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u = f(tvu)

u(0) = u(w), '(0)=u'(w)

f € Car([0,w] X R;R)



Theorem A. Let a and 3 be lower and upper solutions of (1'), (2). Let,
moreover,

a+(t) < liminf M, lim sup S <b4(t) wuniformly on [0,w].

u—+oo u u—+oo u

Assume further that the box [at,bs] X [a—,b_] is admaissible. Then the problem
(1), (2) is solvable and solution is localized.



u” 4+ f(t,u) =0 (1)
u(0) = u(w), '(0) =u'(w) (2)

Theorem B. Let a and 3 be lower and upper solutions of (1’), (2). Let,
moreover, for some functions a+ < 0, b+ > 0 in L([O,w]),

t t
a—(t) < liminf M, lim sup G0} <b_(t) wuniformly on [0,w],
U— — 00 u U— — 00 u
f(t,w)

a+(t) < liminf

lim fnf = uniformly on [0, w].
Assume further that, for any g € L([0,w]) with
G(t) <b-(t) Jorte[0,u]
and t € [0,w[, the problem
u +gt)u; ul)=0, uwll+w)=0

has only the trivial solution. Then the problem (1'), (2) is solvable and solution is
localized.

Remark. Mention that no restriction is required on a_ and a.
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u = f(t,u) (1)
u(0) = u(w), '(0)=u'(w) (2)

Theorem A. Let o and 3 be lower and upper functions of (1), (2). Let,
moreover,

ft,x)sgnz < po(t)[x]+ + p1(t)[z]— + q(¢, |x]) on [0,w] X R,
ft,z)sgne = —go(t)[z]+ — g1 (W)[z]- —q(t, |z])  on [0,0] X R,
where ¢ € Car([0,w] x Ry;R) 4s a sublinear function. Assume further that the

bozx [—go,po] X [—g1,p1] is admissible. Then the problem (1), (2) is solvable and
solution is localized.



u = f(t,u)
u(0) = u(w), u'(0)=u'(w)

Theorem B. Let o and 8 be lower and upper functions of (1), (2). Let,
moreover,

[t z) <po()[zl4 +p@)[a]- +qt |2])  on [0,0] XR,
f(t,ﬂ,’) > —g()(t)|$|—q(t, |'7:‘) on [0,(4)])(}-00,0]7

where q € Car([O,w] X R+;R) is a sublinear function,

po(t) 20, p(t) 20, go(t) =0 forte[0,u]

and
—po € Vi -

Then the problem (1), (2) is solvable and solution is localized.

Remark. No additional assumptions are required on functions p and gg.



Theorem A.
f(t,x) ~p(t,z)z + q(t, )

Theorem B.
ft,z) ~p(t,z)x + qo(t,z) forz <O,

f(tv z) < pO(t)$+ Q1(t7 x) forxz >0



u = f(t,u) (1)
u(0) = u(w), '(0) =u'(w) (2

Theorem 1. Let a and 3 be lower and upper functions of (1), (2). Let,
moreover,
f(t7 CE) Sgn T > 7p0(t)‘£lt| - q(ta |.'E|) on [va] X R7

where
—po € Vo

and g € Car([0,w] x Ry ;R) is sublinear. Then the problem (1), (2) is solvable
and solution is localized.

Example.
v’ = —po(t)u+u® — 2¢/|u| + 1 (3)

flt,z) = —po(t)x + 23 — 2+/]z| + 1
f(toysgns > —po(t)lal — 2/l — 1, q(t,) = 1+2y/a]
On the other hand,

a=1 and (=0 arelower and upper functions.



u’ = f(t,u) (1)
u(0) = u(w), '(0) =u'(w) (2)

Corollary 1. Let the function f is monotone in the second variable and
f(t,z)sgnz > —po(t)|z| — q(t, |z|) on [0,w] X R,
where q € Car([0,w] x Ry;R) is sublinear and
—po € Vi .

Then the problem (1), (2) is solvable if and only if there exists v € C([0,w]) such
that "
[ reawnar=o.

0

Remark. If f is nondecreasing then the problem (1), (2) is uniquely solvable.



u’ = f(t,u) (1)
u(0) = u(w), u'(0) =u'(w) (2)

Theorem 2. Let a and 3 be lower and upper functions of (1), (2). Let,
moreover,

ft2) = —po(®)[zl4 — p()[z]- — q(t;[z[) on [0,w] X R,

where q € Car([O,w] X R+;R) is sublinear and —pg € Vi,. Then the problem (1),
(2) is solvable and solution is localized.

