On existence and uniqueness of solution of optimal control problems for distributed systems unsolved with respect to the time derivative

Marina V. Plekhanova

Chelyabinsk, Russia

Let \mathcal{X}, \mathcal{Y} and \mathcal{U} be Hilbert spaces, operators $L \in \mathcal{L}(\mathcal{X}; \mathcal{Y})$, ker $L \neq \{0\}, M \in \mathcal{C}l(\mathcal{X}; \mathcal{Y})$, $B \in \mathcal{L}(\mathcal{U}; \mathcal{Y})$. Consider optimal control problem

$$N(x(0) - x_0) = 0, (1)$$

$$L\dot{x}(t) = Mx(t) + y(t) + Bu(t),$$
 (2)

$$\in \mathfrak{U}_{\partial},$$
 (3)

$$J(x,u) = \frac{1}{2} \|x - w\|_{H^{r_1}(0,T;\mathcal{X})}^2 + \frac{K}{2} \|u - u_0\|_{H^{r_2}(0,T;\mathcal{U})}^2 \to \inf,$$
(4)

where $r_1 \in \{0, 1\}, r_2 \in \{0, 1, 2, ...\}, x_0 \in \mathcal{X}$ is a given vector, y, w, u_0 are given functions, u is control function, $K \ge 0$, \mathfrak{U}_{∂} is a nonempty convex closed subset of control functions space $H^{r_2}(0, T; \mathcal{U})$.

u

In the case when operator N = I, problem (1), (2) is the Cauchy problem. Besides, in applications systems often arise that described in initial moment by the general Showalter condition (1), when N = P is projector along the kernel of resolving semigroup of homogeneous equation (2) on the phase space of the equation.

In the case K = 0 such problems often called as problems of hard control.

For research of problems of the form (1) - (4) scheme is applicated that allows to use only the property of nontriviality of considered system and properties of minimized functional for proof of existence and uniqueness of solution (see [1], [2]).

Abstract results applied to problems for some classes of partial derivative equations or systems of equations that unsolved with respect to the time derivative.

Consider the case of P = I, K > 0, $r_1 = 1$, $r_2 \in \{0, \ldots, p+1\}$ with assumption of strong (L, p)-radiality of operator M that guarantees the existence of strongly continuous resolving semigroup of homogeneous equation (2). Denote for $x_0 \in \text{dom}M$, $y \in H^{p+1}(0, T; \mathcal{Y})$ the set of control functions $u \in H^{p+1}(0,T;\mathcal{U})$ satisfying the condition $(I-P)x_0 = -\sum_{k=0}^{p+1} (M_0^{-1}L_0)^k M_0^{-1}(I-Q)(Bu^{(k)}(0) + y^{(k)}(0))$ by $H_{\partial}(x_0, y)$, and $\mathcal{Z}_{r_2} \equiv \{z \in H^1(0,T;\mathcal{X}) : L\dot{z} - Mz \in H^{r_2}(0,T;\mathcal{Y})\}$. Following result is obtained.

Theorem 1. Let operator M be strongly (L, p)-radial, $\mathfrak{U}_{\partial} \cap H_{\partial}(x_0, y) \neq \emptyset$. Then there exists a unique solution $(\hat{x}, \hat{u}) \in \mathbb{Z}_{r_2} \times H^{r_2}(0, T; \mathcal{U})$ of the problem (1) - (4).

References

- Plekhanova M.V., Fedorov V.E. An optimal control problem for a class of degenerate equations. J. of Computer and System Sciences International, 2004, v. 43, no. 5, p. 698-702.
- [2] Plekhanova M.V., Fedorov V.E. An optimality criterion in a control problem for a Sobolev type equation. J. of Computer and System Sciences International, 2007, v. 46, no. 2, p. 248-254.