2)nd derivatives
of the independent variables, i.e. equations of the form

y(n) + pn−3(t)y
(n−3) + · · · + p0(t)y = 0.

However, it was not until 1893 that P. Stächel [13] and independently S. Lie
[5] proved that the transformation considered by Kummer and all his successors
is in fact the most general pointwise transformation that under a differentiability
condition converts any linear homogeneous differential equation of the nth order,
n ≥ 2, into an equation of the same kind. Only their result gave the justification
to all the previous investigations because, basically, Kummer and others exploited
only the fact that linearity and homogeneity of equations are preserved. But, still
differentiability conditions remained.

At the beginning of the last century, in 1910, G. D. Birkhoff [1] presented an
example of a third order equation not transformable into the Laguerre-Forsyth
canonical form on its whole interval of definition. In fact he pointed out that
the previous investigations were of local character as a whole. This was not very
encouraging, since many important questions require global investigations. Local
methods and results are not sufficient when studying problems of a global nature,
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such as boundedness, periodicity, asymptotic and oscillatory behavior, nonvanishing
solutions, and consequently the factorization of linear differential operators, as well
as many other questions.

Of course, there were isolated results of a global character, like Sturm Separation
and Comparison Theorems on zeros of solutions of the second order linear differen-
tial equations, and other particular results. However, there was not a unified theory
offering sufficiently general methods and dealing systematically with global behavior
of solutions. To demonstrate it, let us mention G. Sansone’s [12] example of a third
order linear differential equation with all oscillatory solutions that occurred as late
as in 1948, 17 years after G. Mammana [6] in 1931 showed that the non-existence
of such an equation would have been a basic (sufficient and necessary) condition for
factorization of linear differential operators (of the third order).

On two examples, namely on the canonical equations and on the description of
distribution of zeros of solutions, we want to show that there was indeed an absence
of a general method for solving global problems of linear differential equations,
whose answers were not hidden in old papers.

In the fifties O. Bor̊uvka started the systematic study of global properties of the
second order linear differential equations,

y′′ + q(x)y = 0, q ∈ C0(a, b), −∞ ≤ a < b ≤ ∞,

the simplest ones from those whose solutions are not available in a ”closed form”,
still having an extensive literature. He carried out an in-depth investigation and
summarized his original methods and results in his monograph [2].

From then an intensive research of linear differential equations of an arbitrary
order was carried out and resulted in developing sufficiently general methods and re-
sults describing global properties of these equations. It is important to mention that
not only analytic methods were involved in those investigations, but also algebraic,
topological and geometric tools, including differential geometric ones, together with
methods and results of the theory of dynamic systems and of functional equations
played an essential role.

II. Definition of global transformations

Consider a linear differential equation

P ≡ y(n) + pn−1(x)y(n−1) + · · · + p0(x)y = 0 on I,

I being an open interval of the reals, pi are real continuous functions defined on I
for i = 0, 1, . . . , n − 1, i.e. pi ∈ C0(I), pi : I → R, n ≥ 2. Denote also

Q ≡ z(n) + qn−1(t)z
(n−1) + · · · + q0(t)z = 0 on J,
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another example of an equation of this form.

Definition 1. We say that the equation P is globally transformable into the
equation Q if there exist two functions,

f ∈ Cn(J), f(t) 6= 0 and h ∈ Cn(J), h′(t) 6= 0 for each t ∈ J, and h(J) = I,

such that whenever y : I → R is a solution of P , then

z : J → R, z(t) := f(t) · y(h(t)), t ∈ J, (1)

is a solution of Q. This transformation is global in the sense that solutions are
transformed on their whole intervals of definition, h(J) = I.

III. Algebraic approach to global transformations

A class is called a category if to each pair of its elements P, Q, objects, a set
Hom(P,Q) of morphisms is assigned such that the following axioms are satisfied:

1. The sets Hom(P, Q) are disjoint for different pairs (P, Q).

2. A composition αβ ∈ Hom(P, T ) is defined for each α ∈ Hom(P, Q) and β ∈
Hom(Q,T ) such that

a) the associativity (αβ)γ = α(βγ) holds for each γ ∈ Hom (T, U),

b) there exists an identity ιP for each object P , ιQ for Q:
ιP α = α, αιQ = α for each α ∈ Hom (P, Q).

A category is an Ehresmann groupoid if each morphism α has an inverse α−1 ∈
Hom(Q,P ):

αα−1 = ιP , α−1α = ιQ.

Moreover, an Ehresmann groupoid is a Brandt groupoid if Hom(P,Q) is not
empty for any pair (P,Q) of its objects P, Q.

