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I ntroduction

In our talk, on the infinite interval | we consider the
nonlinear differential system

dx; :
EI: (t X0 %) (i=1...,n), (1)
where | =R, or | =R, f;:1" R"® R (i =1,...,n) are functions

satisfying the local Carathéodory conditions. Inthecase | = R,,

for the system (1) weinvestigate the boundary value problem
x(0)=c; (i=1...m), limsup|x(t)<+¥ (i=m+1...,n), (2)
t® +¥
and inthe case | = R —the boundary value problem
limsup|x (t] < +¥ (i =1...,m), limsup|x (t) <+¥ (i=m+1...,n). (3
t® - ¥ t® +¥
The theorems containing unimprovable sufficient conditions of
solvability and unique solvability of the problems (1), (2) and (1), (3) are
formulated in first part in our talk. Under these conditions, solutions of
the above-mentioned problems are, generally speaking, unstable in the
Ljapunov sense. Therefore there naturally arises the question on their
conditional stability in one or another sense. In the second part of the
talk there are given the notions of (m,n- m)-stability and asymptotic
(m,n- m)-stability of solutions of the system (1), which in a certain
sense make more precise the well-known definition of conditional
stability (see[1], [2]).

[1] L. Cesari, Asymptotic behavior and stability problems in
ordinary differential equations. Springer-Velag, Berlin-Gottingen
Heidelberg, 1959.

[2] E. A. Coddington, N. Levinson, Theory of ordinary differential
equations. McGraw-Hill Book Company, Inc., New York-Toronto-
London, 1955.



Moreover, the optimal conditions guaranteeing, respectively, the
(m,n- m)-stability and asymptotic (m,n- m)-stability of a trivial
solution of theproblems (1),(2) and (1), (3) are found.

Throughout the talk, the use will be made of the following notation:

R=]-¥+¥[, R =[0+¥] R =] ¥0];

R" isthe n-dimensional real Euclidian space;

x=(x;)", T R" isthe vector with components x; (i =1,...,n);

R (@) ={x= (4Ll R Eg...I%, Eg]:

d;, is Kronecker’s symbol;

X =(xi )« is the n n-marix with components x I R
(i,k=1,...,n);

r(X) isthe spectral radius of X;

Aqis the set of asymptotically stable, quasi-nonnegative n n-
matrices, i.e.H = (hy )\ -, T As ifand only if hy 2 Ofori® k and real
parts of eigenvaluesof H are negative;

Cioc(l) is the space of functions x:1 ® R, absolutely continuous

on every compact interval containingin I;
Lo (1) is the space of functions x: |1 ® R, Lebesgue integrable on

every compact interval containingin I;
L¥ (1) is the space of essentially bounded functions x: 1 ® R with
the norm
X =esssup{|x(t): tT 1};
Kioc(l ~ D), where D1 R", is the set of functions f:1" D® R,
satisfying the local Carathéodory conditions.



1. Existence and Uniqueness Theorems

o

o (tXg,ee %) (=1...,n), (1.2
x(0)=c¢ (i=1..,m), limsup|x(t)<+¥ (i=m+1..,n), (1.2
t® +¥
limsup|x (t) < +¥ (i =1...,m), limsup|x (t] < +¥ (i=m+1...,n) (1.3)
t®-¥ t® +¥

Everywhere below, when we deal with the problems (1.1), (1.2) and
(1.1), (1.3), we assume, respectively, that

i1 KioelR ™ R") (i=1...n)and f;1 Kios[R° R") (i =1....n).
By a solution of the system (1.1), defined on the interva |, is

understood the vector function (x ), :1 ® R" with components

% 1 Cioe(l) (i=1...,n), which aimost everywhere on | satisfies this
system.

A solution (x; )i, of the system (1.1), defined on R, (defined on R)

and satisfying the boundary conditions (1.2) (the boundary conditions
(1.3)), is called a solution of the problem (1.1), (1.2) (of the problem
(1.1), (1.3)).

