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Mathematical Motivation for Discrete-Space PDEs

• Spatial discretization
• Random walks
• Transition problems



Motivation: PDE (semi)discretization

• Spatial discretization of the classical diffusion/heat
equation:

∂u
∂t

(x , t) = a
∂2u
∂x2 (x , t)

⇓

ut (x , t) = au(x + 1, t)− 2au(x , t) + au(x − 1, t), x ∈ Z, t ∈ R

E. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler
randwertaufgaben, Mathematische Annalen 102 (1930), 650–670.



Motivation: Random walks on Z

One-dimensional random walk on Z with discrete time
Transition probabilites: a,b, c ∈ [0,1], a + b + c = 1

u(x , t) = probability of visiting x at time t

u(x , t +1) = au(x +1, t)+bu(x , t)+cu(x−1, t), x ∈ Z, t ∈ N0

∆tu(x , t) = au(x+1, t)+(b−1)u(x , t)+cu(x−1, t), x ∈ Z, t ∈ N0



Motivation: Transition problems

∂u
∂t

= a
∂2u
∂x2 + f (u)

⇓

ut (x , t) = au(x + 1, t)− 2au(x , t) + au(x − 1, t) + f (u),

• Transition between discrete and continuous problems,
• Transition between ODEs and PDEs,

• Infinite system of ODEs,
• ODEs in sequence spaces.

• Local x spatial dynamics,
• diffusion - spatial dynamics,
• reaction function - local dynamics.



Application Motivation for Discrete-Space PDEs

• Image processing
T. Lindeberg, Scale-space for discrete signals, IEEE Transactions on Pattern Analysis and Machine
Intelligence 12 (1990), no. 3, 234–254.

• Material sciences
J. W. Cahn, Theory of Crystal Growth and Interface Motion in Crystalline Materials, Acta.Metall. 8
(1960), 87–118.

• Biology
J. Campbell, The SMM model as a boundary value problem using the discrete diffusion equation,
Theoretical Population Biology 72 (2007), no. 4, 539–546.

• (networks, electrical circuits...)



Linear case

Diffusion equation on lattices



Underlying structures

Our motivation
• (non)linear diffusion on lattices,
• different time structures, convergence.



Linear diffusion equations on lattices

We consider a class of partial dynamic equations with discrete space
and arbitrary (continuous, discrete or mixed) time:

u∆(x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t), x ∈ Z, t ∈ T
• T is a time scale (arbitrary closed subset of R)
• a, b, c ∈ R
• u∆(x , t) is the ∆-derivative of u with respect to t

A. Slavík, P. Stehlík

Explicit solutions to dynamic diffusion-type equations and their time integrals.
Applied Mathematics and Computations 234(2014), 486–505.



Existence and uniqueness for IVPs (1)
In general, initial-value problems do not have a unique forward
solution (T = R); we get uniqueness by restricting ourselves to the
class of bounded solutions.



Existence and uniqueness for IVPs (2)

Bounded backward solutions need not exist or be unique; additional
assumption on the time scale graininess is necessary.

Theorem
Consider an interval [T1,T2]T ⊂ T and a point t0 ∈ [T1,T2]T. Let
u0 ∈ `∞(Z). Assume that µ(t) < 1

|a|+|b|+|c| for every t ∈ [T1, t0)T.
Then

u∆(x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t), x ∈ Z, t ∈ Z

has a unique bounded solution on Z× [T1,T2]T satisfying
u(x , t0) = u0

x for every x ∈ Z.



Explicit solutions – examples

Using generating functions we can derive, e.g.:

• T = R:

u(x , t) = ebt Ix (2t
√

ac)

(√
c
a

)x

• T = Z:

u(x , t) =
t∑

j=0

(
t

j , t − 2j − x , j + x

)
aj (b + 1)t−2j−xc j+x

• T = {Hn, n ∈ N0}, where H0 = 0 and Hn =
∑n

k=1
1
k :

u(x ,Hn) =
1
n!

n∑

l=|x|

l∑

j=0

s(n, l)
(

l
j , l − 2j − x , j + x

)
aj (b + n)l−2j−xc j+x



Sum-preserving RHS

We consider the problem

u∆t (x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t).