An Ehresmann groupoid is a collection of connected components, Brandt group-
oids, also called classes of equivalent objects. The set Hom(P, P ) is a group, a
stationary group of the object P .

Historically one may observe that the following problems were studied when
Ehresmann groupoids occurred:

Criterion of equivalence.

Canonical objects in Brandt groupoids.

Structure of stationary groups.

Here we would like to mention that also a new feature has recently been consid-
ered in this general algebraic approach, namely
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Coordinate approach
involving analytic constructions of objects with some prescribed properties. We will
explain it in more detail in Par. IX. There are also

Special problems depending on particular objects.

Proposition 1. From this algebraic point of view we may consider global trans-
formations (1) attached to equation (P ) as morphisms Hom(P, Q) of the Ehresmann
groupoid with linear differential equations greater than 2 as its objects.

Notation. We use the notation α = (f, h) in (1) and write also Pα = Q.

IV. Geometric approach to global transformations

Let y(x) = (y1(x), . . . , yn(x))T denote an n-tuple of linearly independent solu-
tions of the equation P considered as a column vector function or as a curve in
n-dimensional Euclidean space En with the independent variable x as the param-
eter and y1(x), . . . , yn(x) as its coordinate functions; MT denotes the transpose of
the matrix M .

If z(t) = (z1(t), . . . , zn(t)T denotes an n-tuple of linearly independent solutions
of the equation Q, then the global transformation (1) can be equivalently written
as

z(t) = f(t) · y(h(t))

or, for an arbitrary regular constant n × n matrix A ,

z(t) = Af(t) · y(h(t)),

expressing that another n-tuple of linearly independent solutions of the same equa-
tion Q is taken. We may consider the following geometric representation of classes
of equivalent equations, i.e. Brandt groupoids of the Ehresmann groupoid of linear
differential equations:

Proposition 2. All curves representing all n-tuples of linearly independent
solutions of all equations globally equivalent to an equation P with an n-tuple of
linearly independent solutions (a curve) y are obtained as sections (given by f) in
a certain parameterization (given by h) of a centroaffine image (determined by A)
of a fixed cone K formed by half-lines going from the origin and the curve y .

V. Criterion of global equivalence

For the second order equations this criterion was proved by O. Bor̊uvka [2]
in 1967:

5



Proposition 3. Two second order equations are globally equivalent if and only
if their solutions have the same number of zeros.

In general this criterion is not effective, i.e. it cannot be expressed by quadratures
from coefficients of equations under consideration.

In 1984 we derived the criterion for the n-th order equations, n≥3, which is
in general effective, see [8, 9].

VI. Global canonical forms

For the second order equations the following canonical forms were considered
by O. Bor̊uvka [2] as (a countable set of) equations

Now, we can formulate Borvka’s criterion of a global equivalence of the second
order linear differential equations:

Equations (p) and (q) (always considered with their intervals of definition) are
globally equivalent if and only if they are of the same type and at the same moment
of the same character.

Canonical equations representing all classes of globally equivalent second order
differential equations are chosen as follows:

y′′ + y = 0 on (0, π/2) type 1, general
y′′ + y = 0 on (0, π) type 1, special
y′′ + y = 0 on (0, 3π/2) type 2, general
y′′ + y = 0 on (0, 2π) type 2, special

... ... ...

y′′ + y = 0 on (0, (m − 1/2)π) type m, general
y′′ + y = 0 on (0,mπ) type m, special

... ... ...

y′′ + y = 0 on (0,∞) type ∞, one-side oscillatory
y′′ + y = 0 on (−∞,∞) type ∞, both-side oscillatory.

Remember that equations are considered globally, they are taken together with
their intervals of definition.

These intervals of definition express the precise meaning of the number of zeros
of solutions mentioned in Proposition 3.
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Canonical forms for higher order equations may be chosen as

1 · y(n) + 1 · y(n−2) + pn−3(x)y(n−3) + · · · + p0(x)y = 0

on certain set of intervals. These equations are characterized by the first three
coefficients : (1,0,1). If Laguerre and Forsyth had taken 1 instead of their 0 as the
coefficient of y(n−2), they would have obtained global canonical forms.

Proof is based on algebraic properties of iterative differential equations, for
details see [9].

Another approach exploits the geometric representation as in Par. IV., and the
Cartan moving-frame-of-reference method.

