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e M. X. Wang, A. Cabada, J. J. Nieto, Monotone method
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problems with Carathéodory functions, Ann. Polon. Math.
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for Then problem (P;) has the minimal and the maximal solution
el |ying between o and 3.

Functional
Impulsive
Equations

Proof.
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SN Let S # () be the set of all solutions of the problem (P;) lying
fome between « and 3.

FoelfimiETs We prove that given vy, up € S, then there exist u3, us € S

Sl such that
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uz3 < wup <wgand w3 < wp <y

Exrema J. A. Cid, On extremal fixed points in Schauder’s theorem
N with applications to differential equations. Bull. Belg. Math.
Cose Soc. Simon Stevin 11 (2004), 15 - 20.
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Then G has the least fixed point u, and the greatest fixed
point u*.

S. Heikkila, V. Lakshmikantham, Monotone [terative
Techniques for Discontinuous Nonlinear Differential Equations,
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Case Marcel Dekker, New York, 1994.
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