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Beam: a fourth-order problem
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semilinear fourth-order Navier problem (ends supported, not clamped)

{ V() = [t ut),w'(t),w" (1), teo1],
u(0) =u"(0) =u(l) =u"(1) =0

Dirichlet problem (clamped ends)

linear Dirichlet eigenvalue problem



weak solution of (2): critical point of ®,: W ?(0,1) — R,
1 ' " 2 A : 2
Po(u) === [ |u"(t)|7dt — = [ |u(t)|”dt.
2 Jo 2 Jo
critical points of ®,: W 7(0,1) — R,

P, (u) = %/0 " ()P dt — %/0 lu(t)|? dt, p € (1,00)

— weak solutions of the quasilinear fourth-order Dirichlet eigenvalue problem
(6" (1)))" = Mop(u()),  t€0,1],
u(0) =u'(0) =u(l) =u'(1) =0

where

bo(s) 0 for s =0,
s) =
g s|P?s for s #£ 0

u s (1,(u"))": p-biharmonic operator (u'*) for p = 2)

u > (,(u)): p-Laplacian (u" for p = 2)

denote p* = — 1Y, and 1)« inverse functions

p—1



Goals

e spectral properties (simplicity, discreteness) of the Dirichlet eigenvalue problem

{ (" (1)) = My(u(t),  telo,1],
u(0) = u/(0) = u(1) = u/(1) = 0

and the Neumann eigenvalue problem (free ends)

{ <¢])(ul’(t))> - A¢])(u(t ), t e [0, 1],
u”(0) = (p(u"))"(0) = (1) = (¢p(u"))'(1) = 0

e existence theorem, global bifurcation of nontrivial solutions of perturbed problems (3) and (4)



Initial value problem

[ , “Uniqueness theorem for p-biharmonic equations”
Electron. J. Differential Equations 2002 , Ne 53, pp. 1-17]
[ , “Uniqueness theorem for quasilinear 2nth-order equations”,

J. Math. Anal. Appl. 293 , pp. 589-604]

linear second-order initial value problem

—u"(t) = Au(t), t > to,
ulty) = o, u'(ty) = 1,
Aa,feER

existence: > 1 solution of the initial value problem

uniqueness: < 1 solution of the initial value problem

local:  on [tg, 1y + €| foran e > 0
global: on [tg, +00) or [ty,t1] for arbitrary ¢; > t

global uniqueness of the solution = continuous dependence of the solution on the initial conditions and parameters

(5) is equivalent to

{ ug(t) = wi(t), ug(to) = «, .
uy(t) = =Aug(t), uilto) = f,

right-hand side is Lipschitz continuous



quasilinear second-order initial value problem
—((W(1)) = My(ut), ¢ >t
ulto) = o, p(u'(to)) = B,

p,q > 1, is equivalent to

t > 1o,

{ up(t) = pe(ua(t)),  wolto) = e,
uy(t) = =Athy(uo(t)), walto) =P,
where uy = u, u; = 1, (u')

if p > 2 or g < 2, then the right-hand side is not Lipschitz continuous (neither locally):
p>2 = 1(0) =00 g<2 = ) (0)=o00

methods:

local existence: Schauder fixed-point theorem, Peano theorem
global existence:  boundedness

local uniqueness:  special estimates

global uniqueness: trivial consequence of the local uniqueness

local existence and uniqueness for (6) with A > 0:  Drabek, Manasevich (1999)

p > qor A >0 = global existence
p < q and A < 0: counterexample to global existence (blow-up)

p < qor A >0 = global uniqueness
p > q and A < 0: counterexample to local uniqueness



generalization: 2nth-order problem

{ (~1)" (™ ()™ = Ay (ult)),

’LL(L) (to) = 4,

(p(ul™))V(to) = B,

t2t07
i,je{01,....n—1}

local existence and uniqueness for (7) with n =2, p = g and A > 0: Drabek, Otani (2001)

P =>q

YES

P <q

(—1)"A >0

NO (counterexample)

— blow-up for certain initial conditions

A=0

YES (trivial)

(—1)"A <0

? (YES forn =1)

Global existence of the solution of (7)

n—1 =1
> il +> 185 >0 YES
i=0 j=0
P=q YES
Qp == Qpq = (—1)"A > 0| NO (counterexample)
=bo=-=01=0|p>gq A=0 | YES (trivial)

(—=1)"A < 0]? (YES forn =1)

Local uniqueness of the solution of (7)



the most general problem

{ (=)™ (a(8)hppay (™))" = by (g (™ () = ba Oy (™ (), > to,
u(z)(tﬂ) = @, (a%(u(n))) ( 0) - Bja Za] € {07 17 sy U 1}
where n € N, a,b1,bs,p,q1, 0 € C, a >0, p,q1,q > 1,

g, . ..,0n_1, 60, aﬁn—l € R,
ut = max{u,0} and v~ = max{—u,0} (ie., u=u" —u")



Boundary value problem

[ , “On simplicity of spectra of p-biharmonic equations”,

Nonlinear Anal. 58 , Ne 7-8, pp. 835-853.]

