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u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

f ∈ Car
`
[0, ω]× R; R

´



u′′ + f(t, u) = 0 (1′)

u(0) = u(ω), u′(0) = u′(ω) (2)

Theorem A. Let α and β be lower and upper solutions of (1′), (2). Let,
moreover,

a±(t) ≤ lim inf
u→±∞

f(t, u)

u
, lim sup

u→±∞

f(t, u)

u
≤ b±(t) uniformly on [0, ω].

Assume further that the box [a+, b+]× [a−, b−] is admissible. Then the problem
(1′), (2) is solvable and solution is localized.



u′′ + f(t, u) = 0 (1′)

u(0) = u(ω), u′(0) = u′(ω) (2)

Theorem B. Let α and β be lower and upper solutions of (1′), (2). Let,
moreover, for some functions a± ≤ 0, b± ≥ 0 in L

`
[0, ω]

´
,

a−(t) ≤ lim inf
u→−∞

f(t, u)

u
, lim sup

u→−∞

f(t, u)

u
≤ b−(t) uniformly on [0, ω],

a+(t) ≤ lim inf
u→+∞

f(t, u)

u
uniformly on [0, ω].

Assume further that, for any g ∈ L
`
[0, ω]

´
with

g(t) ≤ b−(t) for t ∈ [0, ω]

and t̄ ∈ [0, ω[ , the problem

u′′ + g(t)u ; u(t̄) = 0, u(t̄ + ω) = 0

has only the trivial solution. Then the problem (1′), (2) is solvable and solution is
localized.

Remark. Mention that no restriction is required on a− and a+.
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u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

Theorem A. Let α and β be lower and upper functions of (1), (2). Let,
moreover,

f(t, x) sgn x ≤ p0(t)[x]+ + p1(t)[x]− + q(t, |x|) on [0, ω]× R,

f(t, x) sgn x ≥ −g0(t)[x]+ − g1(t)[x]− − q(t, |x|) on [0, ω]× R,

where q ∈ Car
`
[0, ω]× R+; R

´
is a sublinear function. Assume further that the

box [−g0, p0]× [−g1, p1] is admissible. Then the problem (1), (2) is solvable and
solution is localized.



u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

Theorem B. Let α and β be lower and upper functions of (1), (2). Let,
moreover,

f(t, x) ≤ p0(t)[x]+ + p(t)[x]− + q(t, |x|) on [0, ω]× R,

f(t, x) ≥ −g0(t)|x| − q(t, |x|) on [0, ω]× ]−∞, 0],

where q ∈ Car
`
[0, ω]× R+; R

´
is a sublinear function,

p0(t) ≥ 0, p(t) ≥ 0, g0(t) ≥ 0 for t ∈ [0, ω]

and
−p0 ∈ Vω .

Then the problem (1), (2) is solvable and solution is localized.

Remark. No additional assumptions are required on functions p and g0.



Theorem A.
f(t, x) ∼ p(t, x)x + q(t, x)

Theorem B.

f(t, x) ∼ p(t, x)x + q0(t, x) for x < 0,

f(t, x) ≤ p0(t)x + q1(t, x) for x > 0



u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

Theorem 1. Let α and β be lower and upper functions of (1), (2). Let,
moreover,

f(t, x) sgn x ≥ −p0(t)|x| − q(t, |x|) on [0, ω]× R,

where
−p0 ∈ Vω

and q ∈ Car
`
[0, ω]× R+; R

´
is sublinear. Then the problem (1), (2) is solvable

and solution is localized.

Example.

u′′ = −p0(t)u + u3 − 2
p
|u|+ 1 (3)

f(t, x) = −p0(t)x + x3 − 2
p
|x|+ 1

f(t, x) sgn x ≥ −p0(t)|x| − 2
p
|x| − 1, q(t, x) = 1 + 2

p
|x|

On the other hand,

α ≡ 1 and β ≡ 0 are lower and upper functions.



u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

Corollary 1. Let the function f is monotone in the second variable and

f(t, x) sgn x ≥ −p0(t)|x| − q(t, |x|) on [0, ω]× R,

where q ∈ Car
`
[0, ω]× R+; R

´
is sublinear and

−p0 ∈ Vω .

Then the problem (1), (2) is solvable if and only if there exists γ ∈ C
`
[0, ω]

´
such

that
ωZ

0

f(t, γ(t))dt = 0 .

Remark. If f is nondecreasing then the problem (1), (2) is uniquely solvable.



u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

Theorem 2. Let α and β be lower and upper functions of (1), (2). Let,
moreover,

f(t, x) ≥ −p0(t)[x]+ − p(t)[x]− − q(t, |x|) on [0, ω]× R,

where q ∈ Car
`
[0, ω]× R+; R

´
is sublinear and −p0 ∈ Vω. Then the problem (1),

(2) is solvable and solution is localized.