Theorem
Let u : Z× [T1,T2]T → R be a loc.bounded solution and
a + b + c = 0. Assume that:
• For a certain t0 ∈ [T1,T2]T, the sum

∑
x∈Z |u(x , t0)| is finite.

• µ(t) < 1
|a|+|b|+|c| for every t ∈ [T1, t0)T.

Then
∑

x∈Z u(x , t) =
∑

x∈Z u(x , t0) for every t ∈ [T1,T2]T.



Counterexample

The condition µ(t) < 1
|a|+|b|+|c| cannot be omitted. Consider,

a = c = 1, b = −2

{
u∆(x , t) = u(x + 1, t)− 2u(x , t) + u(x − 1, t), x ∈ Z, t ∈ 1

4Z,
u(x ,0) = 0.

u(x ,−1/4) = (−1)x



Stochastic processes

If µ(t) < −1/b then for forward solutions

• sign is preserved,
• space sums are preserved,

Thus, we talk about dynamic stochastic processes.

Stehlik P., Volek J.

Transport equation on semidiscrete domains and Poisson-Bernoulli processes.
Journal of Difference Equations and Applications. 2013, 19:3, 439–456.

M. Friesl, A. Slavík, P. Stehlík

Discrete-space partial dynamic equations on time scales and applications to stochastic processes.
Applied Mathematics Letters 37 (2014), 86–90.



Counting stochastic processes

• ft (x) = u(x , t) - probability of number of events (occurrences)
until time t ,

• g0(t) = u(0, t) - probability distribution of the time of the first
occurrence,

• gx (t) = u(x − 1, ·) probability distributions that x events have
happened until time t ,

• moreover, u(0, t) - waiting time until the next occurrence.
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Counting stochastic processes

• ft (x) = u(x , t) - probability of number of events (occurrences)
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Counting stochastic processes

ft (x) g0(t) gx (t), x ≥ 0
Z× R Poisson dist. exponential dist. Erlang (Gamma) dist.
Z× pZ binomial dist. geometric dist. negative binomial dist.

Simeon Denis Poisson Jacob Bernoulli
(1781-1840) (1654-1705)



Example - Heterogeneous Bernoulli Process

pi - probability of success in i-th trial(in contrast to standard Bernoulli
process non-constant)

T =

{
0,p1,p1 + p2, . . . ,

n−1∑

i=1

pi , . . .

}
,

For illustration, let us consider 3 cases
1. Bernoulli case pi = 1

2 , (dice rolling)

2. decreasing probability case pi = 1
i , (jumping over an obstacle)

3. increasing probability case pi = i−1
i . (exam success)



Time integrals/sums

In general, time integrals are not preserved.

We observe time integrals preservation only in very special cases -
transport equation (e.g. a = 0 and b = c)
We focus on the more general question:

Under which condition are the time integrals/sums finite?



Time integrals/sums

• Difficult to analyze.
• We use explicit solutions:

u(x , t) =
∞∑

k=0

(
k∑

l=0

(
k

l , k − 2l − x , l + x

)
albk−2l−xc l+x

)
hk (t , t0), x ∈ Z, t ∈ [t0,∞)T.

• T = R:

u(x , t) = ebt Ix (2t
√

ac)

(√
c
a

)x

• T = Z:

u(x , t) =
t∑

j=0

(
t

j , t − 2j − x , j + x

)
aj (b + 1)t−2j−xc j+x



Exact integrals

Theorem
Let u be the unique locally bounded solution with a, c > 0, a 6= c, and
a + b + c = 0.
• If c > a, then

∫ ∞

0
u(x , t) ∆t =

{
( c

a )x

c−a if x < 0,
1

c−a if x ≥ 0.

• If c < a, then

∫ ∞

0
u(x , t) ∆t =

{
1

a−c if x ≤ 0,
( c

a )x

a−c if x > 0.



