On exponential equivalence of solutions to nonlinear ordinary differential equations.

S. Zabolotskiy
Lomonosov Moscow State University
nugget13@mail.ru

1 Introduction

In the first part of the paper the equations

$$
\begin{gather*}
y^{(n)}+\frac{a}{x^{2}} y+p(x) y|y|^{k-1}=f(x), \tag{1}\\
z^{(n)}+\frac{a}{x^{2}} z+p(x) z|z|^{k-1}=0 \tag{2}
\end{gather*}
$$

with $k>1, a \in \mathbb{R} \backslash\{0\}$ are considered. Functions $p(x)$ and $f(x)$ are assumed to be continuous as $x>x_{0}>0$, $p(x) \not \equiv 0$. Exponential equivalence of solutions to equations (1), (2) is proved under some assumptions on the function $f(x)$.

If $a=0$ equation (2) is well-known Emden-Fowler equation:

$$
z^{(n)}+p(x) z|z|^{k-1}=0
$$

A lot of results on the asymptotic behaviour of solutions to this equation and its generalizations were obtained in $[1,2,3,4,6]$. Note that equation (2) with $a \neq 0$ can't be reduced to Emden-Fowler differential equation by any substitution of dependent or independent variables.

In the second part of the paper the equations

$$
\begin{align*}
& y^{[n]}+p_{0}|y|^{k-1} y=f(x), \tag{3}\\
& y^{[n]}+p_{0}|y|^{k-1} y=g(x), \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
y^{[n]}=r_{n}(x) \frac{d}{d x}\left(\cdots \frac{d}{d x}\left(r_{1}(x) \frac{d}{d x}\left(r_{0}(x) y\right)\right) \cdots\right), \tag{5}
\end{equation*}
$$

$k>1, p_{0}=$ const $\neq 0$ and the functions $r_{m}(x), m=0, \ldots, n, f(x), g(x)$ are continuous on $\left(x_{0},+\infty\right), x_{0}>0$. Exponential equivalence of solutions to equations (3), (4) is proved under some assumptions.

2 Exponential equivalence of solutions to nonlinear differential equations

Consider differential equations

$$
\begin{align*}
& y^{(n)}+\frac{a}{x^{2}} y+p(x) y|y|^{k-1}=e^{-\alpha x} f(x), \tag{6}\\
& z^{(n)}+\frac{a}{x^{2}} z+p(x) z|z|^{k-1}=e^{-\alpha x} g(x) \tag{7}
\end{align*}
$$

with $n \geq 2, k>1, a \in \mathbb{R} \backslash\{0\}, \alpha>0$
Lemma 1 ([5]) If function $y(x)$ and its n-th derivative $y^{(n)}(x)$ tend to zero as $x \rightarrow+\infty$ than the same holds for $y^{(j)}(x), 0<j<n$.

Lemma 2 Let $y(x)$ be a solution to equation (6) such that $y(x)$ tends to zero as $x \rightarrow+\infty$. Then it holds

$$
y(x)=\mathbf{J}^{\mathbf{n}}\left[e^{-\alpha x} f(x)-\frac{a}{x^{2}} y(x)-p(x)[y(x)]_{ \pm}^{k}\right]
$$

with $[y(x)]_{ \pm}^{k}=|y|^{k-1} y . \mathbf{J}$ is the operator that maps tending to zero as $x \rightarrow+\infty$ function $\varphi(x)$ to its antiderivative:

$$
\mathbf{J}[\varphi](x)=-\int_{x}^{+\infty} \varphi(t) d t
$$

Theorem 1 Let $p(x), f(x), g(x)$ be continuous bounded functions defined as $x>x_{0}>0, p(x) \not \equiv 0$. Then for any solution $y(x)$ to equation (6) that tends to zero as $x \rightarrow+\infty$ there exists a unique solution $z(x)$ to equation (7) such that

$$
|z(x)-y(x)|=O\left(e^{-\alpha x}\right), \quad x \rightarrow+\infty .
$$

Remark 1 Obviously, equations (6) and (7) in Theorem 1 can be swapped.
Back to equations (1), (2):

