Bounded Solutions for Nonlinear Difference Equations

Jean Mawhin

Université Catholique de Louvain

Bounded Solutions for Nonlinear Difference Equations – p.1/28

Dedication

Best wishes and congratulations to four musketeers

Dedication

Best wishes and congratulations to four musketeers

"four drinks for two is better than two drinks for four"

Dedication

Best wishes and congratulations to four musketeers

"four drinks for two is better than two drinks for four"

(Svatoslav-Irena-František-Štefan's inequality)

• Model : Duffing difference equation : $\Delta^2 x_{m-1} + c\Delta x_m + a \arctan x_m = p_m \quad (m \in \mathbb{Z})$

• Model : Duffing difference equation : $\Delta^2 x_{m-1} + c\Delta x_m + a \arctan x_m = p_m \qquad (m \in \mathbb{Z})$

$$c > 0, \quad a \neq 0$$

- problem : bounded input-bounded output (BIBO) : for which bounded input $(p_m)_{m \in \mathbb{Z}}$ does it exist a bounded output $(x_m)_{m \in \mathbb{Z}}$?
- **•** bounded means belonging to $l_{\mathbb{Z}}^{\infty}$

• Model : Duffing difference equation : $\Delta^2 x_{m-1} + c\Delta x_m + a \arctan x_m = p_m \qquad (m \in \mathbb{Z})$

$$c > 0, \quad a \neq 0$$

- problem : bounded input-bounded output (BIBO) : for which bounded input $(p_m)_{m \in \mathbb{Z}}$ does it exist a bounded output $(x_m)_{m \in \mathbb{Z}}$?
- **•** bounded means belonging to $l_{\mathbb{Z}}^{\infty}$
- A (sharp) solution is proposed when a < 0

• Model : Duffing difference equation : $\Delta^2 x_{m-1} + c\Delta x_m + a \arctan x_m = p_m \qquad (m \in \mathbb{Z})$

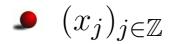
$$c > 0, \quad a \neq 0$$

- problem : bounded input-bounded output (BIBO) : for which bounded input $(p_m)_{m \in \mathbb{Z}}$ does it exist a bounded output $(x_m)_{m \in \mathbb{Z}}$?
- bounded means belonging to $l_{\mathbb{Z}}^{\infty}$
- A (sharp) solution is proposed when a < 0
- A technique is developed which could work when a > 0

• Model : Duffing difference equation : $\Delta^2 x_{m-1} + c\Delta x_m + a \arctan x_m = p_m \quad (m \in \mathbb{Z})$

$$c > 0, \quad a \neq 0$$

- problem : bounded input-bounded output (BIBO) : for which bounded input $(p_m)_{m \in \mathbb{Z}}$ does it exist a bounded output $(x_m)_{m \in \mathbb{Z}}$?
- bounded means belonging to $l_{\mathbb{Z}}^{\infty}$
- A (sharp) solution is proposed when a < 0
- A technique is developed which could work when a > 0
- Partially joint work with J.B. Baillon



• $(x_j)_{j\in\mathbb{Z}}$

 $\Delta x_m := x_{m+1} - x_m$

•
$$\Delta^2 x_{m-1} := \Delta(\Delta x_{m-1}) = \Delta(x_m - x_{m-1})$$

= $x_{m+1} - 2x_m + x_{m-1}$

• $(x_j)_{j\in\mathbb{Z}}$

 $\Delta x_m := x_{m+1} - x_m$

•
$$\Delta^2 x_{m-1} := \Delta(\Delta x_{m-1}) = \Delta(x_m - x_{m-1})$$

= $x_{m+1} - 2x_m + x_{m-1}$

• $f_m \in C(\mathbb{R}, \mathbb{R}) \quad (m \in \mathbb{Z})$

• $(x_j)_{j\in\mathbb{Z}}$

$$\Delta x_m := x_{m+1} - x_m$$

•
$$\Delta^2 x_{m-1} := \Delta(\Delta x_{m-1}) = \Delta(x_m - x_{m-1})$$

= $x_{m+1} - 2x_m + x_{m-1}$

•
$$f_m \in C(\mathbb{R}, \mathbb{R}) \quad (m \in \mathbb{Z})$$

•
$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

• $(x_j)_{j\in\mathbb{Z}}$

$$\Delta x_m := x_{m+1} - x_m$$

•
$$\Delta^2 x_{m-1} := \Delta(\Delta x_{m-1}) = \Delta(x_m - x_{m-1})$$

= $x_{m+1} - 2x_m + x_{m-1}$

•
$$f_m \in C(\mathbb{R}, \mathbb{R}) \quad (m \in \mathbb{Z})$$

•
$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

•
$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

• bounded solution : $(x_m)_{m\in\mathbb{Z}}\in l^{\infty}_{\mathbb{Z}}$

A limiting lemma

■ Lemma. Assume that, for each $n \in \mathbb{N}^*$, there exists $x^n = (x_m^n)_{-n-1 \le m \le n+1}$ such that