For y(x) define the n-tuple v = (v1, . . . , vn)T in the Euclidean space En,

v(x) := y(x)/‖y(x)‖,

where ‖ ·‖ denotes the Euclidean norm. It was shown ([9]), that v ∈ Cn(I),v : I →
En, and the Wronski determinant of v, W [v] := det(v,v′, . . . ,v(n−1)), is different
from zero on I. Of course, ‖v(x)‖ = 1, i.e. v(x) ∈ Sn−1, where Sn−1 is the unit
sphere in En. Evidently, the differential equation which has this v as its n-tuple of
linearly independent solutions is globally equivalent to P . Moreover, if

u(s) := v(g(s)),

where the function g satisfies

g(s) : K → I ⊆ R, g(K) = I, |(g−1(x))′| = ‖v′(x)‖

for the inverse g−1 to g, and hence g ∈ Cn(K), g′(s) 6= 0 on K,

then we have ‖u′(s)‖ = 1, i.e. this u is the length reparameterization of the curve
v. Of course, ‖u(s)‖ = ‖v(g(s))‖ = 1 .

Canonical equations (from this geometric point of view) are characterized
(and defined) as those linear differential equations admitting n-tuples of linearly
independent solutions u satisfying

‖u(s)‖ = 1, ‖u′(s)‖ = 1.

The explicit expression for canonical equations can be obtained by the follow-
ing procedure. The vector function u : K → R

n satisfies the Frenet system of
differential equations for the frame (u1, · · · ,un), where u1 stands instead of u:

7



Definition 2. Canonical equations are characterized and defined as those linear
differential equations admitting n-tuples of linearly independent solutions u satis-
fying

‖u(s)‖ = 1, ‖u′(s)‖ = 1. (1)

The explicit expression for canonical equations can be obtained by the following
procedure. The vector function u : K → R satisfies the Frenet system of differential
equations, if we write u1 instead of u:

u′

1 = u2

u′

2 = −u1 + k1(s)u3

u′

3 = −k1(s)u2 + k2(s)u4

... (2)

u′

n−1 = −kn−3(s)un−2 + kn−2(s)un

u′

n = −kn−2(s)un−1 ,

s ∈ K, with (curvatures) ki ∈ Cn−i−1, ki(s) 6= 0 on K for i = 1, . . . , n − 2.

The canonical differential equation corresponding to u is the nth order linear
differential equation for u1 obtained by eliminating other ui from the above system
(2). The coefficients of this equation are formed from the curvatures ki.

The canonical differential equation corresponding to y is the n-th order linear
differential equation, the solutions of which are n linearly independent components
of the vector function u1, obtained by eliminating other ui’s from the above system.
The coefficients of this equation are formed from the curvatures ki. E.g., if we write
u instead of u1(= u), or any component of it, we get

for n = 2

u′′ + u = 0 ,

for n = 3

u′′′ −
k′

1(s)

k1(s)
u′′ + (1 + k2

1(s))u
′ −

k′

1(s)

k1(s)
u = 0 ,

. . . ,

on (different) intervals K ⊂ R, for details and proofs to the above considerations
see [9].
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VII. Stationary groups

These groups for the second order equations were described in 1967 by O. Bor̊uvka
[2]. He called their elements dispersions.

A characterization of stationary groups for the n-th order equations was given in
1984 by using a criterion of global equivalence for these equations, see [8]. There are,
up to conjugacy, 10 types of these groups (with countable many subtypes), ranging
from 3-parameter groups to the trivial one. Problems of this sort initiated extensive
research on simultaneous solutions of systems of Abel functional equations, iteration
groups of continuous functions, and dynamical systems, [7, 9, 15].

VIII. Zeros of solutions

The essence of our approach to distribution of zeros is based on two readings of
the following relation

cT · y(x0) = c1y1(x0) + · · · + cnyn(x0) = 0,

y being as in Par. IV. The first meaning of the relation is:

a solution cT · y(x) has a zero at x0.
The second, equivalent one is:

a hyperplane c1η1 + · · · + cnηn = 0 intersects the curve y(x) at a point of the
parameter x0.

Proposition 4. If y is considered in the n-dimensional Euclidean space and its
central projection v onto the unit sphere is taken without a change of parameteri-
zation, then parameters of intersections of v with great circles correspond to zeros
of the corresponding solutions; even multiplicity of zeros occur as orders of contacts
+1.

By using this approach we can see, simply by drawing a curve v on a sphere,
what is possible and what impossible, without lengthy and sometimes tiresome
ǫ, δ calculations. Only v must be sufficiently smooth, i.e. of the class Cn for
the n-th order equations with nonvanishing Wronski det(v,v′, . . . ,v(n−1)) 6= 0 at
each point. As examples let us mention the Sturm Separation Theorem for the
second order equations, equations of the third order with all oscillatory solutions
(Sansone’s result), or an equation of the third order with just one-dimensional subset
of oscillatory solutions that cannot occur for equations with constant coefficients,
for details see [9, 14]

9



IX. Coordinate approach – analytic method of

constructions of objects with prescribed properties

This coordinate approach is based on the following observation. Consider an
Ehresmann groupoid (e.g. linear differential equations as its objects and global
transformations as morphisms).

