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Notation and statement of the problem

The function φ denotes a non-decreasing homeomorphism
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Notation and statement of the problem

The function φ denotes a non-decreasing homeomorphism
such that φ(0) = 0 and

φ : ] − a, a[→ R (singular),

φ : R → R (classical),

φ : R → ] − a, a[ (bounded).

For x ∈ R
p set |x|1 =

∑p
k=1 |xk|, x± = (x±

1 , · · · , x±
p ) and

Q(x) =
1

p

p∑

k=1

xk.

If α, β ∈ R
p, we write α ≤ β (resp. α < β) if αk ≤ βk for all

1 ≤ k ≤ p (resp. αk < βk for all 1 ≤ k ≤ p).
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Let n ∈ N, n ≥ 4 be fixed and x = (x1, · · · , xn) ∈ R
n. Define

Dx = (Dx1, · · · , Dxn−1) ∈ R
n−1

by
Dxk = xk+1 − xk, (1 ≤ k ≤ n − 1)

and, if max1≤k≤n−1 |Dxk| < a, define

Dφ(Dx) = (Dφ(Dx2), · · · , Dφ(Dxn−1)) ∈ R
n−2

by

Dφ(Dxk) = φ(Dxk) − φ(Dxk−1), (2 ≤ k ≤ n − 1).

Periodic solutions for difference equations with φ-Laplacian – p.



If f = (f2, · · · , fn−1) is a continuous function from R
2 to R

n−2

we define the continuous function Nf : R
n → R

n−2 by

Nf (x) = (f2(x2, Dx2), · · · , fn−1(xn−1, Dxn−1)).

Notice that,

QNf (x) =
1

n − 2

n−1∑

k=2

fk(xk, Dxk) for all x ∈ R
n.

Bρ denotes de open ball of center 0 and radius ρ.

We study the existence of the solutions for the problems

Dφ(Dx) + Nf (x) = 0, x1 = xn, Dx1 = Dxn−1.
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Forced equations

Assume that φ is singular or classical.

Dφ(Dx) = h, x1 = xn, Dx1 = Dxn−1, (1)

where h = (h2, · · · , hn−1) ∈ R
n−2.
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Forced equations

Assume that φ is singular or classical.

Dφ(Dx) = h, x1 = xn, Dx1 = Dxn−1, (2)

where h = (h2, · · · , hn−1) ∈ R
n−2.

Lemma 2 For each h = (h2, · · · , hn−1) ∈ R
n−2 there exist a

unique γ := Qφ(h) such that

2φ−1(γ) +
n−1∑

k=3

φ−1(
k−1∑

j=2

hj + γ) = 0.

Moreover, the function Qφ is continuous.
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Proposition 1 Forced periodic problem (1) is solvable iff

n−1∑

k=2

hk = 0

holds in which case solutions of (1) are of the form

(
x2 + xn−1

2
, x2, · · · , xn−1,

x2 + xn−1

2
),

where x2 ∈ R and

xk = x2 +

k∑

j=3

φ−1(

j−1∑

l=2

hl + Qφ(h)) (3 ≤ k ≤ n − 1).
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When φ is bounded, then we need the following
supplementary condition which is necessary and sufficient
together with Q(h) = 0.

∃γ ∈ ] − a, a[:

k−1∑

j=2

hj + γ ∈ ] − a, a[ (3 ≤ k ≤ n − 1).
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When φ is bounded, then we need the following
supplementary condition which is necessary and sufficient
together with Q(h) = 0.

∃γ ∈ ] − a, a[:

k−1∑

j=2

hj + γ ∈ ] − a, a[ (3 ≤ k ≤ n − 1).

For example, this is the case when∣∣∣
∑l−1

k=2 hk

∣∣∣ < a (3 ≤ l ≤ n − 1) or

a ≤
∑l−1

k=2 hk < 2a (3 ≤ l ≤ n − 1) or

−2a <
∑l−1

k=2 hk ≤ a (3 ≤ l ≤ n − 1).
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A continuum of solutions

Assume that φ is singular. Let us introduce the vector
space

Ṽ n−2 = {x̃ ∈ R
n : x̃1 = x̃n, Dx̃1 = Dx̃n−1, x̃2 = 0}

endowed with the orientation of R
n and the norm

‖x̃‖ := max3≤k≤n−1 |x̃k|. Its elements correspond to the

elements of R
n of the form (exn−1

2 , 0, x̃3, · · · , x̃n−1,
exn−1

2 ). If

(s, x̃) ∈ R × Ṽ n−2 is a solution of the problem

Dφ(Dx̃k) = fk(s + x̃k, Dx̃k) −
1

n − 2

n−1∑

j=2

fj(s + x̃j , Dx̃j)

(2 ≤ k ≤ n − 1) (3)
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then x = s + x̃ is a solution of the problem

Dφ(Dx) + Nf (x) = QNf (x), x1 = xn, Dx1 = Dxn−1.

