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p – Laplacian Equations

d

dt
φp(u

′(t)) =
d

dt
(|u′(t)|p−2u′(t)) = f (t, u(t), u′(t)) , t ∈ [0,T ].

for some p > 1.



Monotone
Iterative

Techniques
for

Discontinuous
Functional
Impulsive
Equations

Alberto
Cabada, Jan

Tomeček

Preliminaries

Carathéodory
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φ – Laplacian Equations

d

dt
φ(u′(t)) = f (t, u(t), u′(t)) , t ∈ [0,T ].

where φ is an increasing homeomorphism from R onto R.

C. Bereanu, G. Bojnár, J. A. Cid, C. De Coster, P. Drabek, M.
Garćıa – Huidobro, P. Habets, P. Jebelean, A. Lomtatidze, R.
López-Pouso, R. Manásevich, C. Marcelli, J. Mawhin, F.
Minhós, D. O’Regan, V. Polášek I. Rachunková, F. Sadyrbaev,
S. Staněk, J. Tomeček, M. Tvrdý, I. Yermachenko, F. Zanolin.
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López-Pouso, R. Manásevich, C. Marcelli, J. Mawhin, F.
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Impulsive Equations

This kind of problems study physical phenomena in which the
solutions of the considered problems present an immediate
change on its conditions. Such process induces jumps in the
value of the function or in its derivatives.

V. Lakshmikantham, D. D. Bainov, P. S. Simeonov,
Theory of impulsive differential equations. World
Scientific, Singapore, 1989.
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Lower and Upper Solutions

This method allow us to ensure the existence of a solution of
the considered problem lying between the lower and the upper
solutions, i. e., we have information about the existence and
location of the solutions.

G. S. Ladde, V. Lakshmikantham, A. S. Vatsala,
Monotone iterative techniques for nonlinear differential
equations, Pitman, Boston M.A. 1985.

C. De Coster, P. Habets, Two – point boundary value
problems. Lower and upper solutions. Mathematics in
Science and Engineering, 205, Elsevier, Amsterdam,
2006.
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case
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Considered Problem

Let p ∈ N be fixed, and P = {t1, . . . , tp},

with

0 = t0 < t1 < · · · < tp < tp+1 = T

We study the nonlinear impulsive boundary value problem (P1)

(φ(u′(t)))′ = f (t, u(t), u′(t)) for a. e. t ∈ [0,T ]\P,

g1(u(0), u(T )) = 0,
g2(u(0), u(T ), u′(0), u′(T ), u) = 0,

}

Ik(u(tk), u(t+
k )) = 0,

Mk(u(tk), u(t+
k ), u′(tk), u′(t+

k ), u) = 0,

}
for k = 1, . . . , p.
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case
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These boundary conditions include Dirichlet conditions

g1(x , y) = x , g2(x , y , z ,w , u) = y

as well as the periodic ones

g1(x , y) = y − x , g2(x , y , z ,w , u) = z − w

and a great variety of non local boundary conditions such as

max
t∈[0,T ]

{u(t)} = c , u(0) = u(T )

∫ T

0
u(s)ds = c , u(T ) = d
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case
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Carathéodory Case
Considered Problem

These boundary conditions include Dirichlet conditions

g1(x , y) = x , g2(x , y , z ,w , u) = y

as well as the periodic ones

g1(x , y) = y − x , g2(x , y , z ,w , u) = z − w

and a great variety of non local boundary conditions such as

max
t∈[0,T ]

{u(t)} = c , u(0) = u(T )

∫ T

0
u(s)ds = c , u(T ) = d



Monotone
Iterative

Techniques
for

Discontinuous
Functional
Impulsive
Equations

Alberto
Cabada, Jan

Tomeček
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Preliminaries

Carathéodory
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Similar comments are valid for the impulsive conditions.

It is important to note that by defining

Ik(x , y) = x − y

and
Mk(x , y , z ,w , u) = w − z

we give existence results for the non impulsive problem.
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Preliminaries

Carathéodory
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Carathéodory Case
Considered Problem

In order to define the concept of solution we denote

J0 = [0, t1] and Jk = (tk , tk+1] for all k = 1, . . . , p.

and define the following sets:

Cm
P = {u : [0,T ] → R : for all k = 0, . . . , p, u ∈ Cm(Jk),

there exist u(l)(t+
k ), k = 1, . . . , p u(l)(t−k ) ≡ u(l)(tk),

k = 1, . . . , p + 1; l = 0, . . . ,m}

and

W m,q
P = {u : [0,T ] → R : u|Jk

∈ W m,q(Jk), k = 0, . . . , p}

for m ∈ N ∪ {0} and 1 ≤ q ≤ ∞.
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Carathéodory Case
Considered Problem