$$
\begin{gathered}
y^{(n)}+\frac{a}{x^{2}} y+p(x) y|y|^{k-1}=f(x), \\
z^{(n)}+\frac{a}{x^{2}} z+p(x) z|z|^{k-1}=0
\end{gathered}
$$

with $k>1, a \in \mathbb{R} \backslash\{0\}$.
Corollary 1.1 Suppose continuous function $f(x)$ satisfies the following condition:

$$
f(x)=O\left(e^{-\alpha x}\right), \quad \alpha>0
$$

Let function $p(x)$ be a continuous bounded function, $p(x) \not \equiv 0$. Then for any solution $y(x)$ to equation (1) that tends to zero as $x \rightarrow+\infty$ there exists a unique solution $z(x)$ to equation (2) such that

$$
|y(x)-z(x)|=O\left(e^{-\alpha x}\right), \quad x \rightarrow+\infty
$$

3 Exponential equivalence of solutions to nonlinear differential equations with quasiderivative

Consider differential equation (3), (4)

$$
\begin{aligned}
y^{[n]}+p_{0}|y|^{k-1} y & =f(x), \\
y^{[n]}+p_{0}|y|^{k-1} y & =g(x),
\end{aligned}
$$

with $n \geq 2, k>1$ and $p_{0}=$ const $\neq 0$,

$$
y^{[n]}=r_{n}(x) \frac{d}{d x}\left(\cdots \frac{d}{d x}\left(r_{1}(x) \frac{d}{d x}\left(r_{0}(x) y\right)\right) \cdots\right)
$$

Remark 2 In [4] some sufficient conditions are given for the differential operator

$$
L=\frac{d^{n}}{d x^{n}}+\sum_{j=0}^{n-1} q_{j}(x) \frac{d^{j}}{d x^{j}}
$$

to be represented as quasiderivative (5).

Theorem 2 Suppose for each $m=0,1, \ldots, n$ the function $r_{m}(x)$ is constant or tends to infinity as $x \rightarrow+\infty$, and there exists $b=$ const >0 such that

$$
\int_{x_{0}}^{+\infty}(f(x)-g(x))^{2} \frac{e^{2 b x}}{r_{n}^{2}(x)}<\infty, x_{0}>0
$$

Then for any solution $y(x)$ to equation (3) such that this solution and its first derivative tend to zero as $x \rightarrow+\infty$ there exists a solution $\tilde{y}(x)$ to equation (4) satisfying the following conditions:

$$
|y(x)-\tilde{y}(x)|=o\left(e^{-b x}\right), x \rightarrow+\infty, \quad \int_{x_{0}}^{+\infty}(y(x)-\tilde{y}(x))^{2} e^{2 b x}<\infty
$$

References

[1] Bellman R. Stability theory of differential equations, New York: McGraw-Hill, 1953, 166 p.
[2] Kiguradze I. T., Chanturia T. A. Asymptotic properties of solutions of nonautonomous ordinary differential equations, Dordrecht: Kluwer Acad. Publ., 1993, 331 p.
[3] Astashova I.V. On asymptotical behavior of solutions to a quasi-linear second order differential equation // Funct. Differ. Equ. 2009. Vol. 16. 1. P. 93-115.
[4] Astashova I. V. Kachestvennye svoistva reshenii kvazilineinyx obyknovennyx differencial'nix uravnenii. V: Kachestvennye svoistva reshenii differencial'nix uravnenii i smezhnye voprosy spektral'nogo analiza (Qualitative properties of solutions to quasilinear ordinary differential equations. In: Qualitative properties of solutions to differential equations and related topics of spectral analysis (Astashova I.V. ed.)), Moscow: UNITY-DANA, 2012, P. 22-288 (in Russian).
[5] Astashova I. V. On asymptotic equivalence of n-th order nonlinear differential equations // Tatra Mt. Math. Publ. 2015. Vol. 63. P. 31-38.
[6] Zabolotskiy S. A. On asymptotic equivalence of Lane-Emden type differential equations and some generalizations // Funct. Differ. Equ. 2015. Vol. 22. 3-4. P. 169-177.