 $\Delta^2 x_{m-1}^n + c \Delta x_m^n + f_m(x_m^n) = 0 \quad (-n \le m \le n)$

and such that $\alpha_m \leq x_m^n \leq \beta_m$ $(|m| \leq n+1)$ for some $\alpha = (\alpha_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}, \quad \beta = (\beta_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}.$ Then there exists $\widehat{x} = (\widehat{x}_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ such that

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_m + f_m(\widehat{x}_m) = 0, \quad \alpha_m \le \widehat{x}_m \le \beta_m \quad (m \in \mathbb{Z})$$

A limiting lemma

■ Lemma. Assume that, for each $n \in \mathbb{N}^*$, there exists $x^n = (x_m^n)_{-n-1 \le m \le n+1}$ such that

 $\Delta^2 x_{m-1}^n + c \Delta x_m^n + f_m(x_m^n) = 0 \quad (-n \le m \le n)$

and such that $\alpha_m \leq x_m^n \leq \beta_m$ $(|m| \leq n+1)$ for some $\alpha = (\alpha_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}, \quad \beta = (\beta_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}.$ Then there exists $\widehat{x} = (\widehat{x}_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ such that

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_m + f_m(\widehat{x}_m) = 0, \quad \alpha_m \le \widehat{x}_m \le \beta_m \quad (m \in \mathbb{Z})$$

Same result for

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_{m-1} + f_m(\widehat{x}_m) = 0$$

A limiting lemma

• Lemma. Assume that, for each $n \in \mathbb{N}^*$, there exists $x^n = (x_m^n)_{-n-1 \le m \le n+1}$ such that

 $\Delta^2 x_{m-1}^n + c \Delta x_m^n + f_m(x_m^n) = 0 \quad (-n \le m \le n)$

and such that $\alpha_m \leq x_m^n \leq \beta_m$ $(|m| \leq n+1)$ for some $\alpha = (\alpha_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}, \quad \beta = (\beta_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}.$ Then there exists $\widehat{x} = (\widehat{x}_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ such that

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_m + f_m(\widehat{x}_m) = 0, \quad \alpha_m \le \widehat{x}_m \le \beta_m \quad (m \in \mathbb{Z})$$

Same result for

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_{m-1} + f_m(\widehat{x}_m) = 0$$

Proof. Borel-Lebesgue lemma, Cantor diagonalization

- $f_m \in C(\mathbb{R}, \mathbb{R}) \quad (m \in \mathbb{Z})$

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

if
$$\Delta^2 \alpha_{m-1} + c \Delta \alpha_m + f_m(\alpha_m) \ge 0$$

(resp. $\Delta^2 \beta_{m-1} + c \Delta \beta_m + f_m(\beta_m) \le 0$) $(m \in \mathbb{Z})$

- $f_m \in C(\mathbb{R}, \mathbb{R}) \quad (m \in \mathbb{Z})$

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

if
$$\Delta^2 \alpha_{m-1} + c \Delta \alpha_m + f_m(\alpha_m) \ge 0$$

(resp. $\Delta^2 \beta_{m-1} + c \Delta \beta_m + f_m(\beta_m) \le 0$) $(m \in \mathbb{Z})$

Similar definition for

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

• Theorem. If $c \ge 0$ (resp. $c \le 0$) and

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

(resp.
$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$
)

 $\begin{array}{ll} \text{has a lower solution} & \alpha = (\alpha_m)_{m \in \mathbb{Z}} & \text{and an upper} \\ \text{solution} & \beta = (\beta_m)_{m \in \mathbb{Z}} & \text{such that} & \alpha_m \leq \beta_m \\ (m \in \mathbb{Z}), & \text{then it has a solution} & x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty} \\ \text{such that} & \alpha_m \leq x_m \leq \beta_m & (m \in \mathbb{Z}). \end{array}$

• Theorem. If $c \ge 0$ (resp. $c \le 0$) and

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

(resp. $\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$)

 $\begin{array}{ll} \text{has a lower solution} & \alpha = (\alpha_m)_{m \in \mathbb{Z}} & \text{and an upper} \\ \text{solution} & \beta = (\beta_m)_{m \in \mathbb{Z}} & \text{such that} & \alpha_m \leq \beta_m \\ (m \in \mathbb{Z}), & \text{then it has a solution} & x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty} \\ \text{such that} & \alpha_m \leq x_m \leq \beta_m & (m \in \mathbb{Z}). \end{array}$

Proof. LUS for Dirichlet

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (-n \le m \le n)$$

 $x_{-n-1} = \alpha_{-n-1}, \quad x_{n+1} = \alpha_{n+1}$

for each n and limiting lemma

Constant lower and upper solutions

• Corollary. If $c \ge 0$ (resp. $c \le 0$) and if there exist real numbers $\alpha \le \beta$ such that $f_m(\beta) \le 0 \le f_m(\alpha)$ $(m \in \mathbb{Z})$, then equation

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$
(resp.
$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$
)

has at least one solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ such that $\alpha \leq x_m \leq \beta$ $(m \in \mathbb{Z})$.