In order to define the concept of solution we denote

J0 = [0, t1] and Jk = (tk , tk+1] for all k = 1, . . . , p.

and define the following sets:

Cm
P = {u : [0,T ] → R : for all k = 0, . . . , p, u ∈ Cm(Jk),

there exist u(l)(t+
k ), k = 1, . . . , p u(l)(t−k ) ≡ u(l)(tk),

k = 1, . . . , p + 1; l = 0, . . . ,m}

and

W m,q
P = {u : [0,T ] → R : u|Jk

∈ W m,q(Jk), k = 0, . . . , p}

for m ∈ N ∪ {0} and 1 ≤ q ≤ ∞.



Monotone
Iterative

Techniques
for

Discontinuous
Functional
Impulsive
Equations

Alberto
Cabada, Jan

Tomeček
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Definition A function α ∈ W 1,∞
P is called a lower solution of

the problem (P1) if for each t0 ∈ (0,T ) \ P either

D−α(t0) < D+α(t0)

or there exists an open interval I0 ⊂ (0,T ) \ P such that
t0 ∈ I0, φ ◦ α′ ∈ W 1,1(I0) and

(φ(α′(t)))′ ≥ f (t, α(t), α′(t)) for a. e. t ∈ I0.
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case
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Carathéodory Case
Definitions and Hypotheses

For all k = 1, . . . , p, functions Ik(α(tk), ·) are one–to–one and
there exist α′(t−k ) and α′(t+

k ) satisfying

Ik(α(tk), α(t+
k )) = 0 ≤ Mk(α(tk), α(t+

k ), α′(t−k ), α′(t+
k ), α).

Moreover, g1(·, α(T )) is one–to–one and there exist α′(0+)
and α′(T−) satisfying

g1(α(0), α(T )) = 0 ≤ g2(α(0), α(T ), α′(0+), α′(T−), α).



Monotone
Iterative

Techniques
for

Discontinuous
Functional
Impulsive
Equations

Alberto
Cabada, Jan

Tomeček
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P) satisfy some suitable

monotonicity properties

(H3) g1 ∈ C 0(R2) and g2 ∈ C 0(R4 × C 1
P) satisfy some suitable

monotonicity properties

(H4) φ : R → R is a continuous and strictly increasing function.

(H5) There exist α ≤ β lower and upper solutions of (P1)

(H6) f satisfies a suitable Nagumo’s condition.
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Theorem 1 Assume that hypotheses (H1) – (H6) hold.

Then there exists at least one solution u ∈ [α, β] of the
problem (P1)
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Lemma 1 Let f̃ ∈ L1[0,T ] and Ak , Bk ∈ R, k = 0, . . . , p.

Suposse that φ̄ : R → R is a strictly increasing function that
satisfies φ̄(R) = R.
Then the non homogeneous impulsive Dirichlet problem

(φ̄(u′(t)))′ = f̃ (t), a. e. t ∈ [0,T ]\P,
u(tk) = Bk−1, k = 1, . . . , p,
u(t+

k ) = Ak k = 1, . . . , p,
u(0) = A0,
u(T ) = Bp,

has a unique solution u ∈ C 1
P , such that φ ◦ u′ ∈ W 1,1

P .
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Preliminaries

Carathéodory
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For each t ∈ Jk , k = 0, . . . , p, the expression of u(t) is given by

u(t) = Ak +

∫ t

tk

φ̄−1

(∫ z

tk

f̃ (s)ds + τk

)
dz .
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u(t) = Ak +

∫ t

tk

φ̄−1

(∫ z
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Here, for each k = 0, . . . , p, τk is the unique solution of the
equation

Bk − Ak =

∫ tk+1

tk

φ̄−1

(∫ z

tk

f̃ (s)ds + τ

)
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Defining

γ(t, u) = min{β(t),max{u, α(t)}} t ∈ [0,T ] and u ∈ R,

0   T

β

α

u
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Preliminaries

Carathéodory
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Lemma 2 Given v , vn ∈ C 1
P such that vn → v in C 1

P , then

(i)
d
dt

γ(t, v(t)) exists for a.e. t ∈ [0,T ]\P;

(ii)
d
dt

γ(t, vn(t)) →
d
dt

γ(t, v(t)) for a.e. t ∈ [0,T ]\P.