Theorem 3. Let α and β be lower and upper functions of (1), (2). Let,
moreover,

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|) on [0, ω]× R,

where q ∈ Car
`
[0, ω]× R+; R

´
is sublinear and −p0 ∈ Vω. Then the problem (1),

(2) is solvable and solution is localized.

Remark. Function p ∈ L
`
[0, ω]

´
may be arbitrary.

Remark. Theorem 3 generalized Theorem B.

Remark. If p0 ≡ 0, p ≡ 0 and q(t, x) = h(t) then we get results of I. Rach̊unková,
S. Staněk, M. Tvrdý.



Example.

u′′ = −p0(t)|u|+ u4 − 2
p
|u|+ 1

α ≡ 1, β ≡ 0 are lower and upper functions. Theorem 2 implies solvability.

Example.

u′′ = p0(t)|u| − u4 + 1

p0 is bounded

β ≡ 0 is an upper function, α ≡ Const. large enough is a lower function.
Theorem 3 implies solvability.



Massera’s type results

The system
x′ = A(t)x + B(t),

where A is an ω-periodic matrix function and B is an ω-periodic vector function,
has a periodic solution iff it possesses a bounded solution.

For nonlinear systems this result is not true in general.

However, for first-order scalar equation

u′ = f(t, u)

we have

the existence of a bounded solution ⇐⇒ the existence of an ω-periodic solution

This result is usually referred as Massera’s theorem.
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Massera’s type results

The system
x′ = A(t)x + B(t),

where A is an ω-periodic matrix function and B is an ω-periodic vector function,
has a periodic solution iff it possesses a bounded solution.

For nonlinear systems this result is not true in general.

However, for first-order scalar equation

u′ = f(t, u)

we have

the existence of a bounded solution ⇐⇒ the existence of an ω-periodic solution

This result is usually referred as Massera’s theorem.



In the same paper it was proved

u′ = g(t, u, v),

v′ = h(t, u, v)

the existence of a bounded solution ⇐⇒ the existence of an ω-periodic solution

provided

1. every Cauchy problem is uniquely solvable

2. all solutions are global (right)

Remark. Condition 2 is essential and cannot be omitted.

Massera’s result from 1950 generalizes

N. Levinson,
Transformation theory of non-linear differential equations of the second
order.
Annals of Mathematics (2), 45 (1944), 723–737

Notation of “Dissipative”.
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u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω), (2)

sup
˘
|u(t)|+ |u′(t)| : t ≥ 0

¯
< +∞ (4)

Theorem C. Solvability of (1), (4) implies solvability of (1), (2) if

1. every Cauchy problem is uniquely solvable,

2. all solutions are (right) global.



u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω), (2)

sup
˘
|u(t)| : t ≥ 0

¯
< +∞ (5)

Theorem 4. Let the existence of lower and upper functions guarantees solvability
of (1), (2). Then solvability of (1), (5) guarantees solvability of (1), (2), as well.



u′′ = f(t, u) (1)

u(0) = u(ω), u′(0) = u′(ω) (2)

Corollary. Let one of the next inequalities holds on [0, ω]× R

f(t, x) sgn x ≥ −p0(t)|x| − q(t, |x|)

or
f(t, x) ≥ −p0(t)[x]+ − p(t)[x]− − q(t, |x|)

or
f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|),

where q ∈ Car
`
[0, ω]× R+; R

´
is sublinear and

−p0 ∈ Vω .

Then the existence of a bounded (right) solution of (1) implies the solvability of
(1), (2).



Example.

u′′ = −2
ˆ
u− sin t

˜3
− + 6

ˆ
u− sin t

˜1/3

+
− sin t (6)

f(t, x) ≤ 6 3
p
|x|+ 6“

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|)
”

1. There exist a bounded solution.

2. There exist a 2π-periodic solution.

3. Not every solution is global.

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.





if, for any p, g ∈ L
`
[0, ω]

´
with

a+(t) ≤ p(t) ≤ b+(t),

a−(t) ≤ g(t) ≤ b−(t),

the nontrivial solution of

u′′ + p(t)[u]+ − g(t)[u]− = 0,

u(0) = u(ω), u′(0) = u′(ω)

do not have zeros.



if the problem (1′), (2) has at least one solution u such that, for some t0 ∈ [0, ω[ ,

min
˘
α(t0), β(t0)

¯
≤ u(t0) ≤ max

˘
α(t0), β(t0)

¯
.