Constant lower and upper solutions

• Corollary. If $c \ge 0$ (resp. $c \le 0$) and if there exist real numbers $\alpha \le \beta$ such that $f_m(\beta) \le 0 \le f_m(\alpha)$ $(m \in \mathbb{Z})$, then equation

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$
(resp.
$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$
)

has at least one solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ such that $\alpha \leq x_m \leq \beta$ $(m \in \mathbb{Z})$.

• continuous case : x'' + cx' + f(t, x) = 0corresponding result holds for all $c \in \mathbb{R}$ (Barbalat (1958), Opial (1958))

Interlude

Joint work

First order linear equations

• Lemma 1. If $c \notin \{0,2\}$ equation $\Delta x_m + cx_m = h_m \quad (m \in \mathbb{Z})$ has a unique bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ for each $h = (h_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

First order linear equations

• Lemma 1. If $c \notin \{0,2\}$ equation

$$\Delta x_m + cx_m = h_m \quad (m \in \mathbb{Z})$$

has a unique bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ for each $h = (h_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

• Lemma 2. If $c \notin \{-2, 0\}$ equation

$$\Delta x_{m-1} + cx_m = h_m \quad (m \in \mathbb{Z})$$

has a unique bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ for each $h = (h_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

First order linear equations

• Lemma 1. If $c \notin \{0,2\}$ equation

$$\Delta x_m + cx_m = h_m \quad (m \in \mathbb{Z})$$

has a unique bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ for each $h = (h_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

• Lemma 2. If $c \notin \{-2, 0\}$ equation

$$\Delta x_{m-1} + cx_m = h_m \quad (m \in \mathbb{Z})$$

has a unique bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ for each $h = (h_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

• continuous case : x' + cx = h(t) $h \in BC(\mathbb{R})$ result holds for each $c \neq 0$ (Perron (1930))

- Δ -primitive H^{Δ} of $h = (h_m)_{m \in \mathbb{Z}}$
- $H^{\Delta} = (H_m^{\Delta})_{m \in \mathbb{Z}}$: $\Delta H_m^{\Delta} = h_m \quad (m \in \mathbb{Z})$

• Δ -primitive H^{Δ} of $h = (h_m)_{m \in \mathbb{Z}}$

• $H^{\Delta} = (H_m^{\Delta})_{m \in \mathbb{Z}}$: $\Delta H_m^{\Delta} = h_m \quad (m \in \mathbb{Z})$

$$H_{m}^{\Delta} = \begin{cases} \sum_{k=0}^{m-1} h_{k} & \text{if } m \ge 1 \\ 0 & \text{if } m = 0 \\ -\sum_{k=m}^{-1} h_{k} & \text{if } m \le -1 \end{cases} \quad (m \in \mathbb{Z})$$

- Δ -primitive H^{Δ} of $h = (h_m)_{m \in \mathbb{Z}}$
- $H^{\Delta} = (H_m^{\Delta})_{m \in \mathbb{Z}}$: $\Delta H_m^{\Delta} = h_m \quad (m \in \mathbb{Z})$

$$H_{m}^{\Delta} = \begin{cases} \sum_{k=0}^{m-1} h_{k} & \text{if } m \ge 1\\ 0 & \text{if } m = 0\\ -\sum_{k=m}^{-1} h_{k} & \text{if } m \le -1 \end{cases} \quad (m \in \mathbb{Z})$$

• $BP_{\mathbb{Z}}$:= $\{h = (h_m)_{m \in \mathbb{Z}} : H^{\Delta} \in l_{\mathbb{Z}}^{\infty}\}$

• $BP_{\mathbb{Z}} \subsetneq l_{\mathbb{Z}}^{\infty}$

- Δ -primitive H^{Δ} of $h = (h_m)_{m \in \mathbb{Z}}$
- $H^{\Delta} = (H_m^{\Delta})_{m \in \mathbb{Z}}$: $\Delta H_m^{\Delta} = h_m \quad (m \in \mathbb{Z})$

$$H_{m}^{\Delta} = \begin{cases} \sum_{k=0}^{m-1} h_{k} & \text{if} \quad m \ge 1\\ 0 & \text{if} \quad m = 0\\ -\sum_{k=m}^{-1} h_{k} & \text{if} \quad m \le -1 \end{cases} \quad (m \in \mathbb{Z})$$

- $BP_{\mathbb{Z}}$:= $\{h = (h_m)_{m \in \mathbb{Z}} : H^{\Delta} \in l_{\mathbb{Z}}^{\infty}\}$
- continuous case : $BP(\mathbb{R}) \not\subset BC(\mathbb{R})$, $BC(\mathbb{R}) \not\subset BP(\mathbb{R})$

Second order linear equations

• Proposition 1. If $c \notin \{-2, 0\}$, equation

$$\Delta^2 x_{m-1} + c\Delta x_m = h_m \quad (m \in \mathbb{Z})$$

has a bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $h \in BP_{\mathbb{Z}}$.