M. X. Wang, A. Cabada, J. J. Nieto, Monotone method
for nonlinear second order periodic boundary value
problems with Carathéodory functions, Ann. Polon. Math.
58, (1993), 221 – 235.
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Proof of Theorem 1
Given K > 0 the Nagumo Constant, we define:

x ∈ R 7−→ φ̄(x) =


x − K + φ(K ), for x > K ,

φ(x), for − K ≤ x ≤ K ,
x + K + φ(−K ), for x < −K .
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(PM)


(φ̄(u′(t)))′ = f̃u(t), a. e. t ∈ [0,T ]\P,
u(tk) = Bk−1(u), k = 1, . . . , p,
u(t+

k ) = Ak(u) k = 1, . . . , p,
u(0) = A0(u),
u(T ) = Bp(u).
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case
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(φ̄(u′(t)))′ = f̃u(t), a. e. t ∈ [0,T ]\P,
u(tk) = Bk−1(u), k = 1, . . . , p,
u(t+

k ) = Ak(u) k = 1, . . . , p,
u(0) = A0(u),
u(T ) = Bp(u).

f̃u(t) = f (t, γ(t, u(t)), δK (
d
dt

(γ(t, u(t))))).
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δK (y) = min{K ,max{y ,−K}} for all y ∈ R,
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Bk−1(u) = γ(tk , u(tk) + Mk(u(tk), u(t+
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Define the operator F : C 1
P → C 1

P by

(Fu)(t) = Ak(u) +

∫ t

tk

φ̄−1

(∫ z

tk

f̃u(s)ds + τk(u)

)
dz

for each u ∈ C 1
P and t ∈ Jk , k = 0, . . . , p.
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case
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P → C 1

P by

(Fu)(t) = Ak(u) +

∫ t

tk

φ̄−1

(∫ z

tk

f̃u(s) ds + τk(u)

)
dz

for each u ∈ C 1
P and t ∈ Jk , k = 0, . . . , p.

τk(u) is the unique solution of equation

Bk(u)− Ak(u) =

∫ tk+1

tk

φ̄−1

(∫ z

tk

f̃u(s) ds + τk(u)

)
dz ,

for each k = 0, . . . , p.
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Lemma 1 and Lemma 2 imply that operator F is well
defined.

The proof holds from comparison results and degree
theory.
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(H∗
2 ) (H2) is fulfilled and Ik is one – to – one in the second

variable

(H∗
3 ) (H3) holds and g1 is one – to – one in the first variable
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Theorem 2 Assume hypotheses (H1), (H∗
2 ), (H∗

3 ), (H4) – (H6).

Then problem (P1) has the minimal and the maximal solution
lying between α and β.

Proof.

Let S 6= ∅ be the set of all solutions of the problem (P1) lying
between α and β.
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2 ), (H∗

3 ), (H4) – (H6).
Then problem (P1) has the minimal and the maximal solution
lying between α and β.

Proof.

Let S 6= ∅ be the set of all solutions of the problem (P1) lying
between α and β.
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lying between α and β.

Proof.

Let S 6= ∅ be the set of all solutions of the problem (P1) lying
between α and β.
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Theorem 2 Assume hypotheses (H1), (H∗
2 ), (H∗

3 ), (H4) – (H6).
Then problem (P1) has the minimal and the maximal solution
lying between α and β.

Proof.

Let S 6= ∅ be the set of all solutions of the problem (P1) lying
between α and β.
We prove that given u1, u2 ∈ S , then there exist u3, u4 ∈ S
such that

u3 ≤ u1 ≤ u4 and u3 ≤ u2 ≤ u4
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Theorem 2 Assume hypotheses (H1), (H∗
2 ), (H∗

3 ), (H4) – (H6).
Then problem (P1) has the minimal and the maximal solution
lying between α and β.

Proof.

Let S 6= ∅ be the set of all solutions of the problem (P1) lying
between α and β.
We prove that given u1, u2 ∈ S , then there exist u3, u4 ∈ S
such that

u3 ≤ u1 ≤ u4 and u3 ≤ u2 ≤ u4

J. A. Cid, On extremal fixed points in Schauder’s theorem
with applications to differential equations. Bull. Belg. Math.
Soc. Simon Stevin 11 (2004), 15 – 20.
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Extremal Solutions can be obtained for problem (P2)

(φ(u′(t)))′ = f (t, u, u(t), u′(t)) for a. e. t ∈ [0,T ]\P,

g1(u(0), u) = 0,
g2(u(T ), u) = 0,

}

Ik(u(tk), u) = 0,
Mk(u(t+

k ), u) = 0,

}
for k = 1, . . . , p.
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(φ(u′(t)))′ = f (t, u, u(t), u′(t)) for a. e. t ∈ [0,T ]\P,

g1(u(0), u) = 0,
g2(u(T ), u) = 0,

}
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Extremal Solutions can be obtained for problem (P2)

(φ(u′(t)))′ = f (t, u, u(t), u′(t)) for a. e. t ∈ [0,T ]\P,

g1(u(0), u) = 0,
g2(u(T ), u) = 0,

}

Ik(u(tk), u) = 0,
Mk(u(t+

k ), u) = 0,

}
for k = 1, . . . , p.

