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Sturm-Liouville Problem on Unbounded Interval Introduction

Functional setting
Let p > 1 be a real number and let ϕ : R → R be defined as
ϕ(s) = |s|p−2s for s 6= 0, ϕ(0) = 0. Let r = r(t), c = c(t) be continuous
and positive functions on [0,∞). For x = x(t) defined on [0,∞) denote
x(∞) := limt→∞ x(t). We study the eigenvalue problem{

(r(t)ϕ(x′(t)))′ + λc(t)ϕ(x(t)) = 0, t ≥ 0,

x′(0) = 0, x(∞) = 0,
(1)

where λ ∈ R is a spectral parameter.

A function x ∈ W 1,p
∞ (r) (the weighted Sobolev space being defined

later) is called a weak solution of (1) if the integral identity∫ ∞

0
r(t)ϕ(x′(t))y′(t)dt = λ

∫ ∞

0
c(t)ϕ(x(t))y(t)dt (2)

holds for all y ∈ W 1,p
∞ (r) (with both integrals being finite).
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Sturm-Liouville Problem on Unbounded Interval Introduction

Eigenvalues, eigenfunctions
The parameter λ is called an eigenvalue of (1) if this problem has a
nontrivial (i.e. nonzero) weak solution (called an eigenfunction of (1)).

(S.L.) Property for (1):

"The set of all eigenvalues of (1) forms an increasing sequence
{λn}∞n=1 such that λ1 > 0 and

lim
n→∞

λn = ∞.

Every eigenvalue λn, n = 1, 2, . . . , is simple in the sense that there
exists a unique normalized eigenfunction xλn associated with λn.
Moreover, the eigenfunction xλn has precisely n− 1 zeros in (0,∞). In
particular, xλ1 does not change sign in (0,∞). For n ≥ 3, between two
consecutive zeros of xλn−1 in (0,∞) there is exactly one zero of xλn ."
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Sturm-Liouville Problem on Unbounded Interval Introduction

Condition on weights

Our main result depends on the following condition on the weight
functions (coefficients in the equation) r and c:

lim
t→∞

( ∫ t

0
c(τ)dτ

)1/p( ∫ ∞

t

r1−p′
(τ)dτ

)1/p′

= 0. (3)
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Sturm-Liouville Problem on Unbounded Interval Introduction

Example

Let p = 2, r ≡ c ≡ 1. Then evidently there is no (weak) solution of

x′′(t) + λx(t) = 0, x′(0) = 0, x(∞) = 0

for any λ ∈ R.

Note that in this case we have( ∫ t

0
c(τ)dτ

)1/p( ∫ ∞

t
r1−p′(τ)dτ

)1/p′

≡ ∞, t ∈ (0,∞).
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Sturm-Liouville Problem on Unbounded Interval Introduction

Example

Let p = 2, r(t) = (t + 1)2, c(t) ≡ 1. Then we have( ∫ t

0
c(τ)dτ

)1/p(∫ ∞

t
r1−p′(τ)dτ

)1/p′

=
(∫ t

0
dτ

)1/2(∫ ∞

t

dτ

(1 + τ)2
)1/2

=
( t

1 + t

)1/2
→ 1

for t →∞.

The boundary value problem

((t + 1)2x′(t))′ + λx(t) = 0, x′(0) = 0, x(∞) = 0 (4)

has no eigenvalue.
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Sturm-Liouville Problem on Unbounded Interval Introduction

Remark

The foregoing examples indicate that if the condition (3) is violated,
then the (S.L.) Property for (1) need not be satisfied.
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Sturm-Liouville Problem on Unbounded Interval Functional setting

Weighted spaces

Let Lp(c) denote the weighted Lebesgue space of all functions
x = x(t) defined on (0,∞), for which

‖x‖p;c :=
( ∫ ∞

0
c(t)|x(t)|pdt

)1/p

is finite. Then Lp(c) equipped with the norm ‖ · ‖p;c is a uniformly
convex Banach space.

Let W 1,p
∞ (r) be the set of all absolutely continuous functions x = x(t)

defined on [0,∞) such that x(∞) = 0 and

‖x‖1,p;r :=
( ∫ ∞

0
r(t)|x′(t)|pdt

)1/p

is finite. Then W 1,p
∞ (r) equipped with the norm ‖ · ‖1,p;r is a uniformly

convex Banach space.
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Sturm-Liouville Problem on Unbounded Interval Functional setting

Weak solution

A function x ∈ W 1,p
∞ (r) is called a weak solution of (1) if the integral

identity ∫ ∞

0
r(t)ϕ(x′(t))y′(t)dt = λ

∫ ∞

0
c(t)ϕ(x(t))y(t)dt (2)

holds for all y ∈ W 1,p
∞ (r) (with both integrals being finite).

Let us note that if x ∈ W 1,p
∞ (r) is a weak solution of (1), then

rϕ(x′) ∈ C1[0,∞), the equation in (1) is satisfied at every point and
x′(0) = x(∞) = 0.

The reason for considering weak solutions consists in reformulating (1)
as an abstract nonlinear eigenvalue problem and finding the
eigenvalues in a "constructive way" employing the tools of nonlinear
functional analysis.
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Sturm-Liouville Problem on Unbounded Interval Functional setting

Compact embedding

In order to use compactness arguments (associated with the
Palais-Smale condition) we need the compact embedding:

W 1,p
∞ (r) ↪→↪→ Lp(c). (5)

This compactness result holds if and only if condition (3) is satisfied. It
follows e.g. from the results collected in the book

[1] B. Opic and A. Kufner
Hardy-Type Inequalities,
Pitman Research Notes in Mathematics Series 279, Longman Scientific and Technical,
Harlow 1990.
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Sturm-Liouville Problem on Unbounded Interval Main result

Theorem

The condition (3) is satisfied if and only if the (S.L.)
Property for (1) holds.
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Sturm-Liouville Problem on Unbounded Interval Main result

Tools

Variational characterization of eigenvalues.