[ , "On the discreteness of the spectra of the Dirichlet and Neumann p-biharmonic problem”,
Abstr. Appl. Anal. 293 , pp. 589-604 ]

[ , “Continuous dependence of eigenvalues of p-biharmonic problems on p"|

. eigenvalues of the Dirichlet problem (3) for p > 2 form a sequence
0 < A(p) < Aa(p) < -+ — +00, the set of corresponding eigenfunctions is discrete, there exist at most finitely
many linearly independent eigenfunctions, corresponding to one eigenvalue

. there exists a sequence of positive simple eigenvalues of the Dirichlet problem (3), the eigenfunction,
corresponding to the nth eigenvalue has precisely n — 1 zeros in (0, 1)

Dirichlet problem:

e the eigenvalues of (3) form a sequence 0 < AP (p) < A\D(p) < -+ — +o0,

e every \P(p) is simple, isolated, the corresponding eigenfunction has n — 1 zeros in (0, 1),
e the functions p — AP (p), n € N, are continuous on (1, c0),

e the set of all eigenfunctions is discrete in €0, 1],

o \ ™ (p) < AP(p) < AN (p) for all n € N and p € (1, 00)
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interlacing property

Neumann problem:
e the eigenvalues of (4) form a sequence 0 = \)*"(p) < \(*%(p) < --- — +o0,

e every \U(p), n > 0, is simple and isolated, the corresponding eigenfunction has exactly n + 1 zeros in (0, 1),
Ay (p) = 0 is not simple,

e the functions p — A)*%(p), n > 0, are continuous on (1, 00),
e the set of all eigenfunctions is discrete in C?[0, 1],

° )\ga"(p) < Agcu(p) < )\gj_“i(p) forall n € N and p € (1, 00)

Moreover, for n € N we have \,“"(p) = (A" (p*))p_l.



nonhomogeneous Dirichlet problem:

{ (p(u"(1)))" = Mpglult)),  te€[0,1],
u(0) = u'(0) = u(1) = u'(1) = 0

e if u,v are solutions and u"(0) = v"(0), then u = v

2nth-order Dirichlet problem:

(=1)" (e, (™ ()™ = Ay (u(t), ¢ €0,1],
u(0)=u(1)=0, i€{0,...,n—1}

e every eigenvalue is positive and simple

2nth-order Neumann problem:

(=1)" (e, (™ ()" = Ay (), ¢ € 0,1],
u(0)=uD(1) =0, i€ {n,...,2n—1}

e every eigenvalue is nonnegative and every positive eigenvalue is simple



Global bifurcation

[Benedikt, J., “Global bifurcation result for Dirichlet and Neumann p-biharmonic problem” ]

Dirichlet problem:

{ (" (£)))" = My (ult)) + g(t, A, u(t),u'(t),u"(t),  t€[0,1],
u(0) = u'(0) = u(l) =u'(1) = 0,

A bifurcation parameter, ¢: [0,1] x R* — R continuous,

g(t, X, 80,51, 80) = 0 ((|so] + [s1] + [s2])" 1), Iso| + |s1] + |sa] — 0,
uniformly for ¢ € [0, 1] and A from any bounded subset of RR.

(9)

Then every point (A\P(p),0) € R x C?[0,1], n € N, belongs to a component of the closure of the set of all

nontrivial solutions (), u) of (8), which is either unbounded in R x C?[0, 1], or it contains an even number of
points (AY(p),0), n € N,

Neumann problem:

{ Gp(u(1)))" = Mby(ult) + gt A, u(t), ' (1), u" (1)), t€[0,1], (10)

u”(0) = (¢p(u"))(0) = u"(1) = (¥p(u"))'(1) = 0,
g:10,1] x R* — R continuous and satisfies (9).

Then every point (A ®(p),0) € R x C?[0,1], n > 0, belongs to a component of the closure of the set of all

nontrivial solutions (A, u) of (10), which is either unbounded in R x (C?[0, 1], or it contains an even number of
points (\)°%(p),0), n > 0.



Existence in nonresonance

Dirichlet problem:

{ (0" (1))" = F(t ut), (D), 0" (1), 1€ o,1], (1)

u(0) =u'(0) = u(l) =u'(1) =0,
f:10,1] x R® — R continuous.
If for a A € R, not an eigenvalue of (3),
f(t, s, s1,82) — AL¢p(so) =0 ((|30\ + |sq| + |32Dp_1) . |sol + |s1] + |s2| = oo, wnif. for t € [0,1], (12)
then (11) has a solution.

If, moreover,
f(t, 50,51, 82) — A,(s0) = o ((|so] + |s1] + [s21)"""),  Isol +|s1] + [s2] — 0, unif. for t € [0,1], (13)

for a A> € IR, neither an eigenvalue of (3), and the number of the eigenvalues of (3) between A" and )\° is odd,
then (11) has the trivial and a nontrivial solution.

Neumann problem:

14
(0) = (")) (0) = w'(1) = (& (")) (1) = 0, .

f:10,1] x R* — R continuous.

If (12) for a A\ € R, not an eigenvalue of (4), then (14) has a solution.

{ G (8)" = fltut), o (8),u"(1), ¢ e[0,1],

If, moreover, (13) for a A € R, neither an eigenvalue of (4), and the number of positive eigenvalues of (4)
between A" and \° is odd, then (14) has the trivial and a nontrivial solution.



