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Introduction and the Problem Considered



We use the following notation: for integers s, q, s < q, we define

2% :={s,s+1,...,q}.

Using notation Z%, we suppose s < q.
The subject of our study is a linear scalar discrete equation of k-th order

k
Ax(n) = — sz(n)ac(n — 1), (1)

where
po: Z;° — R, pi: Z;° — Ry := [0, 00),

t1=1,...,k,k > 1,aisaninteger,and n € Z>°.



Let
p: Zg_,. — R.

Together with (1), we consider an initial problem: determine a solution
x = x(n) of equation (1) satisfying the initial conditions

x(n) =¢(n), n € Z:_,. (2)

A solution of initial problem (1), (2) is defined as an infinite sequence of
numbers {x"}°° , with " = z(a + n), ie.,

{7 =p(a —k),...,2° = p(a),
' =xz(a+1),...,2" =x(a+n),...}

such that for any n € Z:° equality (1) holds. If it will be convenient, we
denote the solution @ = x(n) of the initial problem (1), (2) as

z(n) = z(n;a, ¢).



Our aim is to find sufficient conditions with respect to the right-hand side
of equation (1) in order to guarantee the existence of at least one initial
function

x(n) = ¢*(n), n € Z3_, 3)
with

@*: 7% _, — RT := (0, 00)
such that the solution * = x*(n; a, ¢*) of the initial problem (1), (2)
(with o = ™) remains positive on Z>° , .



Nonlinear Preliminaries
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Let us consider the scalar discrete equation
Au(n) = f(n,u(n),u(n —1),...,u(n — k)), (4)

where f: Z5° X R¥+1 — R and k > 1 is an integer.

Let p: Z; , — R be a given function. Together with discrete equa-
tion (4) we consider an initial problem: we are seeking for the solution
u = u(n),n € Z2° , of (4) satistying initial conditions

u(n) = pn), n €Z;_,. 5)

The notion of a solution of the initial problem (4), (5) can be adapted
easily from the previous section. The existence and uniqueness of the so-
lution of the initial problem (4), (5) is obvious as well. If f is continuous,
then the initial problem (4), (5) depends continuously on the initial data.



Let functions
b,c: Z;°, — R

be given such that
b(n) < c(n), n € Z°,.
Forn € Z3° , we define sets
w(n) :=A{(n,t): t € R,b(n) <t < c(n)}

and
w'n):={@):teR,b(n) <t<c(n)}.
Except this we define

Q:={(n,t):neZ?,,(n,t) €wln)}.



We will formulate an auxiliary nonlinear result on existence of a solution
u = u(n),n € Z2° , of (4) with the graph

{(n,u(n)) }olq

remaining in 2. It means, in other words, that under certain assumptions
there exists at least one initial function ¢ such that

b(n) < ¢(n) < c(n) (6)
forn € Z2_, and
b(n) < u(n;a, p) < c(n) (7)

forevery n € Z:° ,.
From inequalities (7) we can deduce the existence of a positive solution
of the equation (4) if our sufficient conditions will be valid for the choice:

b(n) =0, c(n) > 0,

n € Z;° .. This idea will be applied to the equation (1).



Now we are ready to formulate a nonlinear result, necessary for our
investigation, concerning the existence of a solution of (4) with the graph
lying in the set (2.

Bastinec, J., Diblik J., Zhang, B.G.: Existence of bounded solutions of
discrete delayed equations. Proceedings of the Sixth International Con-
ference on Difference Equations, CRC, Boca Raton, FL., 359-366, 2004.




Theorem 1. Let the function f: Z2° x R"*1 — R be continuous. If,
moreover, inequalities

f('n'a b(”)a Uy .- 7uk:) o b(n + 1) + b(n) <0, (8)
f(n,e(n),uyy...,ug) —c(n+1) +¢c(n) >0 9)

hold for every n € 7.5° and every
U Ew'(n—1),...,ux € w'(n —k),
then there exists an initial problem
u(n) = ¢(n), n € Z2;_, (10)

with : 28, — R, ¢(n) € w*(n), n € Z2_, such that the corre-
sponding solution u = u(n, a, ) of equation (4) satisfies

b(n) < u(n;a, p) < c(n) (11)

foreverym € Z3° ..



Results
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Theorem 2. Let

k
> pi(n) >0 (12)
1=1

foranyn € 27 ,.
Then, for the existence of a positive solution x = x(n) of (1), the exis-
tence of a function

v: Zzo_k — RT
such that i
Av(n) < — Zpl(n)l/(n — 1) (13)
i=0

forn € Z1°° is sufficient and necessary. Moreover x(n) < v(n) holds
on 12 ...



PROOF.

NECESSITY. It is obvious since it is possible to put ¥ = @, where x 1s a
positive solution of (1).

