Qualitative properties of lattice reaction-diffusion equations

Petr Stehlík

Dep. of Mathematics and NTIS, University of West Bohemia, Pilsen, Czech Rep.

Brno, 8th February 2016

Table of contents

- Discrete-space domains and PDEs - motivation
- Linear diffusion and transport equation on lattices
- Reaction-diffusion equations on lattices
- Examples

Joint work with

- Antonín Slavík,
- Jonáš Volek,
- Michal Friesl.

Underlying structures in evolutionary PDEs

continuous time

discrete time

Mathematical Motivation for Discrete-Space PDEs

- Spatial discretization
- Random walks
- Transition problems

Motivation: PDE (semi)discretization

- Spatial discretization of the classical diffusion/heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial t}(x, t)=a \frac{\partial^{2} u}{\partial x^{2}}(x, t) \\
\Downarrow \\
u_{t}(x, t)=a u(x+1, t)-2 a u(x, t)+a u(x-1, t), \quad x \in \mathbb{Z}, t \in \mathbb{R}
\end{gathered}
$$

E. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler randwertaufgaben, Mathematische Annalen 102 (1930), 650-670.

Motivation: Random walks on \mathbb{Z}

One-dimensional random walk on \mathbb{Z} with discrete time Transition probabilites: $a, b, c \in[0,1], a+b+c=1$

$$
u(x, t)=\text { probability of visiting } x \text { at time } t
$$

$$
\begin{aligned}
& u(x, t+1)=a u(x+1, t)+b u(x, t)+c u(x-1, t), \quad x \in \mathbb{Z}, t \in \mathbb{N}_{0} \\
& \Delta_{t} u(x, t)=a u(x+1, t)+(b-1) u(x, t)+c u(x-1, t), \quad x \in \mathbb{Z}, t \in \mathbb{N}_{0}
\end{aligned}
$$

Motivation: Transition problems

$$
\begin{gathered}
\frac{\partial u}{\partial t}=a \frac{\partial^{2} u}{\partial x^{2}}+f(u) \\
\Downarrow \\
u_{t}(x, t)=a u(x+1, t)-2 a u(x, t)+a u(x-1, t)+f(u),
\end{gathered}
$$

- Transition between discrete and continuous problems,
- Transition between ODEs and PDEs,
- Infinite system of ODEs,
- ODEs in sequence spaces.
- Local x spatial dynamics,
- diffusion - spatial dynamics,
- reaction function - local dynamics.

Application Motivation for Discrete-Space PDEs

- Image processing
T. Lindeberg, Scale-space for discrete signals, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990), no. 3, 234-254.
- Material sciences
J. W. Cahn, Theory of Crystal Growth and Interface Motion in Crystalline Materials, Acta.Metall. 8 (1960), 87-118.
- Biology

J. Campbell, The SMM model as a boundary value problem using the discrete diffusion equation, Theoretical Population Biology 72 (2007), no. 4, 539-546.
- (networks, electrical circuits...)

Linear case

Diffusion equation on lattices

Underlying structures

Our motivation

- (non)linear diffusion on lattices,
- different time structures, convergence.

Linear diffusion equations on lattices

We consider a class of partial dynamic equations with discrete space and arbitrary (continuous, discrete or mixed) time:

$$
u^{\Delta}(x, t)=a u(x+1, t)+b u(x, t)+c u(x-1, t), \quad x \in \mathbb{Z}, t \in \mathbb{T}
$$

- \mathbb{T} is a time scale (arbitrary closed subset of \mathbb{R})
- $a, b, c \in \mathbb{R}$
- $u^{\Delta}(x, t)$ is the Δ-derivative of u with respect to t

Explicit solutions to dynamic diffusion-type equations and their time integrals.
Applied Mathematics and Computations 234(2014), 486-505.

Existence and uniqueness for IVPs (1)

In general, initial-value problems do not have a unique forward solution $(\mathbb{T}=\mathbb{R})$; we get uniqueness by restricting ourselves to the class of bounded solutions.

Existence and uniqueness for IVPs (2)

Bounded backward solutions need not exist or be unique; additional assumption on the time scale graininess is necessary.

Theorem

Consider an interval $\left[T_{1}, T_{2}\right]_{\mathbb{T}} \subset \mathbb{T}$ and a point $t_{0} \in\left[T_{1}, T_{2}\right]_{\mathbb{T}}$. Let $u^{0} \in \ell^{\infty}(\mathbb{Z})$. Assume that $\mu(t)<\frac{1}{|a|+|b|+|c|}$ for every $t \in\left[T_{1}, t_{0}\right)_{\mathbb{T}}$. Then

$$
u^{\Delta}(x, t)=a u(x+1, t)+b u(x, t)+c u(x-1, t), \quad x \in \mathbb{Z}, t \in \mathbb{Z}
$$

has a unique bounded solution on $\mathbb{Z} \times\left[T_{1}, T_{2}\right]_{\mathbb{T}}$ satisfying $u\left(x, t_{0}\right)=u_{x}^{0}$ for every $x \in \mathbb{Z}$.