Definition. We say that a function γ ∈ C
`
[0, ω]

´
is a lower (upper) function of

(1), (2) if

1. γ ∈ AC
`
[0, ω]

´
and γ′ can be written in the form

γ′(t) = γ0(t) + γ1(t),

where γ0 ∈ AC
`
[0, ω]

´
and γ1; [0, ω] → R is nondecreasing (nonincreasing) and

γ′1(t) = 0 a.e. in [0, ω];

2. γ(0) = γ(ω), γ′(0) ≥ γ′(ω)
“
γ′(0) ≤ γ′(ω)

”
;

3. for a.e. t ∈ [0, ω]

γ′′(t) ≥ f(t, γ(t))
“
γ′′(t) ≤ f(t, γ(t))

”
.

I. Kiguradze, Some singular BVP for second order nonlinear ODE. Differential
Equations 4(1968), No. 10, 1753–1773.



lim
x→+∞

1

x

ωZ
0

q(t, x)dt = 0



Definition. We say that −p0 ∈ Vω if the equation

u′′ = −p0(t)u

is disconjugate on every interval of length ω, i.e., distance from two consecutive
zeros of each nontrivial solution is greater than ω.

m

Problem
u′′ = −p0(t)u ; u(a) = 0, u(a + ω) = 0

has only the trivial solution for any a ∈ [0, ω[ .

m

For any g ∈ L
`
[0, ω]

´
with

g(t) ≤ p0(t)

and any t̄ ∈ [0, ω], the problem

u′′ = −g(t)u ; u(t̄) = 0, u(t̄ + ω) = 0

has only the trivial solution.
⇑

p0(t)
≤
6≡

“ π

ω

”2
for t ∈ [0, ω] or

ωZ
0

p0(s)ds ≤
4

ω



this elegant condition was observed by J. Mawhin in

Remark on the preceding paper of Ahmad and Lazer on periodic solutions
Bolletino U.M.I. (6), 3-A (1984), 229–238

(f - nonincreasing and asymptotically linear)



I. Rach̊unková, S. Staněk, M. Tvrdý
Singularities and Laplacians in BVP for nonlinear ODE
In: Handbook of DE, ODE Vol. 3, 607–723, Elsevier, 2006.



J. L. Massera, The existence of periodic solutions of systems of differential
equations, Duke Math. J. 17 (1950), 457–475.

(with additional assumption: unique solvability of Cauchy problem)



Example.

u′′ = −2
ˆ
u− sin t

˜3
− + 6

ˆ
u− sin t

˜1/3

+
− sin t (6)

f(t, x) ≤ 6 3
p
|x|+ 6“

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|)
”

1. There exist a bounded solution.

u(t) = −
1

t + c
+ sin t, c ≥ 0

2. There exist a 2π-periodic solution.

3. Not every solution is global.

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.



Example.

u′′ = −2
ˆ
u− sin t

˜3
− + 6

ˆ
u− sin t

˜1/3

+
− sin t (6)

f(t, x) ≤ 6 3
p
|x|+ 6“

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|)
”

1. There exist a bounded solution.

2. There exist a 2π-periodic solution.

u(t) = sin t

3. Not every solution is global.

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.



Example.

u′′ = −2
ˆ
u− sin t

˜3
− + 6

ˆ
u− sin t

˜1/3

+
− sin t (6)

f(t, x) ≤ 6 3
p
|x|+ 6“

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|)
”

1. There exist a bounded solution.

2. There exist a 2π-periodic solution.

3. Not every solution is global.

u(t) = −
1

t− c
+ sin t, c > 0

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.



Example.

u′′ = −2
ˆ
u− sin t

˜3
− + 6

ˆ
u− sin t

˜1/3

+
− sin t (6)

f(t, x) ≤ 6 3
p
|x|+ 6“

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|)
”

1. There exist a bounded solution.

2. There exist a 2π-periodic solution.

3. Not every solution is global.

4. Not every global solution is bounded.

u(t) = (t + c)3 + sin t

5. Cauchy problem is not uniquely solvable.



Example.

u′′ = −2
ˆ
u− sin t

˜3
− + 6

ˆ
u− sin t

˜1/3

+
− sin t (6)

f(t, x) ≤ 6 3
p
|x|+ 6“

f(t, x) ≤ p0(t)[x]− + p(t)[x]+ + q(t, |x|)
”

1. There exist a bounded solution.

2. There exist a 2π-periodic solution.

3. Not every solution is global.

4. Not every global solution is bounded.

5. Cauchy problem is not uniquely solvable.

uc(t) =

(
sin t for t ∈ [0, c[

(t− c)3 + sin t for t ∈ [c, +∞[

are solutions of (6) satisfying u(0) = 0, u′(0) = 1


	Appendix

