Positive solutions of singular mixed boundary value problems with time and space singularities

Svatoslav Staněk

Olomouc, Czech Republic

We say that $h \in Car((0,T) \times D)$, $\mathcal{D} = (0,\infty) \times \mathbb{R}$, has a time singularity at t = 0 (t = T) if there exists $(x, y) \in \mathcal{D}$ such that

$$\int_0^{\nu} |h(t,x,y)| \, \mathrm{d}t = \infty \quad \left(\int_{T-\nu}^T |h(t,x,y)| \, \mathrm{d}t = \infty\right)$$

for all sufficiently small $\nu > 0$. If $\lim_{x\to 0^+} |h(t, x, y)| = \infty$ for a.e. $t \in [0, T]$ and some $y \in \mathbb{R}$ then we say that h has a space singularity at x = 0. We say that x = 0 is a weak (strong) space singularity of h if there exists $y \in \mathbb{R}$ such that for a.e. $t \in [0, T]$ and all sufficiently small $\rho > 0$ the relation

$$\int_0^\rho |h(t,x,y)| \, \mathrm{d}x < \infty \quad \left(\int_0^\rho |h(t,x,y)| \, \mathrm{d}x = \infty\right)$$

holds. The contribution deals with the singular mixed boundary value problem

$$u'' = p(u')[f(t, u, u') - r(t)],$$
(1)

$$u(0) = 0, \quad u'(T) = 0,$$
 (2)

where $f \in Car((0,T) \times D)$ admits a time singularity at t = 0 and/or at t = T and a strong space singularity at u = 0. We give conditions on the functions p, f and r in equation (1) which guarantee the existence of a positive (on (0,T]) solution $u \in AC^1[0,T]$ and the maximal solution $\overline{u} \in AC^1[0,T]$ of problem (1), (2). Here \overline{u} is called the maximal positive solution of problem (1), (2) if $\overline{u} \ge u$ on [0,T] for all its positive solutions u.