Second order linear equations

• Proposition 1. If $c \notin \{-2, 0\}$, equation

$$\Delta^2 x_{m-1} + c\Delta x_m = h_m \quad (m \in \mathbb{Z})$$

has a bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $h \in BP_{\mathbb{Z}}$.

• Proposition 2. If $c \notin \{0,2\}$, equation

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} = h_m \quad (m \in \mathbb{Z})$$

has a bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $h \in BP_{\mathbb{Z}}$.

Second order linear equations

• Proposition 1. If $c \notin \{-2, 0\}$, equation

$$\Delta^2 x_{m-1} + c\Delta x_m = h_m \quad (m \in \mathbb{Z})$$

has a bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $h \in BP_{\mathbb{Z}}$.

• Proposition 2. If $c \notin \{0,2\}$, equation

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} = h_m \quad (m \in \mathbb{Z})$$

has a bounded solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $h \in BP_{\mathbb{Z}}$.

continuous case result holds when $c \neq 0$ if and only if $h \in BP(\mathbb{R})$ (Ortega (1995))

$$x'' + cx' = h(t) \quad h \in BC(\mathbb{R})$$

Generalized mean values

• lower (resp. upper) mean value of $p = (p_j)_{j \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ $\widehat{p} := \lim_{n \to \infty} \inf_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right)$ $\left(\text{resp.} \quad \widetilde{p} := \lim_{n \to \infty} \sup_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right) \right)$

Generalized mean values

- lower (resp. upper) mean value of $p = (p_j)_{j \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ $\widehat{p} := \lim_{n \to \infty} \inf_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right)$ $\left(\text{resp.} \quad \widetilde{p} := \lim_{n \to \infty} \sup_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right) \right)$
- Lemma. The following statements are equivalent :
 (i) α < p̂ ≤ p̃ < β.
 (ii) there exists p* ∈ BP_Z, p** ∈ l_Z[∞] such that p = p* + p** and α < inf_{k∈Z} p^{**}_k ≤ sup_{k∈Z} p^{**}_k < β

Generalized mean values

- lower (resp. upper) mean value of $p = (p_j)_{j \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ $\widehat{p} := \lim_{n \to \infty} \inf_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right)$ $\left(\text{resp.} \quad \widetilde{p} := \lim_{n \to \infty} \sup_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right) \right)$
- Lemma. The following statements are equivalent :
 (i) α < p̂ ≤ p̃ < β.
 (ii) there exists p* ∈ BP_Z, p** ∈ l_Z[∞] such that p = p* + p** and α < inf_{k∈Z} p** ≤ sup_{k∈Z} p** < β
- Special case. If $\tilde{p} = \tilde{p} = 0$, then, for each $\epsilon > 0$ there exists $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ such that $p = p^* + p^{**}$ and $\sup_{k \in \mathbb{Z}} |p_k^{**}| < \epsilon$

Generalized mean values

- lower (resp. upper) mean value of $p = (p_j)_{j \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ $\widehat{p} := \lim_{n \to \infty} \inf_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right)$ $\left(\text{resp.} \quad \widetilde{p} := \lim_{n \to \infty} \sup_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right) \right)$
- Lemma. The following statements are equivalent : (i) $\alpha < \widehat{p} \le \widetilde{p} < \beta$. (ii) there exists $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ such that $p = p^* + p^{**}$ and $\alpha < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \beta$
- Special case. If $\tilde{p} = \tilde{p} = 0$, then, for each $\epsilon > 0$ there exists $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ such that $p = p^* + p^{**}$ and $\sup_{k \in \mathbb{Z}} |p_k^{**}| < \epsilon$
- continuous case : replace sums by integrals (Ortega-Tineo (1996))

Interlude

Mathematical anxiety

Duffing difference equations

Theorem. Assume

- 1. c > 0, $g \in C(\mathbb{R}, \mathbb{R})$, $p \in l^{\infty}_{\mathbb{Z}}$
- 2. There exists $r_0 > 0$ and $\delta_- < \delta_+$ such that

 $g(y) \ge \delta_+$ for $y \le -r_0$, $g(y) \le \delta_-$ for $y \ge r_0$.