For each fixed s ∈ R, problem (3) is equivalent to the fixed
point problem in Ṽ n−2 : x̃ = P̃(s, x̃), where P̃(s, x̃) = ỹ and,
for 3 ≤ k ≤ n − 1,

ỹk =
k∑

j=3

φ−1{
j−1∑

l=2

[fl(s + x̃l, Dx̃l) −
1

n − 2

n−1∑

m=2

fm(s + x̃m, Dx̃m)]

+ Qφ([fm(s + x̃m, Dx̃m) − 1

n − 2

n−1∑

l=2

fl(s + x̃l, Dx̃l)]
n−1
m=2)}.
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Lemma 3 The set S of the solutions (s, x̃) ∈ R × Ṽ n−2 of
problem

x̃ = P̃(s, x̃)

contains a continuum C whose projection on R is R and
projection on Ṽ n−2 is contained in the ball B(n−3)a.
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Villari-type nonlinearities

Theorem 1 Assume that φ is singular and that there exists
R > 0 and ǫ ∈ {−1, 1} such that

ǫ

n−1∑

k=2

fk(xk, Dxk) ≥ 0 if min
2≤k≤n−1

xk ≥ R, max
2≤k≤n−2

|Dxk| < a,

ǫ

n−1∑

k=2

fk(xk, Dxk) ≤ 0 if max
2≤k≤n−1

xk ≤ −R, max
2≤k≤n−2

|Dxk| < a.

Then

Dφ(Dx) + Nf (x) = 0, x1 = xn, Dx1 = Dxn−1.

has at least one solution.
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Example 1 If e = (e2, · · · , en−1), c ∈ R \ 0 , d ∈ R, q ≥ 0 and
p > 1, then the problem

D

(
Dxk√

1−(Dxk)2

)
+ d|Dxk|q + c|xk|p−1xk = ek (2 ≤ k ≤ n − 1)

x1 = xn, Dx1 = Dxn−1,

has at least one solution.
Corollary 1 Assume that φ is singular. Let hk : R

2 → R

(2 ≤ k ≤ n − 1) be bounded on R×] − a, a[. Then, for each
µ 6= 0, the following problem has at least one solution:

Dφ(Dxk) + µxk = hk(xk, Dxk) (2 ≤ k ≤ n − 1)

x1 = xn, Dx1 = Dxn−1.
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Lemma 4 Assume that φ : ] − b, b[→ ] − a, a[ where
0 < a, b ≤ ∞. Let x be a solution of

Dφ(Dx) + Nf (x) = 0, x1 = xn, Dx1 = Dxn−1. (4)

and assume that there exists c = (c2, . . . , cn−1) ∈ R
n−2 such

that |c−|1 < a and

fk(u, v) ≥ ck, ∀(u, v) ∈ R
2, 2 ≤ k ≤ n − 1. (5)

holds. Then
max

2≤k≤n−1
|Dxk| ≤ Mφ,

where
Mφ = max{|φ−1(|c−|1)|, |φ−1(−|c−|1)|}.
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Theorem 2 Assume that φ : R → ] − a, a[ where 0 < a ≤ ∞.

Assume also that that there exists c like in Lemma 4. If
there exist M ′ > Mφ, R > 0 and ǫ ∈ {−1, 1} such that

ǫ

n−1∑

k=2

fk(xk, Dxk) ≥ 0 if min
2≤k≤n−1

xk ≥ R, max
1≤k≤n−1

|Dxk| < M ′,

ǫ

n−1∑

k=2

fk(xk, Dxk) ≤ 0 if max
2≤k≤n−1

xk ≤ −R, max
1≤k≤n−1

|Dxk| < M ′,

then problem (4) has at least one solution.
(B - H.B. Thompson)
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Corollary 2 Assume that φ : R → ] − a, a[ where 0 < a ≤ ∞.

