Qualitative properties of lattice reaction-diffusion equations

Petr Stehlík

Dep. of Mathematics and NTIS, University of West Bohemia, Pilsen, Czech Rep.

Brno, 8th February 2016

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Table of contents

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Discrete-space domains and PDEs motivation
- Linear diffusion and transport equation on lattices
- Reaction-diffusion equations on lattices
- Examples

Joint work with

- Antonín Slavík,
- Jonáš Volek,
- Michal Friesl.

Mathematical Motivation for Discrete-Space PDEs

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Spatial discretization
- Random walks
- Transition problems

Motivation: PDE (semi)discretization

 Spatial discretization of the classical diffusion/heat equation:

$$\frac{\partial u}{\partial t}(x,t) = a \frac{\partial^2 u}{\partial x^2}(x,t)$$

$$\Downarrow$$

$$u_t(x,t) = au(x+1,t) - 2au(x,t) + au(x-1,t), \quad x \in \mathbb{Z}, \ t \in \mathbb{R}$$

E. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler randwertaufgaben, Mathematische Annalen 102 (1930), 650–670.

Motivation: Random walks on \mathbb{Z}

One-dimensional random walk on \mathbb{Z} with discrete time Transition probabilites: $a, b, c \in [0, 1], a + b + c = 1$

u(x, t) = probability of visiting x at time t

 $u(x, t+1) = au(x+1, t) + bu(x, t) + cu(x-1, t), \quad x \in \mathbb{Z}, \ t \in \mathbb{N}_0$ $\Delta_t u(x, t) = au(x+1, t) + (b-1)u(x, t) + cu(x-1, t), \quad x \in \mathbb{Z}, \ t \in \mathbb{N}_0$

Motivation: Transition problems

 $u_t(x,t) = au(x+1,t) - 2au(x,t) + au(x-1,t) + f(u),$

- Transition between discrete and continuous problems,
- Transition between ODEs and PDEs,
 - Infinite system of ODEs,
 - ODEs in sequence spaces.
- Local x spatial dynamics,
 - diffusion spatial dynamics,
 - reaction function local dynamics.

Application Motivation for Discrete-Space PDEs

Image processing

T. Lindeberg, *Scale-space for discrete signals*, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990), no. 3, 234–254.

Material sciences

- J. W. Cahn, *Theory of Crystal Growth and Interface Motion in Crystalline Materials*, Acta.Metall. 8 (1960), 87–118.
- Biology

J. Campbell, *The SMM model as a boundary value problem using the discrete diffusion equation*, Theoretical Population Biology 72 (2007), no. 4, 539–546.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(networks, electrical circuits...)

Linear case

Diffusion equation on lattices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Underlying structures

Our motivation

- (non)linear diffusion on lattices,
- different time structures, convergence.

ヘロト ヘポト ヘヨト ヘヨト

ъ

Linear diffusion equations on lattices

We consider a class of partial dynamic equations with discrete space and arbitrary (continuous, discrete or mixed) time:

$$u^{\Delta}(x,t) = au(x+1,t) + bu(x,t) + cu(x-1,t), \quad x \in \mathbb{Z}, \ t \in \mathbb{T}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- \mathbb{T} is a time scale (arbitrary closed subset of \mathbb{R})
- a, b, c ∈ ℝ
- $u^{\Delta}(x, t)$ is the Δ -derivative of u with respect to t

A. Slavík, P. Stehlík

Explicit solutions to dynamic diffusion-type equations and their time integrals. Applied Mathematics and Computations 234(2014), 486–505.

Existence and uniqueness for IVPs (1)

In general, initial-value problems do not have a unique forward solution ($\mathbb{T} = \mathbb{R}$); we get uniqueness by restricting ourselves to the class of bounded solutions.

Existence and uniqueness for IVPs (2)

Bounded backward solutions need not exist or be unique; additional assumption on the time scale graininess is necessary.

Theorem

Consider an interval $[T_1, T_2]_{\mathbb{T}} \subset \mathbb{T}$ and a point $t_0 \in [T_1, T_2]_{\mathbb{T}}$. Let $u^0 \in \ell^{\infty}(\mathbb{Z})$. Assume that $\mu(t) < \frac{1}{|a|+|b|+|c|}$ for every $t \in [T_1, t_0)_{\mathbb{T}}$. Then

$$u^{\Delta}(x,t) = au(x+1,t) + bu(x,t) + cu(x-1,t), \quad x \in \mathbb{Z}, \ t \in \mathbb{Z}$$

has a unique bounded solution on $\mathbb{Z} \times [T_1, T_2]_{\mathbb{T}}$ satisfying $u(x, t_0) = u_x^0$ for every $x \in \mathbb{Z}$.

