On Boundary Value Problems on an Infinite Interval for Higher Order Nonlinear Differential Systems

Ivan Kiguradze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia E-mail: kig@rmi.ge

On an infinite interval [$a,+\infty$ [, we consider the problem on the existence of a solution $\left(u_{1}, u_{2}\right)$: $\left[a,+\infty\left[\rightarrow \mathbb{R}^{2}\right.\right.$ of the differential system

$$
\begin{equation*}
u_{1}^{(m)}=f_{1}\left(t, u_{2}\right), \quad u_{2}^{(m)}=f_{2}\left(t, u_{1}\right), \tag{1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
\varphi_{k}\left(u_{1}^{(i-1)}(a), u_{2}^{(m-i)}(a)\right)=0 \quad(k=1, \ldots, m), \quad \Phi_{m}\left(u_{1}, u_{2}\right)<+\infty, \tag{2}
\end{equation*}
$$

where $f_{i}:\left[a,+\infty\left[\times \mathbb{R} \rightarrow \mathbb{R}(i=1,2)\right.\right.$ and $\varphi_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}(k=1, \ldots, m)$ are continuous functions and

$$
\Phi_{m}\left(u_{1}, u_{2}\right)=\int_{a}^{+\infty}\left(\left|u_{1}^{(m)}(t) u_{2}(t)\right|+\left|u_{2}^{(m)}(t) u_{1}(t)\right|\right) d t
$$

Analogous problems arise in the oscillation theory and in the case, where $f_{1}(t, x) \equiv x$, they have been studied in [1,2]. In a general case, problem (1), (2) remains still unstudied. The results established by us fill to a certain extent the existing here gap.

We study the case in which the functions $f_{i}(i=1,2)$ on the set $[a,+\infty[\times \mathbb{R}$ satisfy the inequalities

$$
\begin{equation*}
f_{1}(t, x) x \geq g_{1}(t, x), \quad(-1)^{m-1} f_{2}(t, x) x \geq g_{2}(t, x), \tag{3}
\end{equation*}
$$

where $g_{i}:[a,+\infty[\times \mathbb{R} \rightarrow \mathbb{R}(i=1,2)$ are continuous functions such that

$$
\begin{gather*}
g_{i}(t, x) \leq g_{i}(t, y) \text { for } t \geq a, \quad x y \geq 0, \quad|x|<|y| \quad(i=1,2), \\
\int_{a}^{b}\left|g_{i}(t, 0)\right| d t<+\infty \quad(i=1,2) . \tag{4}
\end{gather*}
$$

Along with (1), (2), we consider the auxiliary problem

$$
\begin{gather*}
u_{1}^{(m)}=(1-\lambda) u_{2}+\lambda f_{1}\left(t, u_{2}\right), \quad u_{2}^{(m)}=(-1)^{m-1}(1-\lambda) u_{1}+\lambda f_{2}\left(t, u_{1}\right), \tag{5}\\
(1-\lambda) u_{1}^{(k-1)}(a)+\lambda \varphi\left(u_{1}^{(k-1)}(a), u_{2}^{(m-k)}(a)\right), \quad u_{1}^{(k-1)}(b)=0 \quad(k=1, \ldots, m), \tag{6}
\end{gather*}
$$

depending on the parameters $\lambda \in[0,1]$ and $b \in] a,+\infty[$.
Proposition 1 (The principle of a priori boundedness). Let there exist constants $b_{0}>a$ and $r>0$ such that for any $\lambda \in[0,1]$ and $b \geq b_{0}$ every solution of problem (5), (6) admits the estimate

$$
\sum_{k=1}^{m}\left(\left|u_{1}^{(k-1)}(a)\right|+\left|u_{2}^{(k-1)}(a)\right|\right)+\Phi_{m}\left(u_{1}, u_{2}\right) \leq r .
$$

Then problem (1), (2) has at least one solution.