Oscillatory criteria for half-linear equations.

Properties of the initial-value problem for half-linear
equation.
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Sturm-Liouville Problem on Unbounded Interval Variational approach

Principal eigenvalue

Having the compact embedding (5) available, we can apply the
Lagrange multiplier method to get the following assertion:

Let us assume (3). Then (1) has the least eigenvalue λ1 > 0 which
can be characterized as follows:

λ1 = min

∫∞
0 r(t)|x′(t)|pdt∫∞
0 c(t)|x(t)|pdt

, (7)

where the miminum is taken over all x ∈ W 1,p
∞ (r), x 6= 0.
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Sturm-Liouville Problem on Unbounded Interval Variational approach

Higher eigenvalues

Let S := {x ∈ W 1,p
∞ (r) : ‖x‖p;c = 1}. Let Sk be the unit sphere in Rk.

For k ∈ N define a family of sets Fk := {A ⊂ S : A = −A,A = h(Sk)
with h a continuous odd mapping from Rk into S}.

Let us consider the functional

I(x) := ‖x‖p
1,p;r.

The compact embedding (5) allows to prove that for any k ∈ N,

λk = min
A∈Fk

max
x∈A

I(x) (8)

are eigenvalues of (1). The interested listener is referred to
[2] P. Drábek and S.B. Robinson
Resonance problems for the p-Laplacian,
Journal of Functional Analysis 169 (1999), 189-200.

for the proof which can be literally adapted in our situation.
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Sturm-Liouville Problem on Unbounded Interval Variational approach

Proposition

Let (3) be satisfied. The sequence {λk}∞k=1 defined by (8) forms the
sequence of eigenvalues of (1) and

lim
n→∞

λn = ∞.

Warning!

We do not know that this is the entire set of all eigenvalues yet!!! It
remains to show that the sequence {λk}∞k=1 exhausts the set of all
eigenvalues of (1).

To prove this fact is made possible by using purely ODE techniques.
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Sturm-Liouville Problem on Unbounded Interval The initial value problem

Existence and uniqueness

Let t0 ∈ [0,∞), A,B ∈ R. Consider the initial value problem{
(r(t)ϕ(x′(t)))′ + λc(t)ϕ(x(t)) = 0, t > t0,

x(t0) = A, x′(t0) = B.
(9)

Existence, uniqueness, global extensibility of the solution up to ∞
follows from

[3] A. Elbert
A half-linear second order differential equation,
Colloq. Math. Soc. János Bolyai 30 (1979), 153-180.
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Sturm-Liouville Problem on Unbounded Interval The initial value problem

Disconjugacy and comparison of zeros

In order to compare zeros of different eigenfunctions we use the
disconjugacy criteria for half-linear equations:

[4] O. Došlý
Oscillation criteria for half-linear second order differential equation,
Hiroshima J. Math. 28 (1998), 507-521.
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Sturm-Liouville Problem on Unbounded Interval The initial value problem

Oscillatory criteria

Došlý [4]:

Let

lim sup
t→∞

( ∫ ∞

t
r1−p′(τ)dτ

)p−1( ∫ t

0
c(τ)dτ

)
<

(p− 1)p−1

λpp
.

Then the equation in (9) is non oscillatory.

Let

lim inf
t→∞

( ∫ ∞

t
r1−p′(τ)dτ

)p−1( ∫ t

0
c(τ)dτ

)
>

(p− 1)p−1

λpp
.

Then the equation in (9) is oscillatory.
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Sturm-Liouville Problem on Unbounded Interval The initial value problem

Corollary

Let us assume (3). Then the equation in (9) is nonoscillatory for any
λ ∈ R. Let us assume that (3) does not hold, i.e., there is a sequence
tn →∞ (as n →∞) such that

lim inf
tn→∞

( ∫ tn

0
c(τ)dτ

)1/p( ∫ ∞

tn

r1−p′(τ)dτ
)1/p′

> 0.

Then there exists λ0 > 0 such that the equation in (9) is oscillatory
provided λ ≥ λ0.
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Sturm-Liouville Problem on Unbounded Interval Main result

Necessity of (3)

Assume the (S.L.) Property for (1). Then the condition
(3) must hold.

Idea of the proof:

Assume that (3) is violated. Then according to the assertion above
there exists λ0 > 0 such that the equation in (9) is oscillatory provided
λ ≥ λ0. But then taking the eigenvalue λn ≥ λ0 the corresponding
eigenfunction does not vanish on [a, b] with a and b large enough. This
would imply that (9) is disconjugate on [a, b] which contradicts its
oscillatory behavior.
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Sufficiency of (3)

Assume (3). Then the (S.L.) Property for (1) must
hold.

Idea of the proof:

With the sequence of "variational eigenvalues" {λn}∞n=1 and
corresponding eigenfunctions xλn in hands we employ comparison,
disconjugacy and oscillatory criteria and proceed to show that besides
of xλn there are no other eigenfunctions of (1). The sequence {λn}∞n=1

thus exhausts the set of all eigenvalues of (1).
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Thank you very much for your attention
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