Existence of positive solutions of discrete delayed equations

Jaromír Baštinec, Josef Diblík

Brno, Czech Republic

We use the following notation: for integers $s, q, s \leq q$, we define $\mathbb{Z}_s^q := \{s, s + 1, \ldots, q\}$ where $s = -\infty$ and $q = \infty$ are admitted, too. The subject of our study is a linear scalar discrete equation of k-th order

$$\Delta x(n) = -\sum_{i=0}^{k} p_i(n) x(n-i),$$
(1)

where $p_0: \mathbb{Z}_a^{\infty} \to \mathbb{R}, p_i: \mathbb{Z}_a^{\infty} \to \mathbb{R}_+ := [0, \infty), i = 1, \dots, k, k \ge 1, a \text{ is an integer, and } n \in \mathbb{Z}_a^{\infty}.$

Theorem 1. Let $\sum_{i=1}^{k} p_i(n) > 0$ for any $n \in \mathbb{Z}_a^{\infty}$. Then, for the existence of a solution $x: \mathbb{Z}_{a-k}^{\infty} \to \mathbb{R}^+ := (0,\infty)$ of (1), the existence of a function $\nu: \mathbb{Z}_{a-k}^{\infty} \to \mathbb{R}^+$ such that

$$\Delta\nu(n) \le -\sum_{i=0}^{k} p_i(n)\nu(n-i)$$

for $n \in \mathbb{Z}_a^{+\infty}$ is sufficient and necessary.

Definition 1. Let us define the expression $\ln_q n$, $q \ge 1$ by the formula $\ln_q n = \ln(\ln_{q-1} n)$, $\ln_0 n \equiv n$ where $n > \exp_{q-2} 1$ and $\exp_s n = \exp(\exp_{s-1} n)$, $s \ge 1$, $\exp_0 n \equiv n$ and $\exp_{-1} n \equiv 0$ (with $\ln_0 n$, $\ln_1 n$ abbreviated to n, $\ln n$ in the sequel).

Let $\ell \geq 0$ be a fixed integer. We define an auxiliary function

$$p_{\ell}(n) = \left(\frac{k}{k+1}\right)^k \left[\frac{1}{k+1} + \frac{k}{8n^2} + \frac{k}{8(n\ln n)^2} + \dots + \frac{k}{8(n\ln n \dots \ln_{\ell} n)^2}\right]$$

which plays an important role in the investigation of positive solutions of an equation

$$\Delta x(n) = -p(n)x(n-k) \tag{2}$$

being a particular case of (1). We assume that n is sufficiently large such that p_{ℓ} is well defined. Applying Theorem 1 to (2), we get:

Theorem 2. Let $\ell \ge 0$ be a fixed integer and $0 < p(n) \le p_{\ell}(n)$ for $n \to +\infty$. Then the equation (2) has a positive solution x = x(n) provided that n is sufficiently large.

References

- J. Baštinec, J. Diblík, B. Zhang: Existence of bounded solutions of discrete delayed equations, *Proceedings of the Sixth International Conference on Difference Equations*, CRC, Boca Raton, FL, 359–366, 2004.
- [2] J. Diblík: Asymptotic behavior of solutions of discrete equations, *Funct. Differ. Equ.*, 11 (2004), 37–48.