Based on Proposition 1, the following theorem can be proved.
Theorem 1. Let conditions (3), (4) be fulfilled, there exist mutually nonintersecting intervals $\left[a_{i k}, b_{i k}\right] \subset[a,+\infty[(i=1,2 ; k=1, \ldots, m)$ and a positive number r such that

$$
\begin{align*}
& \lim _{|x| \rightarrow+\infty} \int_{a_{i k}}^{b_{i k}} g_{i}(t, x) d t=+\infty \quad(i=1,2 ; \quad k=1, \ldots, m) \tag{7}\\
& \varphi_{k}(x, y) x>0 \text { for }(-1)^{m-k+1} x y>r \quad(k=1, \ldots, m)
\end{align*}
$$

Then problem (1), (2) has at least one solution.
Particular cases of (2) are the boundary conditions

$$
\begin{gather*}
u_{1}^{\left(j_{k}-1\right)}(a)=\psi_{k}\left(u_{2}^{\left(m-j_{k}\right)}(a)\right) \quad\left(k=1, \ldots, m_{0}\right), \\
u_{2}^{\left(m-j_{k}\right)}(a)=\psi_{k}\left(u_{1}^{\left(j_{k}-1\right)}(a)\right)\left(k=m_{0}+1 \ldots, m\right), \quad \Phi_{m}\left(u_{1}, u_{2}\right)<+\infty ; \tag{8}\\
u_{1}^{(k-1)}(a)=\psi_{k}\left(u_{2}^{(m-k)}(a)\right) \quad(k=1, \ldots, m), \quad \Phi_{m}\left(u_{1}, u_{2}\right)<+\infty, \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
u_{2}^{(m-k)}(a)=\psi_{k}\left(u_{1}^{(k-1)}(a)\right) \quad(k=1, \ldots, m), \quad \Phi_{m}\left(u_{1}, u_{2}\right)<+\infty \tag{10}
\end{equation*}
$$

where

$$
m_{0} \in\{1, \ldots, m-1\}, \quad j_{k} \in\{1, \ldots, m\}, \quad j_{k} \neq j_{\ell} \text { for } k \neq \ell,
$$

and $\psi_{k}: \mathbb{R} \rightarrow \mathbb{R}(k=1, \ldots, m)$ are continuous functions.
Corollary 1. If along with (3), (4) and (7) the condition

$$
\begin{equation*}
\liminf _{|x| \rightarrow+\infty}\left[(-1)^{m-j_{k}} \psi_{k}(x) x\right]>-\infty \tag{11}
\end{equation*}
$$

is fulfilled, then problem (1), (8) has at least one solution.
Corollary 2. If along with (3), (4) and (7) the condition

$$
\begin{equation*}
\liminf _{|x| \rightarrow+\infty}\left[(-1)^{m-k} \psi_{i}(x) x\right]>-\infty \quad(k=1, \ldots, m) \tag{12}
\end{equation*}
$$

is fulfilled, then problem (1), (9), as well as problem (1), (10) has at least one solution.
An interesting particular case of system (1) is the Emden-Fowler type differential system

$$
\begin{equation*}
u_{1}^{(m)}=p_{1}(t)\left|u_{2}\right|^{\lambda_{1}} \operatorname{sgn}\left(u_{2}\right)+q_{1}(t), \quad u_{2}^{(m)}=p_{2}(t)\left|u_{1}\right|^{\lambda_{2}} \operatorname{sgn}\left(u_{1}\right)+q_{2}(t) \tag{13}
\end{equation*}
$$

where $\lambda_{i}>0(i=1,2)$, and $p_{i}:\left[a,+\infty\left[\rightarrow \mathbb{R}, q_{i}:[a,+\infty[\rightarrow \mathbb{R}(i=1,2)\right.\right.$ are continuous functions.
Corollary 3. Let

$$
\begin{gathered}
p_{1}(t) \geq 0, \quad(-1)^{m-1} p_{2}(t) \geq 0 \text { for } t \geq a \\
\left|q_{i}(t)\right| \leq q_{i 0}(t)\left|p_{i}(t)\right|^{\frac{1}{1+\lambda_{i}}} \text { for } t \geq a \quad(i=1,2)
\end{gathered}
$$

where $q_{i 0}:[a,+\infty[\rightarrow[0,+\infty[(i=1,2)$ are continuous functions such that

$$
\int_{a}^{+\infty}\left|q_{i 0}(t)\right|^{1+\frac{1}{\lambda_{i}}} d t<+\infty \quad(i=1,2)
$$

If, moreover, condition (12) holds, then problem (13), (9), as well as problem (13), (10) has at least one solution.