Exact integrals/sums - illustration

Surprisingly
• time integrals are constant in one direction,
• the values are independent of the underlying time scales.
∑∞

t=0 u(x, t)
∑∞

t=0 u(x, t)
∑∞

t=0 u(x, t)

a < c a = c a > c



Going nonlinear

Reaction-diffusion equation



Reaction-diffusion equation

u∆(x , t) = au(x+1, t)+bu(x , t)+cu(x−1, t)+f (u(x , t), x , t), x ∈ Z, t ∈ T

• naturally, no explicit solutions,
• qualitative questions

• existence,
• uniqueness,
• continuous dependence,
• maximum principles.



Assumptions on the reaction function

u∆(x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t) + f (u(x , t), x , t),

Assumptions on f : R× Z× [t0,T ]T → R:
(H1) f is bounded on each set B × Z× [t0,T ]T, where B ⊂ R is

bounded.
(H2) f is Lipschitz-continuous in the first variable on each set

B × Z× [t0,T ]T, where B ⊂ R is bounded.
(H3) For each bounded set B ⊂ R and each choice of ε > 0 and

t ∈ [t0,T ]T, there exists a δ > 0 such that if
s ∈ (t − δ, t + δ) ∩ [t0,T ]T, then |f (u, x , t)− f (u, x , s)| < ε for all
u ∈ B, x ∈ Z.



Abstract formulation

Studying the abstract problem in `∞:

U∆(t) = Φ(U(t), t),

with U : [t0, t0 + δ]T → `∞(Z) and Φ : `∞(Z)× [t0,T ]T → `∞(Z) being
given by

Φ({ux}x∈Z, t) = {aux+1 + bux + cux−1 + f (ux , x , t)}x∈Z,

we get
• Uniqueness,
• Local existence (bounded time interval),
• Continuous dependence on initial condition,
• Continuous dependence on the underlying time scale.



Weak Maximum principle

Additional assumptions on f :
(H4) a, b, c ∈ R are such that a, c ≥ 0, b < 0, and a + b + c = 0.
(H5) b < 0 and µT ≤ −1/b.
(H6) There exist r ,R ∈ R such that r ≤ m ≤ M ≤ R, and one of the

following statements holds:
• µT = 0 and f (R, x , t) ≤ 0 ≤ f (r , x , t) for all x ∈ Z, t ∈ [t0,T ]T.

• µT > 0 and
1 + µTb
µT

(r − u) ≤ f (u, x , t) ≤ 1 + µTb
µT

(R − u) for all

u ∈ [r ,R], x ∈ Z, t ∈ [t0,T ]T.



Illustration - key assumption on f

M

m

R

r
u

f

f

µT → 0+

µT → 0+

ψ1

ψ2



Weak Maximum Principle

Theorem (weak maximum principle)
Assume that (H1)–(H6) hold. If u : Z× [t0,T ]T → R is a bounded
solution of RDE, then

r ≤ u(x , t) ≤ R for all x ∈ Z, t ∈ [t0,T ]T.



Corollary - global existence and continuous dependence

Theorem (global existence)
If u0 ∈ `∞(Z) and (H1)–(H6) hold, then RDE has a unique bounded
solution u : Z× [t0,T ]T → R.
Moreover, the solution depends continuously on u0 in the following
sense: For every ε > 0, there exists a δ > 0 such that if v0 ∈ `∞(Z),
r ≤ v0

x ≤ R for all x ∈ Z, and ‖u0 − v0‖∞ < δ, then the unique
bounded solution v : Z× [t0,T ]T → R of RDE corresponding to the
initial condition v0 satisfies |u(x , t)− v(x , t)| < ε for all x ∈ Z,
t ∈ [t0,T ]T.



Lattice Nagumo equation

u∆ = k∆2u(x − 1, t) + λu
(
1− u2) ,

u(x , t0) = u0
x , x ∈ Z.

1

2 k - λ
4

1

2 (k + λ)

1

2 k + λ
2

no bounds

bounds [-1,1]

bounds [-S,S]

λ

h



Děkuji za pozornost
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