In this case f , g1, g2, Ik and Mk can be discontinuous on the
second variable.
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Lemma 3
Let [α, β] ⊂ C 0

P and G : [α, β] → [α, β] nondecreasing.

Assume that sequence {Gvn} has a pointwise limit in C 0
P

whenever {vn} is a monotone sequence in [α, β] .

Then G has the least fixed point u∗ and the greatest fixed
point u∗.

S. Heikkilä, V. Lakshmikantham, Monotone Iterative
Techniques for Discontinuous Nonlinear Differential Equations,
Marcel Dekker, New York, 1994.
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α0 = α and αn+1 = G αn

=⇒ {αn} → α1

If α1 < G α1 =⇒ α1
0 = G α1 and α1

n+1 = G α1
n.

β

α1

α1

α2=x*

Gα G α ...2 Gα1 ... *xα

Gα1
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case

Discontinuous Case
Monotone Iterative Techniques

α0 = α and αn+1 = G αn =⇒ {αn} → α1

If α1 < G α1 =⇒ α1
0 = G α1 and α1

n+1 = G α1
n.

β

α1

α1

α2=x*

Gα G α ...2 Gα1 ... *xα

Gα1



Monotone
Iterative

Techniques
for

Discontinuous
Functional
Impulsive
Equations

Alberto
Cabada, Jan

Tomeček
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G : [α, β] → [α, β] is defined as

Gv := maximal solution in [α, β] of problem (Pv )
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Preliminaries

Carathéodory
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G : [α, β] → [α, β] is defined as

Gv := maximal solution in [α, β] of problem (Pv )

(Pv )


(φ(u′(t)))′ = f (t, v , u(t), u′(t)) a. e. t ∈ [0,T ]\P,
g1(u(0), v) = 0,
g2(u(T ), v) = 0,
Ik(u(tk), v) = 0, k = 1, . . . , p,

Mk(u(t+
k ), v) = 0, k = 1, . . . , p.
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Example Let A, B > 0, η ∈ (0, 1) and ξ ∈ (1, 2) be fixed.

Denoting by [x ] the integer part of a real number x ,

let the following nonlinear impulsive boundary value problem

(E )


u′′(t) = F ([u(ξ)]) |u′(t)|, for all t ∈ (0, 2)\{1},
u(0) = A,
u(1) = u(η),

u2(1+) = u(ρ),
u(2) = B,

with F : R → R defined as

F (x) = − x3

1 + x2
.
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Example Let A, B > 0, η ∈ (0, 1) and ξ ∈ (1, 2) be fixed.

Denoting by [x ] the integer part of a real number x ,
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We prove that this problem has exactly two positive solutions.

The expressions of such solutions are given by

u∗(t) = u∗(t) = A, for all t ∈ [0, 1].
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Preliminaries

Carathéodory
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u∗∗(t) =
√

A + (B −
√

A)H(t, x∗∗ ), for all t ∈ (1, 2]

H(t, x) =


e−F ([x]) (t−1) − 1

e−F ([x]) − 1
if x ≥ 1,

t − 1 if 0 ≤ x < 1,

x∗ and x∗ are the extremal solutions of equation

x =
√

A + (B −
√

A)g([x ]) ≡ Ḡ (x),

g(y) =


e−F (y) (ξ−1) − 1

e−F (y) − 1
for all y > 0,

ξ − 1 if y = 0.
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Carathéodory
Case

Considered
Problem

Definitions and
Hypotheses

Existence
Results

Extremal
Solutions

Discontinuous
Case

Discontinuous Case
Monotone Iterative Techniques

u∗∗(t) =
√

A + (B −
√

A)H(t, x∗∗ ), for all t ∈ (1, 2]

H(t, x) =


e−F ([x]) (t−1) − 1

e−F ([x]) − 1
if x ≥ 1,

t − 1 if 0 ≤ x < 1,

x∗ and x∗ are the extremal solutions of equation

x =
√

A + (B −
√

A)g([x ]) ≡ Ḡ (x),
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x = Ḡ (x),
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THANKS FOR YOUR ATTENTION!!
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