Consider now the case, where

$$
\begin{align*}
& f_{i}(t, 0)=0 \text { for } t \geq a(i=1,2) \tag{14}\\
& f_{1}(t, x) \leq f_{1}(t, y), \quad(-1)^{m-1} f_{2}(t, x) \leq(-1)^{m-1} f_{2}(t, y) \text { for } t \geq a, x<y
\end{align*}
$$

A nontrivial solution $\left(u_{1}, u_{2}\right)$ of system (1) defined on some infinite interval $\left[a_{0},+\infty[\subset[a,+\infty[\right.$ is called:
(i) proper if it is not identically equal to zero in any neighbourhood of $+\infty$;
(ii) oscillatory if every its component changes sign in any neighbourhood of $+\infty$;
(iii) first kind singular solution if there exists $t_{0}>a_{0}$ such that $u_{i}(t)=0$ for $t \geq t_{0}(i=1,2)$.

The problem on the existence of proper (in particular, oscillatory) solutions of system (1) is of special interest in the so-called "superlinear" case, when the right-hand sides of that system are the functions, rapidly growing with respect to the phase variables. Such are the cases that cover the results formulated below.

Corollary 4. Let along with (12) and (14) the conditions

$$
f_{i}\left(t_{i}, x_{0}\right) \neq 0 \quad(i=1,2), \quad \sum_{k=1}^{m}\left|\psi_{k}(0)\right|>0
$$

be fulfilled, where $t_{i}>a(k=1,2)$ and $x_{0} \neq 0$. If, moreover, system (1) has no first kind singular solution, then problems (1), (9) and (1), (10) are solvable, and their solutions are proper.

Theorem 2. Let system (1) have no first kind singular solution and along with (12), (14) the condition

$$
\int_{a}^{+\infty}\left|f_{i}(t, x)\right| d t=+\infty \quad(i=1,2)
$$

be fulfilled. Let, moreover, either

$$
m \text { be even and } \sum_{k=1}^{m}\left|\psi_{k}(0)\right|>0
$$

or

$$
m \geq 3 \text { be odd, } \quad \psi_{m}(x) \equiv 0, \quad \sum_{k=1}^{m-1}\left|\psi_{k}(0)\right|>0
$$

Then problems (1), (9) and (1), (10) are solvable, and their solutions are oscillatory.
As an example, we consider the problem

$$
\begin{gather*}
u_{1}^{(m)}=p_{1}(t) \exp \left(h_{1}(t)\left|u_{2}\right|\right)\left|u_{2}\right|^{\lambda_{1}} \operatorname{sgn}\left(u_{2}\right), \quad u_{2}^{(m)}=p_{2}(t) \exp \left(h_{2}(t)\left|u_{1}\right|\right)\left|u_{1}\right|^{\lambda_{2}} \operatorname{sgn}\left(u_{1}\right) \tag{15}\\
u_{1}^{(k-1)}(a)=\alpha_{k} u^{(m-k)}(a)+c_{k} \quad(k=1, \ldots, m), \quad I_{m}\left(u_{1}, u_{2}\right)<+\infty \tag{16}
\end{gather*}
$$

where

$$
\lambda_{1}>0, \quad \lambda_{1} \lambda_{2} \geq 1, \quad \alpha_{k} \in \mathbb{R} \quad(i=1, \ldots, m)
$$

and $p_{i}, h_{i}:[a,+\infty[\rightarrow \mathbb{R}(i=1,2)$ are continuous functions such that

$$
p_{1}(t) \geq 0, \quad(-1)^{m-1} p_{2}(t) \geq 0, \quad h_{1}(t) \geq 0, \quad h_{2}(t) \geq 0 \text { for } t \geq a
$$

From Theorem 2 it follows

Corollary 5. Let

$$
\int_{a}^{+\infty} p_{i}(t) \exp \left(x h_{i}(t)\right) d t=+\infty \text { for } x>0 \quad(i=1,2)
$$

and let, moreover, either

$$
m \text { be even, }(-1)^{m-k} \alpha_{k}>0(k=1, \ldots, m), \sum_{k=1}^{m}\left|c_{k}\right|>0
$$

or

$$
m \text { be odd, } \quad(-1)^{m-k} \alpha_{k}>0(k=1, \ldots, m-1), \quad \alpha_{m}=c_{m}=0, \quad \sum_{k=1}^{m-1}\left|c_{k}\right|>0 .
$$

Then problem (15), (16) is solvable and every its solution is oscillatory.

References

[1] I. T. Kiguradze, A boundary value problem with a condition at infinity for higher-order ordinary differential equations. (Russian) Partial differential equations and their applications (Russian) (Tbilisi, 1982), 91-105, 249-250, Tbilis. Gos. Univ., Tbilisi, 1986.
[2] I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations. Springer Science \& Business Media, 2012.