Explicit solutions - examples

Using generating functions we can derive, e.g.:

- $\mathbb{T}=\mathbb{R}$:

$$
u(x, t)=e^{b t} I_{x}(2 t \sqrt{a c})\left(\sqrt{\frac{c}{a}}\right)^{x}
$$

- $\mathbb{T}=\mathbb{Z}$:

$$
u(x, t)=\sum_{j=0}^{t}\binom{t}{j, t-2 j-x, j+x} a^{j}(b+1)^{t-2 j-x} c^{j+x}
$$

- $\mathbb{T}=\left\{H_{n}, n \in \mathbb{N}_{0}\right\}$, where $H_{0}=0$ and $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$:

$$
u\left(x, H_{n}\right)=\frac{1}{n!} \sum_{I=|x|}^{n} \sum_{j=0}^{I} s(n, I)\binom{l}{j, I-2 j-x, j+x} a^{j}(b+n)^{I-2 j-x} c^{j+x}
$$

Sum-preserving RHS

We consider the problem

$$
u^{\Delta_{t}}(x, t)=a u(x+1, t)+b u(x, t)+c u(x-1, t) .
$$

Theorem

Let $u: \mathbb{Z} \times\left[T_{1}, T_{2}\right]_{\mathbb{T}} \rightarrow \mathbb{R}$ be a loc.bounded solution and $a+b+c=0$. Assume that:

- For a certain $t_{0} \in\left[T_{1}, T_{2}\right]_{\mathbb{T}}$, the sum $\sum_{x \in \mathbb{Z}}\left|u\left(x, t_{0}\right)\right|$ is finite.
- $\mu(t)<\frac{1}{|a|+|b|+|c|}$ for every $t \in\left[T_{1}, t_{0}\right)_{\mathbb{T}}$.

Then $\sum_{x \in \mathbb{Z}} u(x, t)=\sum_{x \in \mathbb{Z}} u\left(x, t_{0}\right)$ for every $t \in\left[T_{1}, T_{2}\right]_{\mathbb{T}}$.

Counterexample

The condition $\mu(t)<\frac{1}{|a|+|b|+|c|}$ cannot be omitted. Consider, $a=c=1, b=-2$
$\left\{\begin{array}{l}u^{\Delta}(x, t)=u(x+1, t)-2 u(x, t)+u(x-1, t), \quad x \in \mathbb{Z}, t \in \frac{1}{4} \mathbb{Z}, \\ u(x, 0)=0 .\end{array}\right.$ $u(x,-1 / 4)=(-1)^{x}$

Stochastic processes

If $\mu(t)<-1 / b$ then for forward solutions

- sign is preserved,
- space sums are preserved,

Thus, we talk about dynamic stochastic processes.
\square Stehlik P., Volek J.
Transport equation on semidiscrete domains and Poisson-Bernoulli processes.
Journal of Difference Equations and Applications. 2013, 19:3, 439-456.

M. Friesl, A. Slavík, P. Stehlík

Discrete-space partial dynamic equations on time scales and applications to stochastic processes.
Applied Mathematics Letters 37 (2014), 86-90.

Counting stochastic processes

- $f_{t}(x)=u(x, t)$ - probability of number of events (occurrences) until time t,
- $g_{0}(t)=u(0, t)$ - probability distribution of the time of the first occurrence,
- $g_{x}(t)=u(x-1, \cdot)$ probability distributions that x events have happened until time t,
- moreover, $u(0, t)$ - waiting time until the next occurrence.

Counting stochastic processes

- $f_{t}(x)=u(x, t)$ - probability of number of events (occurrences) until time t,
- $g_{0}(t)=u(0, t)$ - probability distribution of the time of the first occurrence,
- $g_{x}(t)=u(x-1, \cdot)$ probability distributions that x events have happened until time t,
- moreover, $u(0, t)$ - waiting time until the next occurrence.

Counting stochastic processes

- $f_{t}(x)=u(x, t)$ - probability of number of events (occurrences) until time t,
- $g_{0}(t)=u(0, t)$ - probability distribution of the time of the first occurrence,
- $g_{x}(t)=u(x-1, \cdot)$ probability distributions that x events have happened until time t,
- moreover, $u(0, t)$ - waiting time until the next occurrence.

