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1 Introduction

Consider the second-order Emden—Fowler type differential equation

v +p@,y, y) |yl sgny =0, k>0 k#1, (1)

where the function p(z, u, v) defined on R x R? is positive, continuous in x, Lipschitz continuous in u, v.
Asymptotic behavior of all solutions to equation (1) in the case p = p(x) was described by I.T. Kiguradze
and T.A. Chanturia (see [1]). Properties of oscillating solutions to third- and fourth-order similar differential
equations are described in [2, 3]. The oscillating criteria for solutions to high-order Emden—Fowler type differ-
ential equations is given in [4]. Results on asymptotic classification of maximally extended solutions to third-
and fourth-order differential equations with negative potential for k& > 0, k # 1 are given by I.V. Astashova
(see [3, 5, 6, 7]). Asymptotic classification of solutions to equation (1) with regular (k > 1) and singular
(0 < k < 1) nonlinearity for the bounded negative function p(x, u, v) is contained in [8]. Asymptotic behavior
of maximally extended solutions for the unbounded negative function p(z, u, v) is investigated in [9, 10].
Further suppose the function p(z, u, v) satisfies inequalities

0<m<plx, u v) <M< +oo. (2)

2 Behavior of maximally extended solutions

The following statements describe the behavior of solutions to equation (1).

Theorem 1 All nontrivial mazimally extended solutions to equation (1) and their first derivatives are oscil-
lating at increasing and decreasing argument. Moreover, zeroes x; of solutions and zeroes x; of their first
derivatives alternate, i. e.

<wjy < <z; <y <., jEL

Lemma 1 Let y(z) be a nontrivial mazimally extended solution to equation (1). Then for any j € Z the
following inequalities hold: —\/ ™ < ¥ (zien) < =,

y'(z;) —

Lemma 2 Let y(z) be a nontrivial mazimally extended solution to equation (1). Then for any j € 7Z the

2 x; =5
following inequalities hold: — ()™ < % < — (5
Denote
M= max p(oy@),y@), m= min py), y@), jez.
xe[xj,.’/ﬂj+1] xe[wja‘,j’.j+1]

Remark 1 For any j € Z the following inequalities hold:
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Note in the case p(x, u, v) = py > 0 all the nontrivial maximally extended solutions to equation (1) are
periodical ones.

Theorem 2 Let y(x) be a nontrivial mazimally extended solution to equation (1). Suppose the function
p(x, u, v) continuous in x, Lipschitz continuous in u, v and satisfying inequalities (2). Let the function p(x, u, v)
also tend to py >0 as x — 400 and tend to p_ > 0 as x — —oo uniformly in u, v.

Then y(z) is defined on the whole axis and the following relations hold as j — +o0o:

1) y' (;—%—)1) _1’

y(% )
2) y(;)l — —1.
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