The problems (1.1),(1.2) and (1.1),(1.3) were earlier considered in

[3] I. Kiguradze, Boundary value problems for systems of ordinary
differential equations. (Russian) Itogi Nauki Tekh., Ser. Sovrem.
Probl. Mat., Novejshie Dostizh. 30 (1987), 3-103; English trand.: J. Sov.
Math. 43 (1988), No. 2, 2259-2339.

Unlike theorems proved in [3] the results of our talk cover the cases
in which the right-hand sides of the system (1.1) are functions rapidly
increasing with respect to the phase variables.



dx;

E=fi(t,x1,...,xn) (i=1...,n), (1.2
x(0)=¢ (i=1....m), limsup|x(t)<+¥ (i=m+1..,n). (1.2
t® +¥

Theorem 1.1. Let there exist nonnegative functions
g1 IC,OC(R+' R”) (i=1...,n), hi L¥(R.) and a constant matrix
H = (hy ), such that

HT A, (1.4)

and ontheset R, © R" theinequalities
&y 0,
sifi(t,xg,.... %, )59n(x ) £ g; (t, X, X, ) 9 hik|xk|+h(t)é(l =1,...,n)(1.5)
=1

where s;=---=s,=1 and s =---=5,=-1, are satisfied.
Then for arbitrary ¢;T R (i =1,...,m) the problem (1.1), (1.2) has
at least one solution, and every solution of that problem is
bounded on R,.

It is known (see |.T. Kiguradze, Initial and boundary value
problems for systems of ordinary differential equations, |. (Russian)
Metsniereba, Thilisi, 1997, Theorem 1.18) that the quasi-nonnegative

matrix H = (hy )", -, satisfies the condition (1.4) iff

hi <0 (i=1...,n) and r(Hy)<1, (1.6)
where Hg = gl diy |E|
4 k=1

Thus the condition (1.4) in Theorem 1.1 can be replaced by the
equivalent condition (1.6).

Note that the condition (1.4) both in Theorem 1.1 and in other
theorems below is unimprovable and it cannot be weakened. In
particular, the condition (1.4) cannot be replaced by the condition

hi <0 (i=1...,n), r(Hy)£1L (1.6')

5



Indeed, consider the problem

Hz(Yharr)i-1 (1=12) (1.7
x(0)=c,, limsup|x,(t)<+¥. (1.8)
t® +¥

For this problem all the conditions of Theorem 1.1 are hold
except (1.4), instead of which the condition (1.6’) holds, since

h=F1 10

1 -1y

Nevertheless the problem (1.7),(1.8) does not have asolution
since general solution of the system (1.7) hasthe form

2 2
X () =a;- (@ +ay)t- % x2(t):a2+(a1+a2+1)t+t?,

wherea,; and a, are arbitrary real numbers.



d_ti: (t,xq,...,%,) (i=1...,n), (1.2)
x(0)=¢ (i=1....m), limsup|x(t)<+¥ (i=m+1..,n). (1.2
t® +¥

Corollary 1.1. Let the conditions of Theorem 1.1 be fulfilled
and

+épi (s)ds=+¥ (i=m+1...,n), (1.9
where :
pi(t):inf{gi(t1xl"°"xn):(Xk)EqT Rn}- (1.10

Then every solution of the problem (1.1), (1.2) admits the
estimate

- )
élxk(t)|£rae§|ck|+||h||L¥% for tT R,, (1.12)
k=1 k=1 [4/]

where r isa positive constant, depending only on H.

From the estimates (1.11) it, in particular, follows that if the
conditions of Corollary 1.1 are fulfilled, then an arbitrary solution of the
system (1.1), satisfying the conditions

%(0)=¢ (i=1...m) ad a|Xk |>f§a|ck|+||h||L¥

Is either unbounded or blowing-up.