 $3. \quad \delta_- < \widehat{p} \le \widetilde{p} < \delta_+.$

Then equation

$$\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

has at least one solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

• write $p = p^* + p^{**}$ with $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ and $\delta_- < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \delta_+$

• write $p = p^* + p^{**}$ with $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ and $\delta_- < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \delta_+$

• $\Delta^2 x_{m-1} + c\Delta x_m = p_m^*$ $(m \in \mathbb{Z})$ has a bounded solution $u = (u_m)_{m \in \mathbb{Z}}$

• write $p = p^* + p^{**}$ with $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ and $\delta_- < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \delta_+$

• $\Delta^2 x_{m-1} + c\Delta x_m = p_m^*$ $(m \in \mathbb{Z})$ has a bounded solution $u = (u_m)_{m \in \mathbb{Z}}$

■ letting x = u + z gives the equivalent problem
 $\Delta^2 z_{m-1} + c\Delta z_m + g(u_m + z_m) - p_m^{**} = 0$ $(m \in \mathbb{Z})$

• write $p = p^* + p^{**}$ with $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ and $\delta_- < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \delta_+$

• $\Delta^2 x_{m-1} + c\Delta x_m = p_m^*$ $(m \in \mathbb{Z})$ has a bounded solution $u = (u_m)_{m \in \mathbb{Z}}$

- letting x = u + z gives the equivalent problem $\Delta^2 z_{m-1} + c\Delta z_m + g(u_m + z_m) p_m^{**} = 0 \quad (m \in \mathbb{Z})$
- $\alpha = -r_0 \sup_{k \in \mathbb{Z}} u_k$ is a lower solution and $\beta = r_0 - \inf_{k \in \mathbb{Z}} u_k$ an upper solution for the equivalent problem

• write $p = p^* + p^{**}$ with $p^* \in BP_{\mathbb{Z}}$, $p^{**} \in l_{\mathbb{Z}}^{\infty}$ and $\delta_- < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \delta_+$

• $\Delta^2 x_{m-1} + c\Delta x_m = p_m^*$ $(m \in \mathbb{Z})$ has a bounded solution $u = (u_m)_{m \in \mathbb{Z}}$

- letting x = u + z gives the equivalent problem
 $\Delta^2 z_{m-1} + c\Delta z_m + g(u_m + z_m) p_m^{**} = 0$ $(m \in \mathbb{Z})$
- $\alpha = -r_0 \sup_{k \in \mathbb{Z}} u_k$ is a lower solution and $\beta = r_0 - \inf_{k \in \mathbb{Z}} u_k$ an upper solution for the equivalent problem
- use Corollary on constant lower and upper solutions

Landesman-Lazer condition

● Corollary. If

1. c > 0, $g \in C(\mathbb{R}, \mathbb{R})$, $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

2. $\limsup_{y\to+\infty} g(y) < \widehat{p} \le \widetilde{p} < \liminf_{y\to-\infty} g(y)$ (*) then equation

$$\frac{\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})}{\text{solution}} \quad x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}.$$

Landesman-Lazer condition

Corollary. If

- 1. c > 0, $g \in C(\mathbb{R}, \mathbb{R})$, $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$
- 2. $\limsup_{y\to+\infty} g(y) < \widehat{p} \le \widetilde{p} < \liminf_{y\to-\infty} g(y)$ (*) then equation

$$\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z}) \quad has a$$

solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}.$

■ Remark 1. $p \in l^{\infty}_{\mathbb{Z}}$ necessary for existence of a bounded solution

Landesman-Lazer condition

Corollary. If

1. c > 0, $g \in C(\mathbb{R}, \mathbb{R})$, $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

2. $\limsup_{y\to+\infty} g(y) < \widehat{p} \le \widetilde{p} < \liminf_{y\to-\infty} g(y)$ (*) then equation

$$\frac{\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})}{\text{solution}} \quad x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}.$$

■ Remark 1. $p \in l^{\infty}_{\mathbb{Z}}$ necessary for existence of a bounded solution

Remark 2. if

 $-\infty < \limsup_{y \to +\infty} g(y) < g(x) < \liminf_{y \to -\infty} g(y) < +\infty$ for all $x \in \mathbb{R}$, then $p \in l_{\mathbb{Z}}^{\infty}$ and (*) is necessary for the existence of a bounded solution

Examples

1. Equation

$$\Delta^2 x_{m-1} + c\Delta x_m - \frac{bx_m}{1+|x_m|} = p_m \quad (m \in \mathbb{Z})$$

with c > 0 and b > 0 has a solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ and $-b < \widehat{p} \le \widetilde{p} < b$