Explicit solutions – examples

Using generating functions we can derive, e.g.:

•
$$\mathbb{T} = \mathbb{R}$$
:
 $u(x,t) = e^{bt} I_x(2t\sqrt{ac}) \left(\sqrt{\frac{c}{a}}\right)^x$

• $\mathbb{T} = \mathbb{Z}$:

$$u(x,t) = \sum_{j=0}^{t} {t \choose j, t-2j-x, j+x} a^{j} (b+1)^{t-2j-x} c^{j+x}$$

• $\mathbb{T} = \{H_n, n \in \mathbb{N}_0\}$, where $H_0 = 0$ and $H_n = \sum_{k=1}^n \frac{1}{k}$:

$$u(x,H_n) = \frac{1}{n!} \sum_{l=|x|}^{n} \sum_{j=0}^{l} s(n,l) \binom{l}{j,l-2j-x,j+x} a^{j} (b+n)^{l-2j-x} c^{j+x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sum-preserving RHS

We consider the problem

$$u^{\Delta_t}(x,t) = au(x+1,t) + bu(x,t) + cu(x-1,t).$$

Theorem

Let $u : \mathbb{Z} \times [T_1, T_2]_{\mathbb{T}} \to \mathbb{R}$ be a loc.bounded solution and a + b + c = 0. Assume that:

• For a certain $t_0 \in [T_1, T_2]_T$, the sum $\sum_{x \in \mathbb{Z}} |u(x, t_0)|$ is finite.

A D F A 同 F A E F A E F A Q A

•
$$\mu(t) < rac{1}{|a|+|b|+|c|}$$
 for every $t \in [T_1, t_0)_{\mathbb{T}}$.

Then $\sum_{x \in \mathbb{Z}} u(x, t) = \sum_{x \in \mathbb{Z}} u(x, t_0)$ for every $t \in [T_1, T_2]_{\mathbb{T}}$.

Counterexample

The condition $\mu(t) < \frac{1}{|a|+|b|+|c|}$ cannot be omitted. Consider, a = c = 1, b = -2

$$\begin{cases} u^{\Delta}(x,t) = u(x+1,t) - 2u(x,t) + u(x-1,t), & x \in \mathbb{Z}, t \in \frac{1}{4}\mathbb{Z}, \\ u(x,0) = 0. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $u(x,-1/4) = (-1)^x$

Stochastic processes

If $\mu(t) < -1/b$ then for forward solutions

- sign is preserved,
- space sums are preserved,

・ コット (雪) (小田) (コット 日)

Thus, we talk about dynamic stochastic processes.

Stehlik P., Volek J.

Transport equation on semidiscrete domains and Poisson-Bernoulli processes. Journal of Difference Equations and Applications. 2013, 19:3, 439–456.

M. Friesl, A. Slavík, P. Stehlík

Discrete-space partial dynamic equations on time scales and applications to stochastic processes. Applied Mathematics Letters 37 (2014), 86–90.

- f_t(x) = u(x, t) probability of number of events (occurrences) until time t,
- $g_0(t) = u(0, t)$ probability distribution of the time of the first occurrence,
- *g_x*(*t*) = *u*(*x* − 1, ·) probability distributions that *x* events have happened until time *t*,
- moreover, u(0, t) waiting time until the next occurrence.

- f_t(x) = u(x, t) probability of number of events (occurrences) until time t,
- $g_0(t) = u(0, t)$ probability distribution of the time of the first occurrence,
- *g_x*(*t*) = *u*(*x* − 1, ·) probability distributions that *x* events have happened until time *t*,
- moreover, u(0, t) waiting time until the next occurrence.

- f_t(x) = u(x, t) probability of number of events (occurrences) until time t,
- $g_0(t) = u(0, t)$ probability distribution of the time of the first occurrence,
- *g_x*(*t*) = *u*(*x* − 1, ·) probability distributions that *x* events have happened until time *t*,
- moreover, u(0, t) waiting time until the next occurrence.

