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1 Introduction

Consider the equation

y(n) = P (x, y, y′, . . . , y(n−1)) |y|k sgn y, n ≥ 2, k ∈ R, k > 1, (1)

where the positive function P is continuous in x and Lipschitz continuous in the last n variables. Consider also
a special case of (1), namely

y(n) = p0 |y|k sgn y, n ≥ 2, k ∈ R, k > 1, p0 > 0. (2)

Definition 1. A solution y(x) of equation (1) is said to be n-positive if it is maximally extended in both
directions and eventually satisfies the inequalities

y(x) > 0, y′(x) > 0, . . . , y(n−1)(x) > 0.

Note that if the above inequalities are satisfied by a solution of (2) at some point x0, then they are also
satisfied at any point x > x0 in the domain of the solution. Moreover, such a solution, if maximally extended,
must be a so-called blow-up solution (having a vertical asymptote at the right endpoint of its domain).

Hereafter we use the notation
α =

n

k − 1
. (3)

Immediate calculations show that equation (2) has n-positive solutions defined on (−∞, x∗) with arbitrary
x∗ ∈ R and having exact power-law behavior, namely

y(x) = C(x∗ − x)−α, C =

(
α(α+ 1) . . . (α+ n− 1)

p0

) 1
k−1

. (4)

I. T. Kiguradze [1, Problem 16.4] posed a question on the equivalence, as x→ x∗, of all positive blow-up
solutions of (2) with the vertical asymptote x = x∗ to the solution defined by (4).

For n = 1 all n-positive solutions of (2) are defined by (4). For n ∈ {2, 3, 4} it is known that any
n-positive solution of (2) and even of more general equations (1) is asymptotically equivalent, near the right
endpoint of its domain, to the solution defined by (4) with appropriate x∗:

y(x) = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0. (5)

(See [1] for n = 2, and [2], [3], [4] for n ∈ {3, 4}). For equation (1) we mean by p0 = const > 0 in (4) the limit
of P (x, y0, . . . , yn−1) as x→ x∗ − 0, y0 →∞, . . . , yn−1 →∞.

For equation (1) with some additional assumptions on the function P the existence of solution with
power-law asymptotic behavior (5) is proved. For 5 ≤ n ≤ 11, the existence of an (n − 1)-parametrical family
of such solutions is obtained (see [4]).

The natural hypothesis generalizing this statement for all n > 4 appears to be wrong even for equation
(2) (see [5] for sufficiently large n and [6] for n ∈ {12, 13, 14}).
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2 Existence of positive solutions with non power-law asymptotic
behavior

For equation (2) it was proved [5] that for any N and K > 1 there exist an integer n > N and k ∈ R such that
1 < k < K and equation (2) has a solution of the form

y = p
− 1

k−1

0 (x∗ − x)−α h(log (x∗ − x)),

where α is defined by (3) and h is a positive periodic non-constant function on R.

As for the question of how large should be n for the existence of that type of positive solutions, the
following partial answer is given [6].

Theorem 1. If 12 ≤ n ≤ 14, then there exists k > 1 such that equation (2) has a solution y(x) satisfying

y(j)(x) = p
− 1

k−1

0 (x∗ − x)−α−j hj( log(x∗ − x) ), j = 0, 1, . . . , n− 1,

where α is defined by (3) and hj are periodic positive non-constant functions on R.

Remark 1. Computer calculations give approximate values of α providing the existence of the above-type
solutions. They are, with the corresponding values of k, as follows:

if n = 12, then α ≈ 0.56, k ≈ 22.4;
if n = 13, then α ≈ 1.44, k ≈ 10.0;
if n = 14, then α ≈ 2.37, k ≈ 6.9.

3 On power-law asymptotic behavior of solutions to weakly super-
linear Emden–Fowler type equations with constant potential

It appears that a weaker version of the I. T. Kiguradze’s hypothesis concerning power-law asymptotic behavior
of blow-up solutions for higher-order equations (2) can be proved. A sketch of the proof is contained in [7].

Theorem 2. For any integer n > 4 there exists K > 1 such that for any real k ∈ (1,K), all n-positive solutions
of equation (2) have the power-law asymptotic behavior (5) near the right endpoints of their domains.
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