Examples

1. Equation

$$\Delta^2 x_{m-1} + c\Delta x_m - \frac{bx_m}{1+|x_m|} = p_m \quad (m \in \mathbb{Z})$$

with c > 0 and b > 0 has a solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ and $-b < \widehat{p} \le \widetilde{p} < b$

2. Equation

$$\Delta^2 x_{m-1} + c\Delta x_m - \frac{bx_m}{1+|x_m|^a} = p_m \quad (m \in \mathbb{Z})$$

with c > 0, b > 0 and $0 \le a < 1$ has a solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$

Remarks

similar results hold for equation

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

when c < 0

Remarks

similar results hold for equation

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

when c < 0

• continuous case : x'' + cx' + g(x) = p(t)similar results holds for $c \neq 0$ with corresponding conditions upon g and p (Mawhin-Ward (1998))

Remarks

similar results hold for equation

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

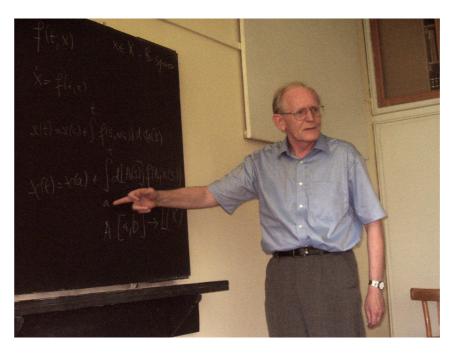
when c < 0

- continuous case : x'' + cx' + g(x) = p(t)similar results holds for $c \neq 0$ with corresponding conditions upon g and p (Mawhin-Ward (1998))
- Open problem. Prove or disprove that equation

$$\left| \Delta^2 x_{m-1} + c \Delta x_m + \frac{b x_m}{1 + |x_m|} = p_m \quad (m \in \mathbb{Z}) \right|$$

(c > 0, b > 0) has a solution $x = (x_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$ if and only if $p = (p_m)_{m \in \mathbb{Z}} \in l_{\mathbb{Z}}^{\infty}$, $-b < \widehat{p} \le \widetilde{p} < b$

Interlude



Identity problems : is it me ?

•
$$x' = f(t, x)$$
 with $f \in C(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$

- x' = f(t, x) with $f \in C(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$
- guiding function : $V \in C^1(\mathbb{R}^n, \mathbb{R}), \quad \rho_0 > 0$: $\langle \nabla V(x), f(t, x) \rangle \leq 0$ when $||x|| \geq \rho_0$

- x' = f(t, x) with $f \in C(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$
- guiding function : $V \in C^1(\mathbb{R}^n, \mathbb{R}), \quad \rho_0 > 0$: $\langle \nabla V(x), f(t, x) \rangle \leq 0$ when $||x|| \geq \rho_0$
- Theorem. If x' = f(t, x) admits a guiding function V such that $V(x) \rightarrow +\infty$ when $||x|| \rightarrow \infty$, then it has at least one solution x bounded over \mathbb{R} .
- Krasnosel'skii-Perov (1958) simpler proof by Alonso-Ortega (1995)

- x' = f(t, x) with $f \in C(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$
- guiding function : $V \in C^1(\mathbb{R}^n, \mathbb{R}), \quad \rho_0 > 0$: $\langle \nabla V(x), f(t, x) \rangle \leq 0$ when $||x|| \geq \rho_0$
- Theorem. If x' = f(t, x) admits a guiding function V such that $V(x) \rightarrow +\infty$ when $||x|| \rightarrow \infty$, then it has at least one solution x bounded over \mathbb{R} .
- Krasnosel'skii-Perov (1958) simpler proof by Alonso-Ortega (1995)
- corresponding result for difference system

 $x_{n+1} - x_n = f_n(x_n)$

dynamical system

$$x_{n+1} = g_n(x_n)$$

 $x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z}) \mid (g_m \in C(\mathbb{R}^n, \mathbb{R}^n)), \ m \in \mathbb{Z}$

•
$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z})$$
 $(g_m \in C(\mathbb{R}^n, \mathbb{R}^n)), \ m \in \mathbb{Z}$

guiding function: V ∈ C(ℝⁿ, ℝ), ρ₀ > 0:
 $V(g_m(x)) ≤ V(x)$ when $||x|| ≥ ρ_0$ (m ∈ ℤ)

•
$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z})$$
 $(g_m \in C(\mathbb{R}^n, \mathbb{R}^n)), \ m \in \mathbb{Z}$

- **●** guiding function : V ∈ C(ℝⁿ, ℝ), $ρ_0 > 0$: $V(g_m(x)) ≤ V(x) \quad \text{when} \quad ||x|| ≥ ρ_0 \quad (m ∈ ℤ)$
- Theorem ? If $x_{m+1} = g_m(x_m)$ $(m \in \mathbb{Z})$ admits a guiding function V such that $V(x) \to +\infty$ when $||x|| \to \infty$, then it has at least one bounded solution.