- f_t(x) = u(x, t) probability of number of events (occurrences) until time t,
- $g_0(t) = u(0, t)$ probability distribution of the time of the first occurrence,
- g_x(t) = u(x − 1, ·) probability distributions that x events have happened until time t,
- moreover, u(0, t) waiting time until the next occurrence.

- f_t(x) = u(x, t) probability of number of events (occurrences) until time t,
- $g_0(t) = u(0, t)$ probability distribution of the time of the first occurrence,
- *g_x*(*t*) = *u*(*x* − 1, ·) probability distributions that *x* events have happened until time *t*,
- moreover, *u*(0, *t*) waiting time until the next occurrence.

	$f_t(x)$	$g_0(t)$	$g_x(t), x \ge 0$
$\mathbb{Z} \times \mathbb{R}$	Poisson dist.	exponential dist.	Erlang (Gamma) dist.
$\mathbb{Z} \times p\mathbb{Z}$	binomial dist.	geometric dist.	negative binomial dist.

Simeon Denis Poisson (1781-1840)

Jacob Bernoulli (1654-1705)

Example - Heterogeneous Bernoulli Process

 p_i - probability of success in *i*-th trial(in contrast to standard Bernoulli process non-constant)

$$\mathbb{T} = \left\{0, p_1, p_1 + p_2, \ldots, \sum_{i=1}^{n-1} p_i, \ldots\right\},\$$

For illustration, let us consider 3 cases

- *1*. Bernoulli case $p_i = \frac{1}{2}$, (dice rolling)
- 2. decreasing probability case $p_i = \frac{1}{i}$, (jumping over an obstacle)

(日) (日) (日) (日) (日) (日) (日)

3. increasing probability case $p_i = \frac{i-1}{i}$. (exam success)

Time integrals/sums

In general, time integrals are not preserved.

We observe time integrals preservation only in very special cases transport equation (e.g. a = 0 and b = c) We focus on the more general question:

Under which condition are the time integrals/sums finite?

・ロン ・四 と ・ ヨ と 一 ヨ

Time integrals/sums

- Difficult to analyze.
- We use explicit solutions:

$$u(x,t) = \sum_{k=0}^{\infty} \left(\sum_{l=0}^{k} \binom{k}{l, k-2l-x, l+x} a^{l} b^{k-2l-x} c^{l+x} \right) h_{k}(t,t_{0}), \quad x \in \mathbb{Z}$$

•
$$\mathbb{I} = \mathbb{R}$$
:
 $u(x,t) = e^{bt} I_x(2t\sqrt{ac}) \left(\sqrt{\frac{c}{a}}\right)^x$

• $\mathbb{T} = \mathbb{Z}$:

$$u(x,t) = \sum_{j=0}^{t} {t \choose j, t-2j-x, j+x} a^{j} (b+1)^{t-2j-x} c^{j+x}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exact integrals

Theorem

Let u be the unique locally bounded solution with $a, c > 0, a \neq c$, and a + b + c = 0.

• *If* c > a, *then*

$$\int_0^\infty u(x,t)\,\Delta t = \begin{cases} \frac{\left(\frac{c}{a}\right)^x}{c-a} & \text{if } x < 0, \\ \frac{1}{c-a} & \text{if } x \ge 0. \end{cases}$$

• *If c* < *a*, *then*

$$\int_0^\infty u(x,t)\,\Delta t = \begin{cases} \frac{1}{a-c} & \text{if } x \leq 0, \\ \frac{\left(\frac{c}{a}\right)^x}{a-c} & \text{if } x > 0. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Exact integrals/sums - illustration

Surprisingly

- time integrals are constant in one direction,
- the values are independent of the underlying time scales.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Going nonlinear

Reaction-diffusion equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reaction-diffusion equation

$$u^{\Delta}(x,t) = au(x+1,t)+bu(x,t)+cu(x-1,t)+f(u(x,t),x,t), \quad x \in \mathbb{Z}, \quad t \in \mathbb{T}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- naturally, no explicit solutions,
- qualitative questions
 - existence,
 - uniqueness,
 - · continuous dependence,
 - maximum principles.