Counting stochastic processes

- $f_{t}(x)=u(x, t)$ - probability of number of events (occurrences) until time t,
- $g_{0}(t)=u(0, t)$ - probability distribution of the time of the first occurrence,
- $g_{x}(t)=u(x-1, \cdot)$ probability distributions that x events have happened until time t,
- moreover, $u(0, t)$ - waiting time until the next occurrence.

Counting stochastic processes

- $f_{t}(x)=u(x, t)$ - probability of number of events (occurrences) until time t,
- $g_{0}(t)=u(0, t)$ - probability distribution of the time of the first occurrence,
- $g_{x}(t)=u(x-1, \cdot)$ probability distributions that x events have happened until time t,
- moreover, $u(0, t)$ - waiting time until the next occurrence.

Counting stochastic processes

	$f_{t}(x)$	$g_{0}(t)$	$g_{x}(t), x \geq 0$
$\mathbb{Z} \times \mathbb{R}$	Poisson dist.	exponential dist.	Erlang (Gamma) dist.
$\mathbb{Z} \times p \mathbb{Z}$	binomial dist.	geometric dist.	negative binomial dist.

Example - Heterogeneous Bernoulli Process

p_{i} - probability of success in i-th trial(in contrast to standard Bernoulli process non-constant)

$$
\mathbb{T}=\left\{0, p_{1}, p_{1}+p_{2}, \ldots, \sum_{i=1}^{n-1} p_{i}, \ldots\right\}
$$

For illustration, let us consider 3 cases

1. Bernoulli case $p_{i}=\frac{1}{2}$, (dice rolling)
2. decreasing probability case $p_{i}=\frac{1}{i}$, (jumping over an obstacle)
3. increasing probability case $p_{i}=\frac{i-1}{i}$. (exam success)

Time integrals/sums

In general, time integrals are not preserved.

We observe time integrals preservation only in very special cases transport equation (e.g. $a=0$ and $b=c$) We focus on the more general question:

Under which condition are the time integrals/sums finite?

Time integrals/sums

- Difficult to analyze.
- We use explicit solutions:

$$
u(x, t)=\sum_{k=0}^{\infty}\left(\sum_{l=0}^{k}\binom{k}{I, k-2 l-x, l+x} a^{\prime} b^{k-2 l-x} c^{\prime+x}\right) h_{k}\left(t, t_{0}\right), \quad x \in \mathbb{Z}
$$

- $\mathbb{T}=\mathbb{R}$:

$$
u(x, t)=e^{b t} I_{x}(2 t \sqrt{a c})\left(\sqrt{\frac{c}{a}}\right)^{x}
$$

- $\mathbb{T}=\mathbb{Z}$:

$$
u(x, t)=\sum_{j=0}^{t}\binom{t}{j, t-2 j-x, j+x} a^{j}(b+1)^{t-2 j-x} c^{j+x}
$$

Exact integrals

Theorem

Let u be the unique locally bounded solution with $a, c>0$, $a \neq c$, and $a+b+c=0$.

- If $c>a$, then

$$
\int_{0}^{\infty} u(x, t) \Delta t= \begin{cases}\frac{\left(\frac{c}{a}\right)^{x}}{c-a} & \text { if } x<0 \\ \frac{1}{c-a} & \text { if } x \geq 0\end{cases}
$$

- If $c<a$, then

$$
\int_{0}^{\infty} u(x, t) \Delta t= \begin{cases}\frac{1}{a-c} & \text { if } x \leq 0 \\ \frac{\left(\frac{c}{a}\right)^{x}}{a-c} & \text { if } x>0\end{cases}
$$

Exact integrals/sums - illustration

Surprisingly

- time integrals are constant in one direction,
- the values are independent of the underlying time scales.

Going nonlinear

Reaction-diffusion equation

Reaction-diffusion equation

$u^{\Delta}(x, t)=a u(x+1, t)+b u(x, t)+c u(x-1, t)+f(u(x, t), x, t), \quad x \in \mathbb{Z}, \quad t \in \mathbb{T}$

- naturally, no explicit solutions,
- qualitative questions
- existence,
- uniqueness,
- continuous dependence,
- maximum principles.

Assumptions on the reaction function

$$
u^{\Delta}(x, t)=a u(x+1, t)+b u(x, t)+c u(x-1, t)+f(u(x, t), x, t),
$$

Assumptions on $f: \mathbb{R} \times \mathbb{Z} \times\left[t_{0}, T\right]_{\mathbb{T}} \rightarrow \mathbb{R}$:
(H1) f is bounded on each set $B \times \mathbb{Z} \times\left[t_{0}, T\right]_{\mathbb{T}}$, where $B \subset \mathbb{R}$ is bounded.
(H2) f is Lipschitz-continuous in the first variable on each set $B \times \mathbb{Z} \times\left[t_{0}, T\right]_{\mathbb{T}}$, where $B \subset \mathbb{R}$ is bounded.
(H3) For each bounded set $B \subset \mathbb{R}$ and each choice of $\varepsilon>0$ and $t \in\left[t_{0}, T\right]_{\mathbb{T}}$, there exists a $\delta>0$ such that if $s \in(t-\delta, t+\delta) \cap\left[t_{0}, T\right]_{\mathbb{T}}$, then $|f(u, x, t)-f(u, x, s)|<\varepsilon$ for all $u \in B, x \in \mathbb{Z}$.