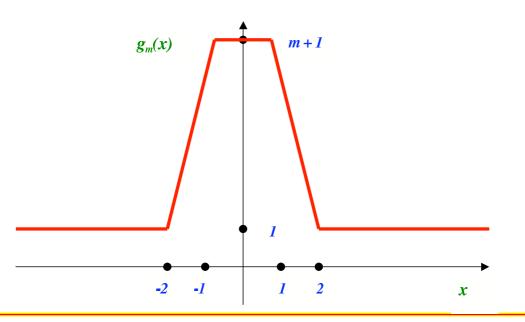
•
$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z})$$
 $(g_m \in C(\mathbb{R}^n, \mathbb{R}^n)), m \in$

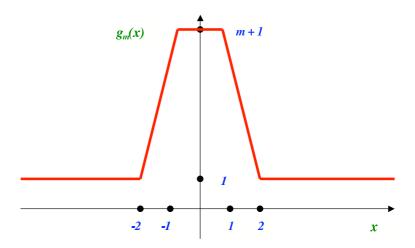
- guiding function : $V \in C(\mathbb{R}^n, \mathbb{R}), \quad \rho_0 > 0$: $V(g_m(x)) \le V(x)$ when $||x|| \ge \rho_0$ ($m \in \mathbb{Z}$)
- Theorem ? If $x_{m+1} = g_m(x_m)$ $(m \in \mathbb{Z})$ admits a guiding function V such that $V(x) \to +\infty$ when $||x|| \to \infty$, then it has at least one bounded solution.
- this result is false

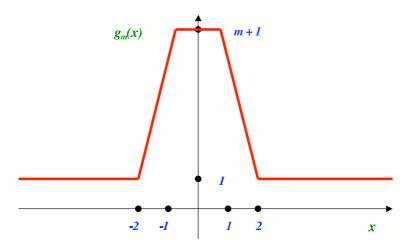
 \mathbb{Z}

$$g_m(x) = \begin{cases} 1 & \text{if } x \le -2 \\ mx + 2m + 1 & \text{if } -2 < x < -1 \\ m + 1 & \text{if } -1 \le x \le 1 \\ -mx + 2m + 1 & \text{if } 1 < x < 2 \\ 1 & \text{if } x \ge 2 \end{cases} \quad (m \in \mathbb{Z})$$

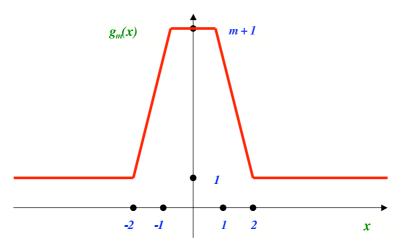
$$g_m(x) = \begin{cases} 1 & \text{if } x \le -2 \\ mx + 2m + 1 & \text{if } -2 < x < -1 \\ m + 1 & \text{if } -1 \le x \le 1 \\ -mx + 2m + 1 & \text{if } 1 < x < 2 \\ 1 & \text{if } x \ge 2 \end{cases} \quad (m \in \mathbb{Z})$$



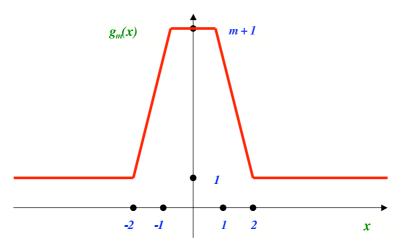




• notice that $g_0(x) = 1$ $(x \in \mathbb{R})$



- notice that $g_0(x) = 1$ $(x \in \mathbb{R})$
- $x_1 = g_0(x_0) = 1, x_2 = g_1(1) = 2, x_3 = g_2(3) = 1, x_4 = g_3(1) = 4, \dots, x_{2k-1} = 1, x_{2k} = 2k \quad (k \in \mathbb{N}_0, x_0 \in \mathbb{R})$ all solutions are unbounded in the future



- notice that $g_0(x) = 1$ $(x \in \mathbb{R})$
- $x_1 = g_0(x_0) = 1, x_2 = g_1(1) = 2, x_3 = g_2(3) = 1, x_4 = g_3(1) = 4, \dots, x_{2k-1} = 1, x_{2k} = 2k \quad (k \in \mathbb{N}_0, x_0 \in \mathbb{R})$ all solutions are unbounded in the future

•
$$V(x) = |x|, \quad |x| \ge \rho_0 = 2 \quad \Rightarrow \quad |g_m(x)| \le |x|$$

A discrete guiding function thm

• Theorem. Let $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$. If

$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z}) \quad (*)$$

admits a guiding function V with constant ρ_0 and if

$$\sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\| < \infty \quad (**)$$

then (*) has at least one solution $x = (x_m)_{m \in \mathbb{Z}} \in (l_{\mathbb{Z}}^{\infty})^n$