Theorem 3. Let a and 3 be lower and upper functions of (1), (2). Let,
moreover,

f@t2) < po(t)[z]— + p(t)[z]+ +q(t, [z])  on [0,0] xR,

where q € Car([O,w] X R+;R) is sublinear and —pg € V,. Then the problem (1),
(2) is solvable and solution is localized.

Remark. Function p € L([0,w]) may be arbitrary.
Remark. Theorem 3 generalized Theorem B.

Remark. If po =0, p =0 and ¢(¢,z) = h(t) then we get results of I. Rachunkova,
S. Stanéek, M. Tvrdy.



Example.
uw" = —po(t)|u| + ut — 2¢/|u + 1

a =1, 8 =0 are lower and upper functions. Theorem 2 implies solvability.
Example.

u” = po(t)|u| — ut41

po is bounded

B =0 is an upper function, a = Const. large enough is a lower function.
Theorem 3 implies solvability.



Massera’s type results

The system
' = A(t)z + B(t),

where A is an w-periodic matrix function and B is an w-periodic vector function,
has a periodic solution iff it possesses a bounded solution.



Massera’s type results

The system
' = A(t)z + B(t),

where A is an w-periodic matrix function and B is an w-periodic vector function,
has a periodic solution iff it possesses a bounded solution.

For nonlinear systems this result is not true in general.



Massera’s type results

The system
' = A(t)z + B(t),

where A is an w-periodic matrix function and B is an w-periodic vector function,
has a periodic solution iff it possesses a bounded solution.

For nonlinear systems this result is not true in general.
However, for first-order scalar equation
u' = f(t,u)
we have

the existence of a bounded solution <=> the existence of an w-periodic solution

This result is usually referred as Massera’s theorem.



In the same paper it was proved

u, g(t7 u’ v)?
v = h(t,u,v)
the existence of a bounded solution <=> the existence of an w-periodic solution

provided

1. every Cauchy problem is uniquely solvable

2. all solutions are global (right)

Remark. Condition 2 is essential and cannot be omitted.



In the same paper it was proved

u, g(t7 u’ v)?
v = h(t,u,v)
the existence of a bounded solution <=> the existence of an w-periodic solution

provided

1. every Cauchy problem is uniquely solvable

2. all solutions are global (right)

Remark. Condition 2 is essential and cannot be omitted.

Massera’s result from 1950 generalizes

N. Levinson,

Transformation theory of mon-linear differential equations of the second
order.

Annals of Mathematics (2), 45 (1944), 723-737

Notation of “Dissipative”.



W = f(t ) (1)
uw(0) = u(w), w(0) =u'(w), ®)
sup {[u(t)] + [u'(t)] : £ > 0} < +o0 @)

Theorem C. Solvability of (1), (4) implies solvability of (1), (2) if
1. every Cauchy problem is uniquely solvable,

2. all solutions are (right) global.



u” = f(t,u) 1)
u(0) = u(w), w'(0) =v'(w), (2)
sup {|u(t)] : t > 0} < +o0 (5)

Theorem 4. Let the existence of lower and upper functions guarantees solvability
of (1), (2). Then solvability of (1), (5) guarantees solvability of (1), (2), as well.



u = f(t,u) (1)
u(0) = u(w), ©'(0) =u'(w) (2)

Corollary. Let one of the next inequalities holds on [0,w] X R

f(t @) sgnx > —po(t)|z| — q(t, |2])

@t x) = —po(t)[z]+ — p()[x]- — q(t, |z])
f(t, ) <po(t)[z]- + p(8)[]+ + a(t, |z]),
where q € Car([O,w] X R+;R) 18 sublinear and

—po € Vi .

Then the existence of a bounded (right) solution of (1) implies the solvability of

1), (2).



Example.

o = —Q[u—sint]i +6[u—sint]i_/3 —sint

f(t,z) <6¥/]z[+6

(£(t.2) < 0@l +p(O)e)+ +alt, )

T W N =

. There exist a bounded solution.

. There exist a 2w-periodic solution.

. Not every solution is global.

. Not every global solution is bounded.