SUFFICIENCY. We will use Theorem 1 with

k
f(n,u(n),u(n —1),...,u(n — k)) := — Zpi(n)u(n — 3),

b(n) := 0,

c(n) := v(n).



Insuchcase w*(n) = {(t): t e R,0 <t < v(n)}.
We verify inequalities (8), (9). With respect to (8) we have

f(n,b(n), u,...,ux) —b(n +1) +b(n) =f(n,0,u,...,ux)
= — sz(n)uz

It is easy to see that u; > 0 if u; € w*(n —i),¢ = 1,...,k. Then
(we use (12) as well)

f(n,b(n),us,...,u;) — bn+1)+b(n) < — sz—(n) <0

and (8) holds.



With respect to the inequality (9) we have

f(na C(n)vula cee 'U'k:) o C(n T 1) T C(n)
=f(n,v(n),u1,...,ux) —v(n+1) +v(n)

k
= — po(n)r(n) — sz(n)uz —v(n+1) +v(n).

=1



Since u; € w*(n — 2), thenu; < v(n —4),¢ = 1,...,k, and due
to (12), (13)

f(n,e(n)yuqy...,ux) —c(n+1) 4+ c(n)

> —po(n)r(n) — Y pi(n)v(n —i) —v(n+ 1) +v(n)

= — sz(n)u(n — 1) — Av(n) > 0.

Inequality (9) is valid. We conclude that all the assumptions of Theorem 1
are valid. With respect to the equation (1) (we change v with @) it means
that there exists an initial function : Z¢ , — R, ¢(n) € w*(n),
n € 7% _, such that x = x(n, a, ¢) satisfies the inequalities

0=0b(n) <u(n;a,p) <c(n) =v(n) (14)

for every n € Z3°. Inequality (14) coincides with the conclusion of
Theorem 2. []



For the proof of the main result we need a comparison result for the equa-
tion (1) and an equation

k
Aw(n) = — Z P;(n)w(n — 1) (15)

where Py: 2° — R, P;: Z;° — Ry, 1 = 1,...,k, kK > 1 under
assumption P;(n) < p;(n),i=1,...,k,n € Z2°.

Theorem 3. Let .
Z Pi(n) >0 (16)
=1

foranyn € Z7° ,. Assume that equation (1) admits a positive solution
x = p(n) on Z° , and

P;i(n) < pi(n), (17)

1t = 1,...,k, n € Z. Then the equation (15) admits a positive
solution w = w(n) on Z2° , and, moreover, w(n) < p(n).



PROOF. We will use Theorem 1 with

k
f(n,u(n),u(n —1),...,u(n — k)) := — Z P;(n)u(n — 1),

b(n) := 0, c(n) := u(n).

Then w*(n) = {(¢): t € R,0 < t < wp(n)}. We verify inequali-
ties (8), (9). With respect to (8) we have

f(n9 b(n)’ula 00O 7’“/16) _ b(n T 1) T b(n) — .f(n7 0,u1,y..., uk:)
k
= — E:Pz(n)uz
i=1
Since u; € w*(n —1) wehaveu; > 0,72 = 1,...,k and (we use (16))
k
f(n,b(n),us,...,ux) —b(n+1) +b(n) < — > Py(n) <0.
i=1

Inequality (8) holds.



With respect to (9) we have
f(n,c(n), Ugy ooy uk) T C(n + 1) + C(n)

=F(n, p(n), w1, ..., up) — p(n + 1) + p(n)

== Po(n)p(n) = Y Pi(n)ui — p(n +1) + u(n).



Since u; € w*(n — %), thenu; < pu(n —1),2 = 1,...,k, and due
to (16), (17)

f(n,e(n),uy,y...,ux) —c(n+ 1) + c(n)

> = Py(n)u(n) — ) P(n)u(n — i) — p(n +1) + p(n)

> — > _pi(n)p(n —i) — Ap(n) = 0.

Inequality (9) is valid and Theorem 1 holds. With respect to the equa-
tion (15) (we change v with w) it means that there exists an initial
function ¢: Z2 , — R, p(n) € w*(n), n € Z2_, such that
w = w(n, a, ) satisfies the inequalities

0=0b(n) <w(nja,p) <c(n) = un) (18)

for every n € Z5°. Inequality (18) coincides with the conclusion of
Theorem 3. [



Before formulation of the main result we need auxiliary results on asymp-
totic decompositions.

Definition 1. Let us define the expression In,n, q > 1 by the formula
Ingn = In(Ing_y n), Ingn = n where n > exp,_, 1 and exp;n =
exp (exps_1 n) s > 1, expygn = nand exp_; n = 0 (with Ing n,
In; n abbreviated to n, In n in the sequel).