Abstract formulation

Studying the abstract problem in ℓ^{∞} :

$$
U^{\Delta}(t)=\Phi(U(t), t)
$$

with $U:\left[t_{0}, t_{0}+\delta\right]_{\mathbb{T}} \rightarrow \ell^{\infty}(\mathbb{Z})$ and $\Phi: \ell^{\infty}(\mathbb{Z}) \times\left[t_{0}, T\right]_{\mathbb{T}} \rightarrow \ell^{\infty}(\mathbb{Z})$ being given by

$$
\Phi\left(\left\{u_{x}\right\}_{x \in \mathbb{Z}}, t\right)=\left\{a u_{x+1}+b u_{x}+c u_{x-1}+f\left(u_{x}, x, t\right)\right\}_{x \in \mathbb{Z}},
$$

we get

- Uniqueness,
- Local existence (bounded time interval),
- Continuous dependence on initial condition,
- Continuous dependence on the underlying time scale.

Weak Maximum principle

Additional assumptions on f :
(H4) a, b, $c \in \mathbb{R}$ are such that $a, c \geq 0, b<0$, and $a+b+c=0$.
(H5) $b<0$ and $\bar{\mu}_{\mathbb{T}} \leq-1 / b$.
(H6) There exist $r, R \in \mathbb{R}$ such that $r \leq m \leq M \leq R$, and one of the following statements holds:

- $\bar{\mu}_{\mathbb{T}}=0$ and $f(R, x, t) \leq 0 \leq f(r, x, t)$ for all $x \in \mathbb{Z}, t \in\left[t_{0}, T\right]_{\mathrm{T}}$.
- $\bar{\mu}_{\mathbb{T}}>0$ and $\frac{1+\bar{\mu}_{\mathbb{T}} b}{\bar{\mu}_{\mathbb{T}}}(r-u) \leq f(u, x, t) \leq \frac{1+\bar{\mu}_{\mathbb{T}} b}{\bar{\mu}_{\mathbb{T}}}(R-u)$ for all $u \in[r, R], x \in \mathbb{Z}, t \in\left[t_{0}, T\right]_{\mathrm{T}}$.

Illustration - key assumption on f

Weak Maximum Principle

Theorem (weak maximum principle)
Assume that (H1)-(H6) hold. If $u: \mathbb{Z} \times\left[t_{0}, T\right]_{\mathbb{T}} \rightarrow \mathbb{R}$ is a bounded solution of RDE, then

$$
r \leq u(x, t) \leq R \quad \text { for all } \quad x \in \mathbb{Z}, \quad t \in\left[t_{0}, T\right]_{\mathbb{T}} .
$$

Corollary - global existence and continuous dependence

Theorem (global existence)

If $u^{0} \in \ell^{\infty}(\mathbb{Z})$ and $(\mathrm{H} 1)-(H 6)$ hold, then $R D E$ has a unique bounded solution $u: \mathbb{Z} \times\left[t_{0}, T\right]_{\mathbb{T}} \rightarrow \mathbb{R}$.
Moreover, the solution depends continuously on u^{0} in the following sense: For every $\varepsilon>0$, there exists a $\delta>0$ such that if $v^{0} \in \ell^{\infty}(\mathbb{Z})$, $r \leq v_{x}^{0} \leq R$ for all $x \in \mathbb{Z}$, and $\left\|u^{0}-v^{0}\right\|_{\infty}<\delta$, then the unique bounded solution $v: \mathbb{Z} \times\left[t_{0}, T\right]_{\mathbb{T}} \rightarrow \mathbb{R}$ of RDE corresponding to the initial condition v^{0} satisfies $|u(x, t)-v(x, t)|<\varepsilon$ for all $x \in \mathbb{Z}$, $t \in\left[t_{0}, T\right]_{\mathbb{T}}$.

Lattice Nagumo equation

$$
\begin{aligned}
u^{\Delta} & =k \Delta^{2} u(x-1, t)+\lambda u\left(1-u^{2}\right), \\
u\left(x, t_{0}\right) & =u_{x}^{0}, \quad x \in \mathbb{Z} .
\end{aligned}
$$

Děkuji za pozornost