Corollary 1.2. Let the conditions of Theorem 1.1 be fulfilled

and

+¥

lim hit)=0, opi(s)ds=+¢ (i=1...,n), (1.12)
{® +¥ ;

where each p; isthe function given by the equality (1.10). Then
an arbitrary solution of the problem (1.1), (1.2) satisfies the
equalities

lim x(t)=0 (i=1...,n). (113

t® +¥



dx;

E=fi(t,x1 ..... x,) (i=1...,n), (1.1
x0)=¢ (i=21...,m), limsuplx (t)<+¥ (i=m+1...,n), (1.2
t® +¥
+é‘é)pi(s)ds:+¥ (i=m+1,...,n), (1.9
0
8 |xk(t)|£r§eéln o +Hy 2 for ti R, (111)
k=1 k=1 2
lim h(t)=0, +z‘é)pi(s)ds=+¥ (i=1...,n), (1.12)
1® +¥ 5
lim xt)=0 (i=1...,n). (113

Let us formulate the theorem on unique solvability of the
problem (1.1), (1.2).

Theorem 1.2. Let thee exist nonnegative functions
Pl Lee(R:) (i=12...,n), hi L¥(R,), and a constant matrix
H =(hy )T A such that, respectively, on R, " R" and R, the

conditions
S (F(t X Xn)- Tty Yn))son(x - vi) £
n
£ pi(t)a hilx - el (=1...,n), (1.14)
k=1
£, (t,0,...,0) £ h(t) p; (t) (i=1...,n), (1.15)
where s;=---=s,,=1, s =-=s,=-1, are satisfied. If,

moreover, the equalities (1.9) (the equalities (1.12)) hold, then
for arbitrary ¢; 1 R (i=1,...,m) (1.1),(1.2) hasaunique solution
satisfying the condition (1.11) (the conditions(1.11) and (1.13)),
where r isa positive constant, depending only on H .



d—ti: (t,xgpe.0%y) (i=1...,n), (1.1)
Iirg_s:éjp|xi(t)|<+¥ (i=1...,m), Iigsgp|xi(t)|<+¥ (i=m+1,...,n) (1.3
Si fi(t 3 %) san(x) £ 6i (L%, ga i + h(t) ( 1...,n).(L5)

Theorem 1.3. Let there exist nonnegative functions
gil IC|OC(R' R”) (i=1,...,n) and a constant  matrix
H =(hy ) T As suchthat onthe set R” R" the inequalities (1.5) are
satisfied, where s; =---=s ,=1 and S 41 =-*=S, =-1. Then the
problem (1.1), (1.3) has at least one solution, and every solution of that
problemisbounded on R.

Corollary 1.3. Let the conditions of Theorem 1.3 be fulfilled and

0 +¥
pi(s)ds=+¥ (i=1...,m), op(s)ds=+¥(i=m+1...,n), (1.16)
- ¥ 0

where each p; is the function given by the equality (1.10). Then every
solution of the problem (1.1), (1.3) admits the estimates

X (t)Er|h]x for tT R (i=1...,n), (1.17)
where r is a positive constant, depending only on H . If, however,

instead of (1.16) there are satisfied the conditions

0 ¥

Kl@ir_ghi( )—tgrr;éh (t)=o, _Qpi(s)ds:g‘)pi(s)ds:+¥ (i=1...,n),1.18)

then every solution of the problem (1.1), (1.3) along with (1.17) satisfies
the conditions

lim x (t)= lim x(t)=0 (i=4...,n). (1.19

t®-¥ t® +¥



The following theorem concerns to unique solvability of the
problem (1.1),(1.3).