Assumptions on the reaction function

$$u^{\Delta}(x,t) = au(x+1,t) + bu(x,t) + cu(x-1,t) + f(u(x,t),x,t),$$

Assumptions on $f : \mathbb{R} \times \mathbb{Z} \times [t_0, T]_{\mathbb{T}} \to \mathbb{R}$:

- (H1) f is bounded on each set $B \times \mathbb{Z} \times [t_0, T]_{\mathbb{T}}$, where $B \subset \mathbb{R}$ is bounded.
- (H2) f is Lipschitz-continuous in the first variable on each set $B \times \mathbb{Z} \times [t_0, T]_{\mathbb{T}}$, where $B \subset \mathbb{R}$ is bounded.
- (H3) For each bounded set $B \subset \mathbb{R}$ and each choice of $\varepsilon > 0$ and $t \in [t_0, T]_{\mathbb{T}}$, there exists a $\delta > 0$ such that if $s \in (t \delta, t + \delta) \cap [t_0, T]_{\mathbb{T}}$, then $|f(u, x, t) f(u, x, s)| < \varepsilon$ for all $u \in B, x \in \mathbb{Z}$.

(日) (日) (日) (日) (日) (日) (日)

Abstract formulation

Studying the abstract problem in ℓ^{∞} :

$$U^{\Delta}(t) = \Phi(U(t), t),$$

with $U : [t_0, t_0 + \delta]_T \to \ell^{\infty}(\mathbb{Z})$ and $\Phi : \ell^{\infty}(\mathbb{Z}) \times [t_0, T]_T \to \ell^{\infty}(\mathbb{Z})$ being given by

$$\Phi(\{u_x\}_{x\in\mathbb{Z}},t)=\{au_{x+1}+bu_x+cu_{x-1}+f(u_x,x,t)\}_{x\in\mathbb{Z}},$$

(日) (日) (日) (日) (日) (日) (日)

we get

- Uniqueness,
- Local existence (bounded time interval),
- · Continuous dependence on initial condition,
- Continuous dependence on the underlying time scale.

Weak Maximum principle

Additional assumptions on *f*:

- (H4) a, b, $c \in \mathbb{R}$ are such that $a, c \ge 0$, b < 0, and a + b + c = 0.
- (H5) b < 0 and $\overline{\mu}_{\mathbb{T}} \leq -1/b$.
- (H6) There exist $r, R \in \mathbb{R}$ such that $r \le m \le M \le R$, and one of the following statements holds:

•
$$\overline{\mu}_{\mathbb{T}} = 0$$
 and $f(R, x, t) \leq 0 \leq f(r, x, t)$ for all $x \in \mathbb{Z}$, $t \in [t_0, T]_{\mathbb{T}}$.
• $\overline{\mu}_{\mathbb{T}} > 0$ and $\frac{1 + \overline{\mu}_{\mathbb{T}} b}{\overline{\mu}_{\mathbb{T}}}(r - u) \leq f(u, x, t) \leq \frac{1 + \overline{\mu}_{\mathbb{T}} b}{\overline{\mu}_{\mathbb{T}}}(R - u)$ for all $u \in [r, R]$, $x \in \mathbb{Z}$, $t \in [t_0, T]_{\mathbb{T}}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Illustration - key assumption on f

Weak Maximum Principle

Theorem (weak maximum principle)

Assume that (H1)–(H6) hold. If $u : \mathbb{Z} \times [t_0, T]_{\mathbb{T}} \to \mathbb{R}$ is a bounded solution of RDE, then

$$r \leq u(x,t) \leq R$$
 for all $x \in \mathbb{Z}$, $t \in [t_0, T]_{\mathbb{T}}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (global existence)

If $u^0 \in \ell^{\infty}(\mathbb{Z})$ and (H1)–(H6) hold, then RDE has a unique bounded solution $u : \mathbb{Z} \times [t_0, T]_{\mathbb{T}} \to \mathbb{R}$.

Moreover, the solution depends continuously on u^0 in the following sense: For every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $v^0 \in \ell^{\infty}(\mathbb{Z})$, $r \leq v_x^0 \leq R$ for all $x \in \mathbb{Z}$, and $\|u^0 - v^0\|_{\infty} < \delta$, then the unique bounded solution $v : \mathbb{Z} \times [t_0, T]_{\mathbb{T}} \to \mathbb{R}$ of RDE corresponding to the initial condition v^0 satisfies $|u(x, t) - v(x, t)| < \varepsilon$ for all $x \in \mathbb{Z}$, $t \in [t_0, T]_{\mathbb{T}}$.

(日) (日) (日) (日) (日) (日) (日)

Lattice Nagumo equation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Děkuji za pozornost

გმადლობთ ყურადღებისთვის

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