The following lemmas (necessary for the proof of the main result) can be

proved in an elementary way by the method of induction. The symbol
“0” means the Landau order symbol.



Lemma 1. For fixed 1,0 € R\ {0} and for n — oo the asymptotic
representation

or o(oc—1)r?

(n—17r)7 =n? |1 — - + o2 (19)
o(oc —1)(o — 2)r3 1
s rel)

holds for n — oc.



Lemma 2. For fixed r,o0 € R\ {0}, ¢ > 1 and for n — oo the
asymptotic representation

Inf(n—7r) ; ro r’c
In7 n N nlnn...lInjn  2n?lnn...In;n
r’o r’o
2(nlnn)?Inan...In;n 2(nlnn...In;_1n)?In;n
réc(oc — 1 r3o(1 + o(1
L rele-1)  relten) o

2(nlnn...In;n)?2  3ndlnn...In;n

holds for n — oc.



Let £ > 0 be a fixed integer. We define auxiliary functions

()_<k)k[ 1 +k
P = \ksx1) |k+1 " 8n?

k k
- 21
8(nlnn)? * +8(nlnn...lngn)2 b
and , .
ve(n) = (k—-I-l) . \/fn Innlnsn...lnyn (22)

which play an important role in the investigation of positive solutions of
an equation

Azxz(n) = —p(n)x(n — k) (23)
being a particular case of (1) (withpg = p1 = -+ = pr—1 = 0 and
pr = p). We assume that nn in (21) and (22) is sufficiently large such that
py¢ and vy are well defined.



Lemma 3. Let £ > 0 be a fixed integer. Then the inequality
Av(n) < —py(n)v(n — k) (24)

has a (positive) solution v = vy provided n is sufficiently large.



PROOF. We consider the left hand side of (24) and asymptotically (for
n — oo) decompose Avy(n).

Avy(n) = ve(n + 1) — vg(n)

k n+1
_ (_) v/ (n+1)In(n+1)Iny(n+ 1) ...Ing(n + 1)

( k1 ) -\/nlnnlnzn...lngn

:( ) \/nlnnlnzn...lngnx

(1) >



where

_ vn+1 . Vv In(n + 1) . v/ Ina(n + 1) v/ Ing(n + 1)

ooooo

v
! vn v inn Vvingn Vv ingn



Since by formula (19) withoe = 1/2and r = —1

vn—+1 1 1 1 1
— =1+ — + + o (—) ;
vn 2n  8n2  16n3 n3
by formula (20) withe = 1/2,q = 1landr = —1
Vv In(n+1) 1 1 1 1+ o(1)

—1 _ _
v inn +2n Inn 4n?lnn 8(nlnmn)? T 6n3Inn

9



by formula (20) withoe = 1/2,q = 2andr = —1

\/lnz(n+1)_1+ 1 1
Vv Inan - 2nlnnlnon  4n2lnnlnsn
1 1 1+ o(1)

4(nlnn)?lnon  8(nlnnln,n)?  6n3 Innlny,n’

etc., and by formula (20) withoe = 1/2,q = fandr = —1

wng(njtl)_“r 1 1
Vingn - 2nlnn...lnyn  4n?lnn...lnyn
1 1
B 4(nlnn...lnyp_1n)?ln,n B 8(nlnn...ln;n)?
1+ o(1
i (1) ’

6nilnn...Inyn



we have

1 1 1 1
Vi=1+_—+ + +oeet

2n  2nlnn  2nlnninsn 2nlnn...Inyn

1 1 n 1 n ( 1 )
- .= ol —|.
8n? 8(nlnn...Ilnyn)2  16n3 n3



Now we (for n — o0) asymptotically decompose the right hand side
of (24) with Av(n) = Ave(n). We get

—pe(n)ve(n — k) = — (kL—H)n

k k

- [k—|—1+8 T 8mmny2 ”+8(n1n"-~lnf")2]

( ) V(1 — k) In(n — k) Ina(n — k) ... Iny(n — k)

= <—> \/nlnnlnzn Angn

kE+1
[ ! + v + v + e+ i X V
E+1 8n? 8(nlnn)? 8(nlnn...Ilnyn)? ’



where

:\/n—k.\/ln(n—k).\/lnz(n—k) V Ing(n — k)

ooooo

v
’ vn vVinn vV inan Vingn



Since by formula (19) witho = 1/2 and r = k
vn —k k k2 k3 1
- _|_ o) ,

-1 — — —
vn 2n  8n2? 16n3

by formula (20) withoe = 1/2,q = landr = k

ns3

v/ In(n — k) _ k k2 k2 k* + o(1)

vVinn 2nlnn_4n21nn_8(nlnn)2_ 6n31lnn

9



by formula (20) withoe = 1/2,q = 2andr = k

v/ Inz(n — k) _ 1 k k?
Vv Ingn - 2nlnnlno,n  4n?lnnln,n
k2 k2 k3 4+ o(1)