?: fi(t,%,....x,) (i=1...,n), (1.1)
limsup|x (t) <+¥ (i=21...,m), limsup|x (t) <+¥ (i=m+1,...,n) (1.3)
t®-¥ t® +¥

Si(f{ta %)= f v yn))san(x - i) £
£p (t)én. % - Yl (=1....n), (1.14)
k=1
|f,(t,0,....,0) £h(t)p; (t) (i=1...,n), (1.15)
0 +y

odi (s)ds:+¥ (i :l...,m), OP; (s)ds: +¥ (i = m+L...,n), (1.16)
- ¥ 0

% () Erfhly for tT R (i

0 ¥

im h(t):tgr& h(t)=0, _Qpi (s)ds:(()‘)pi(s)ds: +¥ (i=1...,n) (1.18)

lim x (t):tgr& x(t)=0 (i=1...,n). (1.19)

1,...,n), (1.17)

Theorem 1.4. Let there exist nonnegative functions
BT Loe(R) (i=1...,n), hi L¥(R) and a constant matrix
H =(hy )= T As such that, respectively, on R” R" and R the

conditions (1.14) and (1.15), where s;=--=s,=1,
Smq =-"=S,=-1, are satisfied. If, moreover, the equalities
(1.16) (the equalities (1.18)) are fulfilled, then the problem
(1.1), (1.3) has a unique solution satisfying the condition (1.17)
(the conditions (1.17) and (1.19), where r is a poditive
constant, depending only on H.

10



2. Theoremson the Conditional Stability

d ,
%_ fi(t,x,....x,) (i=1...,n). (2.1)

L et us consider first the case where for some g >0,
fiT IC|OC(R+, Rn(g)) (i ::L---’n)’
and the system (2.1) on R, has a trivial solution, i.e. f;(t,0,...,0)° 0
(i=1...,n).
A classical result on the conditional stability of system (2.1)
concerns the case where this system has the form

d .
d‘t = & Puke FG X Xy)  (=1e01), 2.19.
i=1

Here P =(py)i'k=1 is @ constant real matrix, G :R,”" R, ® R are

continuous functions having continuous partial derivatives with respect
to phase variables such that

lim ﬂqi(t’fﬁl"“”(”):o(i,j:J,...,n)
&1%/® 0 X]
k=1

uniformly with respectto t1 R, . If, in addition, the matrix P has m
eigenvalueswith negative real parts and n- m eigenvalues with positive
rea parts, then for any al R, there exists an m-dimensional manifold

DI R™ containing the origin such that an arbitrary solution X =(X;){%;
of the system (2.1, satisfying the condition x(a)T D, vanishes at
infinity, i.e.

t(I@irJrrgéxi(t):O (i=1...,n)

11



(see[2], Theorem 4.1).

[2] E. A. Coddington, N. Levinson, Theory of ordinary differential
equations. McGraw-Hill Book Company, Inc., New York-Toronto-
London, 1955.

Let us clarify that in the classical case the conditional stability is
understood as the existence of a manifold D of the above-mentioned
kind.

This definition is applicable only to the case where for the
considered differential system the Cauchy problem is uniquely solvable
for any initial data.

The definitions of conditional stability, proposed by us, are
applicable also to the case where for the system (2.1) the unigueness of a
solution of the Cauchy problem isviolated.

12



—L = (t,%,....x,)  (i=1,...,n). (2.1)

For the system (2.1) we have to consider the following boundary
value problems
x(@=c (=1...m), x(b)=¢ (=m+1...,n) (2.2

x@=c (=1...m), limsup|x()<+¥ (i=m+1...,n), (2.3
(® +¥

whereml {1,...,n- 1}.

Definition 2.1. A trivia solution of the system @.1) is said to be
(m,n- m)-stableon R, if for any el ]0,g[ there exists d 1 ]0,e[ such
that:

(i) for arbitrary al R,, bl Ja,+¥[,and ¢;T [- d,d] (i =1,...,n), the
problem (2.1), (2.2) has at least one solution, and every solution of that
problemon [a,b] satisfiestheinequality

§1|xi (t)<e; (2.4)
i=

(ii) for arhitrary al R,, and ¢ 1 [-d,d] (i=1...,m), the problem
(2.1), (2.3) has at least one solution, and every solution of that problem
satisfies on [a,+¥| theinequality (2.4).