Let g : R → R be a continuous, bounded function such that
g ≤ 0, h = (h2, · · · , hn−1), |h−|1 < a and the following
Landesman-Lazer type condition is satisfied

lim sup
u→−∞

g(u) <
1

n − 2

n−1∑

k=2

hk < lim inf
u→∞

g(u).

Then the problem

Dφ(Dxk) + g(xk) = hk (2 ≤ k ≤ n − 1),

x1 = xn, Dx1 = Dxn−1,

has at least one solution.
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Corollary 3 Assume that φ : R → ] − a, a[ where 0 < a ≤ ∞.

Let p > 0, ak > 0, bk ∈ R (2 ≤ k ≤ n − 1) such that∑n−1
k=2 b+

k < a. Then the periodic problem

Dφ(Dxk) + ak(x
+
k )p = bk (2 ≤ k ≤ n − 1)

x1 = xn, Dx1 = Dxn−1,

has at least one solution if and only if
∑n−1

k=2 bk ≥ 0.

When ak < 0, bk ∈ R (2 ≤ k ≤ n − 1) such that
∑n−1

k=2 b−k < a,

problem bellow has at least one solution if and only if∑n−1
k=2 bk ≤ 0.

Periodic solutions for difference equations with φ-Laplacian – p. 16



Upper and lower solutions

Theorem 3 If

Dφ(Dx) + Nf (x) = 0, x1 = xn, Dx1 = Dxn−1.

has a lower solution α and an upper solution β such that
α ≤ β, then the problem bellow has a solution x such that
α ≤ x ≤ β. (In the classical or bounded case the
nonlinearity does not depend on the derivative).
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Upper and lower solutions

Theorem 4 If

Dφ(Dx) + Nf (x) = 0, x1 = xn, Dx1 = Dxn−1.

has a lower solution α and an upper solution β such that
α ≤ β, then the problem bellow has a solution x such that
α ≤ x ≤ β. (In the classical or bounded case the
nonlinearity does not depend on the derivative).
Let γk : R → R, (2 ≤ k ≤ n − 1) be the continuous functions

γk(x) =





βk, x > βk

x, αk ≤ x ≤ βk

αk, x < αk,

and define Fk(x, y) = fk(γk(x), y), (2 ≤ k ≤ n − 1).
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We consider the modified problem

Dφ(Dxk) − xk + [Fk(xk, Dxk) + γk(xk)] = 0 (2 ≤ k ≤ n − 1),

x1 = xn, Dx1 = Dxn−1,

We can show that if x is a solution of the modified problem
then α ≤ x ≤ β and hence x is a solution of the initial
problem.
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We consider the modified problem

Dφ(Dxk) − xk + [Fk(xk, Dxk) + γk(xk)] = 0 (2 ≤ k ≤ n − 1),

x1 = xn, Dx1 = Dxn−1,

We can show that if x is a solution of the modified problem
then α ≤ x ≤ β and hence x is a solution of the initial
problem.
Assume that φ is singular. Using Corollary 1, it follows that
the modified problem has at least one solution.
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We consider the modified problem

Dφ(Dxk) − xk + [Fk(xk, Dxk) + γk(xk)] = 0 (2 ≤ k ≤ n − 1),

x1 = xn, Dx1 = Dxn−1,

We can show that if x is a solution of the modified problem
then α ≤ x ≤ β and hence x is a solution of the initial
problem.
Assume that φ is classical or bounded. In this case we apply
the Brouwer degree to the homotopy (0 ≤ λ ≤ 1)

λDφ(Dxk) − xk + λ[Fk(xk) + γk(xk)] (2 ≤ k ≤ n − 1).
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Using Lemmas 3, 4 and Theorem 3 we deduce the
following result.
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Using Lemmas 3, 4 and Theorem 3 we deduce the
following result.
Theorem 6 Assume that φ is singular. If

Dφ(Dx) + Nf (x) = 0, x1 = xn, Dx1 = Dxn−1.

has a lower solution α and an upper solution β then the
problem bellow has a solution x The result holds also in the
classical or bounded case, if the supplementary condition (5)
is satisfied.

In the classical case, the theorem above is a discrete
version of a result due to I. Rachu̇nková and M. Tvrdý.
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