4(nlnn)2ln;n  8(nlnnlnyn)?2 6n2lnnlnyn’

etc., and by formula (20) withoe = 1/2,q = fandr = k

v Ing(n — k) _ 4 k k2
VvVingn a 2nlnn...Inyn  4n?lnn...Inyn
k2 k2
B 4inlnn...lnyp_1n)?Inyn B 8(nlnn...lnyn)?
k* + o(1)

6n3lnn...lny,n’



we have

Ve — 1 k k k k
T 2n 2nlnn 2nlnnlnsn 2nlnn...Inyn
k2 k> k3 (1)
— ——— — 000 — — _|_0 — .
8n? 8(nlnn...lnyn)? 16n3 n3



k

[ 1 N k k
kE+1 8n? 8(nlnn)?
1 [ k
1 — .. —
kE+1 2n
i k [ 1
k-+1|8n?2

+oee 4

8(nlnn...lnyn)?

e
2nlnn...Inyn

1
+ 8(nlnn...Iln, n)2]

(1 553) o+ ()
kE-+1) 16n3 °\n3 )"

X Vo



Now we see that for
Avy(n) < —pe(n)ve(n — k) (25)

(af n — o0) 1s sufficient

k
(—k+1)'vl—1
<—[ ! —|-k—|—"°-|— ¥ X Vs
- k+1 8n? 8(nlnn...lnyn)?



( k )[1+ 1 i i 1 1
k+1 2n 2nlnn...Ilnpn  8n?2

1 1
— e — —1 —
8(nlnn)? 8(nlnn...lnyn)? T 16n3] To (n?’
1 T k k ]
G
- k41| 2n 2nlnn...Inyn
E [ 1 P 1 ]
k+1 [8n? 8(nlnn...lnyn)?

(1 5) o o ()
k-+1) 16n3 °\n3 )"
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We see that the last inequality turns into

< Stz ()

ns3

and holds if n — oo. [



The following result is an interesting consequence of Lemma 3 and The-
orem 2.

Lemma 4. Let £ > 0 be a fixed integer. Then the equation
Ax(n) = —pe(n)x(n — k) (26)

has a positive solution x = x(n) < ve(n) provided n is sufficiently
large.

PROOF. Since the inequality (24) has a (positive) solution v = vy pro-
vided n 1s sufficiently large then the proof is a straightforward conse-
quence of Theorem 2 (we assume a is sufficiently large) with

Po=pP1=:"=pr-1=0

Pr. = Vgp.



Theorem 4 (Main result). Let £ > 0 be a fixed integer and
0 < p(n) < pe(n) (27)

(pe(n) is defined by (21)) for n — +oo. Then the equation (23) has a
positive solution

r=x(n) < vy(n)
provided n is sufficiently large.
PROOF. It is a direct consequence of Theorem 3 (we assume a is suffi-
ciently large) with
Phr=P=---=PFP,_1=0
P, = p(n)

and Lemma 4 if we put
Po=p1=-"=pk-1=0
Pk = pe(n)

in (1). O



Comparisons and Concluding Remarks

We formulate the following known result

Gyori, 1., Ladas, G.: Oscillation Theory of Delay Differential Equations,
Clarendon Press, 1991.

Theorem 5. Assume k € N \ {0}, p(n) > 0forn > 0, and
kk:

p(n) < TR (28)
Then the difference equation
Au(n) = —p(n)u(n — k) (29)

where n = 0,1, 2,... has a positive solution.



Comparing this result with the result given by Theorem 4 we conclude
that the inequality (27) where

k k

+ 4ot

8(nlnn)? 8(nlnn...ln;n)?

i1s a substantial improvement over (28). Moreover, the inequality (27)
unlike the inequality (28) involves the variable 12 on the right hand side.
As noted in the cited book, for p(n) = p = const, the inequality (28)
is sharp in a sense since in this case the necessary and sufficient condition
for the oscillation of all solutions of (29) is the inequality

kk
> e DM

p



In

Diblik J.: Positive and oscillating solutions of differential equations with
delay in the critical case. J. Comput. Appl. Math., 88 (1998), 185-202.

is similar problem discussed for
z(t) = —a(t)x(t — 7) (30)
where a € C(I,R1), T > 0.



Conjecture 1. Let £ > 0 be a fixed integer, 0 > 1 and

p(n) > peo(n)
for n — 400 with

()_(k)’f[l Lk Lk
AN kE+1 kEk+1 8n? 8(nlnn)?

k k0
+oee -

(D

8(nlnn...In,_1n)2  8(nlnn...lnyn)2|"

Then all solutions of (23) are (for n — o0) oscillating.