Definition 2.2. A trivial solution of the system @.1) is said to be
asymptotically (m,n- m)-stableon R, if itis (m,n- m)-stable on R,
and there exists dgi |0,g] such that for arbitrtary al R,, and
¢ 1 [-dg.dg] (i =1...,m) every solution of the problem (2.1), (2.3)

vanishesat + ¥ .

13



—L = (t,%,....x,)  (i=1,...,n). (2.1)

Theorem 2.1. Let on R, * R"(g) the inequalities

n
i fi(t. X, X0 )son (X ) £ 05 (6., X0 )& e[| (i =21...,n) (2.5
k=1
be fulfilled, where s;=--=8y,=1, Spy=-=
(hi )t T A, and giTKIoc(R+,Rn(g)) (i=1....n) are

nonnegative functions. If, moreover, the conditions

wn
>
1
1
P

on(S)ds=¥ (=me1..n), 29
0
where
pi(t):inf{gi(t,x1 ..... Xn ) (X Jpgg 1 R”} , (2.7

are fulfilled, then a trivial solution of the system (2.1) is

(m,n- m)-stable on R,. If, however, instead of (2.6) we have

+§)pi (s)ds=+¥ (i=1..,n), (2.9
0

then a trivial solution of the system (2.1) is asymptotically
(m,n- m)-stableon R, .

14



d—{zﬁ(t,& ..... x,) (=1...,n). (2.1)
op(s)ds=+% (=me1..n). (2.6)
0

on(ds = (=1..n). 8
0

fi(t, X, %) =-pt)x (i=1...,m),

fi(t, X, %) = pit)x  (i=m+1,...,n),
and p 1 L (R.) (i=1...,n) are nonnegative functions. Then for
the system (2.1) to be (m,n- m)-stable (asymptoticaly (m,n- m)-
stable), it is necessary and sufficient that the conditions (2.6)
(the conditions (2.8)) be fulfilled. Consequently, conditions

(2.6), (conditions (28)) in Theorem 2.1 are optimal, and they
cannot be weakened.

15



Consider thelinear differential system

dx. D .
% =a pk(t) (=1....n) (2:9)
[

with coefficients py T Lc(R:) (i,k=1,...,n). We call this system
(m,n- m)-stable (asymptotically (m,n- m)-stable) on R, if its
trivial solution is (m,n- m)-stable (asymptotically (m,n- m)-
stable) on R, .

From Theorem 2.1 it follows

Corollary 2.1.Let on R, the conditions
pi(t)=siipt), |pw(t)Ehem) (Lk=1...n; itk) (210
be satisfied, where s, =---=s,=1, s =--=s,=-1, and

(hi )e T As. If, moreover, the equalities

+2‘;|oi(s)ds=+>a€ (i=m+1....,n) (2.6)
0
(the equalities
+épi(3)d3:+¥ (i=1...,n) (2.8 )
0

are fulfilled, then the system (2.9) is (mn- m)-stable
(asymptotically (m,n- m)-stable) on R, .

It can be easily seen that under the conditions of Corollary
2.1 the bounded solutions of the system (2.9) form an m-
dimensional linear space. Moreover, if the equalities (2.8) are
fulfilled, then all solutions from the above mentioned space are
vanishing at +¥ .

16



%izfi(t,xl,...,xn) (i=1....n). (2.1)

L et us now consider the case, where for some g >0,

i1 Kiee[R” R'@)), f(£0....,00° 0 (i =1.....n).
In this case, for the system (2.1) along with the problems (2.2) and (2.3)
we have to consider also the problem

x(a)=c.m (i=m+1...,n), limsup|x(t)<+¥ (i=1...,m).(2.12)
® - ¥

Definition 2.3. A trivia solution of the system @.1) is said to be
(m,n- m)-stable on R if for any el ]0,g| there exists d 1 ]0,e[ such
that:

(i) for arbitrary al R, bl Ja,+¥[, ¢ 1 [-d,d] (i=1...,n), the
problem (2.1), (2.2) has at least one solution, and every solution of that
problem satisfies on [a,b] the inequality (2.4);

(ii) for arbitrary al R and ¢ 1 [- d,d] (i=1...,m) (for arbitrary
al R and ¢ 1 [-d,d] (i=1...,n- m)), the problem @.1), (2.3) (the
problem (2.1), (2.11)) has a least one solution, and every solution of
that problem satisfieson [a,+¥[ (on |- ¥,a]) the inequality (2.4).