Definition 2. Each object P is expressible by

• its canonical form (equation) R and

• the morphism (global transformation) γ transforming R into P , Rγ = P . Those
(R, γ) are considered as coordinates of P .

For suitable chosen canonical forms, qualitative behavior of objects (their solution
spaces) may be expressible by certain properties of γ. Exactly this is the case, when
canonical forms of linear differential equations are chosen as in Par. VI.

If we succeed to express qualitative behavior of solutions spaces equivalently by
properties of global transformations γ, we can use this fact for an effective con-
struction of equations of prescribed properties, as demonstrated in the propositions
below.

Differential equations with prescribed behavior of their solutions have often been
studied in the mathematical literature. Especially, the second order linear differen-
tial equations in the Jacobi form

y′′ + q(x)y = 0 (q)

were constructed with only bounded solutions, with all solutions in Lp (for p = 2
the so called limit circle case), with all solutions tending to zero as x goes to the right
end of the interval of definition of (q). Also equations (q) admitting solutions with
a given distribution of zeros (oscillatory or nonoscillatory behavior, disconjugacy)
were described. This approach enabled us to answer some open questions from this
area of research, [9].

Recently we have extended our coordinate approach from the second to an arbi-
trary order of linear differential equations, for details see [10, 11].

Consider a canonical equation R and its n−tuple of linearly independent solutions
u satisfying

‖u(s)‖ = 1

as in Par. VII, and γ = (f, h).

Proposition 5. (Bounded solutions) All linear differential equations P equiv-
alent to R with only bounded solutions are exactly those obtained as P = Rγ, γ =
(f, h) with bounded f .
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Boundedness is always meant as bounded from below and above on the whole
interval of definition. All linear differential equations with only bounded solution
are constructed when all canonical equations are considered, since each equation
belongs to a certain class of equivalent equations having always their canonical
form.

Proposition 6. (Solutions tending to zero) All solutions of an equation P
equivalent to the canonical equation R tend to zero as they approach the right end
of the interval of definition I exactly when equation P is obtained from equation R
by means of a transformation γ = (f, h), Rγ = P with f(x) tending to zero as x
approaches the right end of I.

All equations admitting only solutions tending to zero can be constructed in a
similar way from canonical equation as mentioned above.

Proposition 7. (Solutions in Lp) An equation P admits only solutions in the
class Lp if and only if it can be obtained from its canonical equation R by a trans-
formation γ = (f, h), P = Rγ with f ∈ Lp.

Proofs of these propositions are in [10, 11]. We have seen that asymptotic prop-
erties of solutions of a linear differential equation in a class of equivalent equations
depend exclusively on the factor f in the global transformation γ = (f, h) trans-
forming a canonical equation of the class to a given equation.

On the contrary, the character of distribution of the zeros of solutions is the
same for all equations in the same class of equivalence (up to metric properties that
depend on h in γ ). In particular, if an equation is oscillatory to both sides of
its interval of definition, then all equivalent equations (including a corresponding
canonical one) are oscillatory to the left and to the right. The same is true for the
number of the zeros of solutions, the disconjugacy of equations, etc.

It means that for constructing equations with prescribed character of zeros of
their solutions it is sufficient to have one equation of this property for the whole
class of equivalent equations. By using the geometric approach described in Par.
VIII., this required equations can be obtained by considering curves on unit spheres
in n-dimensional Euclidean space having specified intersections with main circles on
these spheres.

We have seen that problems concerning the existence or nonexistence of linear
differential equations and their effective constructions can be converted to questions
from the constructive theory of real functions.
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X. Comments

Important questions consist in selection of morphisms for given objects. In some
cases they are historically given. Another way is to choose properties that should
be satisfied and to derive the most general form of morphisms that keep them
unchanged, e.g. for functional difference equations.

Another problem is the selection of suitable canonical forms in particular situa-
tions. Consider for example parameterization of functions.

Problem.

For a nonnegative integer n we define the n-equivalence between functions f1 and
f2 by the existence of a homeomorphism ϕ of the class Cn between the definition
domain of f2 and that of f1, such that

f1 ◦ ϕ = f2

holds.

The problem consists in finding a representative, a canonical form in each class
of this equivalence. Partial answers have been known only for rather restrictive
subsets of continuous functions, see [9]. Results for larger sets would have important
consequences e.g. in construction of unique canonical forms for linear differential
equations and their invariants.
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