A discrete guiding function thm

• Theorem. Let $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$. If

$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z}) \quad (*)$$

admits a guiding function V with constant ρ_0 and if

$$\sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\| < \infty \quad (**)$$

then (*) has at least one solution $x = (x_m)_{m \in \mathbb{Z}} \in (l_{\mathbb{Z}}^{\infty})^n$

• Remark. (**) trivially holds if $g_m = g \ (m \in \mathbb{Z})$

- take $\rho_1 > \max\{\rho_0, \sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\|\}$
- define $V_1 := \max_{\|x\| \le \rho_1} V(x)$
- take $\rho_2 > \rho_1$ such that

 $B_{\rho_0} \subset B_{\rho_1} \subset S_1 := \{ x \in \mathbb{R}^n : V(x) \le V_1 \} \subset B_{\rho_2}$

- take $\rho_1 > \max\{\rho_0, \sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\|\}$
- define $V_1 := \max_{\|x\| \le \rho_1} V(x)$
- take $\rho_2 > \rho_1$ such that

 $B_{\rho_0} \subset B_{\rho_1} \subset S_1 := \{ x \in \mathbb{R}^n : V(x) \le V_1 \} \subset B_{\rho_2}$

• show that S_1 is positively invariant under the flow

- take $\rho_1 > \max\{\rho_0, \sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\|\}$
- define $V_1 := \max_{\|x\| \le \rho_1} V(x)$
- take $\rho_2 > \rho_1$ such that

 $B_{\rho_0} \subset B_{\rho_1} \subset S_1 := \{ x \in \mathbb{R}^n : V(x) \le V_1 \} \subset B_{\rho_2}$

• show that S_1 is positively invariant under the flow

● for $n \in \mathbb{N}$ and $(x^n)_{m \ge -n}$ the solution such that $x_{-n}^n = 0$ is such that

 $x_m^n \in S_1 \subset B_{\rho_2} \quad (m \ge -n, \ n \in \mathbb{N})$

- take $\rho_1 > \max\{\rho_0, \sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\|\}$
- define $V_1 := \max_{\|x\| \le \rho_1} V(x)$
- take $\rho_2 > \rho_1$ such that

 $B_{\rho_0} \subset B_{\rho_1} \subset S_1 := \{ x \in \mathbb{R}^n : V(x) \le V_1 \} \subset B_{\rho_2}$

- show that S_1 is positively invariant under the flow
- for $n \in \mathbb{N}$ and $(x^n)_{m \ge -n}$ the solution such that $x_{-n}^n = 0$ is such that

$$x_m^n \in S_1 \subset B_{\rho_2} \quad (m \ge -n, \ n \in \mathbb{N})$$

• use the following limiting lemma to obtain a solution $x = (x_m)_{m \in \mathbb{Z}} \in (l_{\mathbb{Z}}^{\infty})^n$

Another limiting lemma

■ Lemma. Assume that $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$ and that there exists $\rho > 0$ such that, for each $k \in \mathbb{N}^*$, the system

$$\begin{aligned} x_{m+1}^k &= g_m(x_m^k) \quad (-k \le m \le k) \\ \text{fnas a solution} \quad x^k &= (x_m^k)_{-k-1 \le m \le k+1}, \quad \text{satisfying} \\ &\|x_m^k\| \le \rho \quad (m \in \mathbb{Z}) \end{aligned}$$

Then there exists a solution $\widehat{x} = (\widehat{x}_m)_{m \in \mathbb{Z}} \in (l_{\mathbb{Z}}^{\infty})^n$ of

$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z})$$

such that $||x||_{\infty} \leq \rho$

Another limiting lemma

■ Lemma. Assume that $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$ and that there exists $\rho > 0$ such that, for each $k \in \mathbb{N}^*$, the system

$$\begin{aligned} x_{m+1}^k &= g_m(x_m^k) \quad (-k \le m \le k) \\ \text{has a solution} \quad x^k &= (x_m^k)_{-k-1 \le m \le k+1}, \quad \text{satisfying} \\ &\|x_m^k\| \le \rho \quad (m \in \mathbb{Z}) \end{aligned}$$

Then there exists a solution $\widehat{x} = (\widehat{x}_m)_{m \in \mathbb{Z}} \in (l_{\mathbb{Z}}^{\infty})^n$ of

$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z})$$

such that $||x||_{\infty} \leq \rho$

continuous case : Krasnosel'skii (1966)

Bibliography

- J. Mawhin, Bounded solutions of some second order difference equations, Georgian Mathematical Journal 14 (2007), 315-324
- 2. J.B. Baillon and J. Mawhin, Bounded solutions of some nonlinear difference equations, in preparation
- 3. M. Tvrdý, The pictures