Definition 2.4. A trivia solution of the system @.1) is said to be
asymptotically (m,n- m)-stable on Rif it is (m,n- m)-stableon R, and
there exists do1 ]0,g] such that for arbitrary al R, ¢ 1 [- dg,dg]
(i=1...,m) (for abitrary al R and ¢ 1 [- dg,dg] (i =1...,n- m))
every solution of the problem (2.1), (2.3) (of the problem 2.1), (2.11))
satisfies the equalities

t(I@ir;rr;é x{t)=0 (i=1...,n), t(l@ir_r; X (t)=0 (i:],...,n)g.

17



—L = (t,%,....x,)  (i=1,...,n). (2.1)

pi(t):inf{gi(t,xl,...,xn):(xk)Ele R”} (i=1...,n). (2.7)
Theorem 2.2. Let on R" R"(g) the inequalities (2.5 be
satisfied, where s; =---=s , =1, S,y =--=Sp =-1, (hik)irjkle ,

A, and giTIqOC(R' R”(g)) (i=1...,n) are nonnegative

functions. If, moreover, the conditions

0 +¥
op(s)ds=+¥ (i=1...m), pi(s)ds=+¥ (=m+1...n), (212)
- ¥ 0

are fulfilled, where each p; isthe function given by the equality
(2.7), then a trivial solution of the system (2.1) is (m,n- m)-

stable on R. If, however, instead of (2.12) we have
0 +¥

opi (s)ds= gpi(s)ds=+¥ (i =1,....n), (2.13
- ¥ 0

then a trivial solution of the system (2.1) is asymptotically
(m,n- m)-stableon R.

If the righthand sides of the system (2.1) are of the form
fi(t, X Xy)=-p ()% (i=1...,m), fi(t,xg,.... %) = pi (t)x
(i=m+1...,n) where p;T Lo(R) (i=1...,n) are nonnegative
functions, then for atrivial solution of the system (2.1) to be (m,n- m)-
stable (asymptotically (m,n- m)-stable) on R, it is necessary and
sufficient that the conditions (2.12) (the conditions (2.13)) be fulfilled.

Consequently, the conditions of Theorem 2.2 are in a certain sense
unimprovable.

18



dx;. & .
D £ e (=10 29
t k=

cc)‘JIOi(~°»)0|S=+¥ (i=1..m) +éoi(s)ds=+¥ i=m+1..,n). (2.12)
Y, 0
(c)‘)pi(S)ds:+épi(s)ds=+¥ (i=1....n). (2.13)
Vi 0

At the end, consider the linear differential system (29) with
coefficients py T Lioc(R) (i,k=1,...,n).
From Theorem 2.2 it follows

Corollary 2.2. Let on R the conditions

pi(t)=sihip(t), |pct)Ehp(®) (k=1..,n; itk) (210)
be satisfied, where s;=---=s,=1, sy=--=s,=-1 and
(hi )t T As. If, moreover, the equalities (2.12) (the equalities
(2.13)) are fulfilled, then the system (2.9) is (m n- m)-stable
(asymptotically (m n- m)-stable) on R.

It is clear that under the conditions of Corollary 2.2 the
system (2.9) has no nontrivial bounded solution on R, and a set
of bounded on R, (bounded on R ) solutions of that system
forms an m-dimensional (an (n- m)-dimensional) linear space.
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