. Cauchy problem is not uniquely solvable.






if, for any p,g € L([0,w]) with

as(t) < p(t) < by (1),
a—(t) < g(t) < b_ (1),

the nontrivial solution of

u’ + p(t)[ul — g(t)[u]- =0,
u(0) = u(w), u'(0) =u'(w)

do not have zeros.



if the problem (1’), (2) has at least one solution u such that, for some tg € [0,w][,

min {a(to),,@(to)} < wu(to) < max {a(to),,@(to)}.



Definition. We say that a function v € C([0,w]) is a lower (upper) function of
(1), (2) if

1. v € AC([0,w]) and 4 can be written in the form

Y () =) + (),
where 9 € AC([0,w]) and ~1; [0,w] — R is nondecreasing (nonincreasing) and

v1(#) =0 a.e. in [0,w];

2 9(0) = (), ¥(0) 2 7'() (Y(0) <7'(®));
3. for a.e. t € [0,w]

V(1) = [tA) (') < FA®).

1. Kiguradze, Some singular BVP for second order nonlinear ODE. Differential
Equations 4(1968), No. 10, 1753-1773.



1
lim 7/q(t,m)dt:0

Tx—+4oo 1



Definition. We say that —po € V|, if the equation

u” = —po(t)u

is disconjugate on every interval of length w, i.e., distance from two consecutive
zeros of each nontrivial solution is greater than w.

T

Problem
u = —po(t)u; wu(a)=0, wu(a+w)=0

has only the trivial solution for any a € [0,w][.

g
For any g € L([O,w}) with
g(t) < po(t)

and any ¢ € [0,w], the problem
u'=—gt)u; ul)=0, u+w)=0

has only the trivial solution.
ﬂ

w

po(t) ; < )2 for ¢t € [0,w] or /po(s)ds <

™
w
0

€|



this elegant condition was observed by J. Mawhin in

Remark on the preceding paper of Ahmad and Lazer on periodic solutions
Bolletino U.M.I. (6), 3-A (1984), 229-238

(f - nonincreasing and asymptotically linear)



I. Rachunkové, S. Stanék, M. Tvrdy
Singularities and Laplacians in BVP for nonlinear ODE
In: Handbook of DE, ODE Vol. 3, 607-723, Elsevier, 2006.



J. L. Massera, The existence of periodic solutions of systems of differential
equations, Duke Math. J. 17 (1950), 457-475.

(with additional assumption: unique solvability of Cauchy problem)



Example.

u! = —Z[u—sint]i +6[u—sint]i/3 —sint

ft,x) <63/|z[+6

(#(t2) < po()lal- +p(O)lel+ +a(t,]a))

T W N

. There exist a bounded solution.

1 .
u(t) = ——— +sint, ¢>0
t+c

. There exist a 27-periodic solution.
. Not every solution is global.
. Not every global solution is bounded.

. Cauchy problem is not uniquely solvable.



Example.
1/3

u’ = —2[u—sint]3_ +6[u—sint]+

—sint

flt,x) <63/]z[+6

(#t:2) < 0@l + POl + q(t; Jal))

1. There exist a bounded solution.

2. There exist a 2m-periodic solution.
u(t) = sint
3. Not every solution is global.

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.



Example.
u = —2[u — sint]i + 6[u — sint]i_/3 —sint

f(t,2) <63/]a +6
(£(t.2) < Po@lal- +p(®)e)+ +alt, )
1. There exist a bounded solution.

2. There exist a 2m-periodic solution.

3. Not every solution is global.

1 .
u(t) = — +sint, ¢>0
t—c

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.



Example.

1/3

N —sint

u' = —2[u—sint]3_ +6[u — sint]

flt,x) <63/]z[+6

(#t:2) < 0@l + POl + q(t; Jal))

=~ W N

. There exist a bounded solution.
. There exist a 27-periodic solution.
. Not every solution is global.

. Not every global solution is bounded.

u(t) = (t+¢)® +sint

. Cauchy problem is not uniquely solvable.



Example.
1/3

u’ = —2[u— sint]i +6[u —sint] /

—sint

ft,x) <63/]z[+6

(£t2) < po(®la]- + pW)la)+ +a(t, <))

. There exist a bounded solution.
. There exist a 27-periodic solution.
. Not every solution is global.

. Not every global solution is bounded.

G o= W N

. Cauchy problem is not uniquely solvable.

we(t) = sin ¢ for t € [0, |
TNt — ) +sint for t € [¢, 00|

are solutions of (6) satisfying u(0) = 0, u/(0) = 1
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