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Mathematical Motivation for Discrete-Space PDEs

e Spatial discretization
e Random walks
¢ Transition problems



Motivation: PDE (semi)discretization

e Spatial discretization of the classical diffusion/heat
equation:

ou 0u
E(Xa t) aa 2

I

ur(x,t) = au(x +1,t) —2au(x,t) + au(x —1,t), xeZ, teR

(x, 1)

@ E. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler
randwertaufgaben, Mathematische Annalen 102 (1930), 650-670.



Motivation: Random walks on 7.

One-dimensional random walk on Z with discrete time
Transition probabilites: a,b,c € [0,1],a+ b+ c =1

u(x, t) = probability of visiting x at time ¢

u(x,t+1) = au(x+1,t)+bu(x,t)+cu(x—1,t), xe€Z, teNy
Aswu(x, t) = au(x+1,H)+(b—1)u(x, t)+cu(x—1,t), x€Z, teNy



Motivation: Transition problems

ou 9%u
E = aﬁ + f(U)
A2

ui(x,t) = au(x + 1,t) — 2au(x, t) + au(x — 1, t) + f(u),

e Transition between discrete and continuous problems,
e Transition between ODEs and PDEs,

e Infinite system of ODEs,
e ODEs in sequence spaces.

e Local x spatial dynamics,
o diffusion - spatial dynamics,
¢ reaction function - local dynamics.



Application Motivation for Discrete-Space PDEs

Image processing

T. Lindeberg, Scale-space for discrete signals, |EEE Transactions on Pattern Analysis and Machine
Intelligence 12 (1990), no. 3, 234-254.

Material sciences

J. W. Cahn, Theory of Crystal Growth and Interface Motion in Crystalline Materials, Acta.Metall. 8
(1960), 87-118.

Biology

@ J. Campbell, The SMM model as a boundary value problem using the discrete diffusion equation,
Theoretical Population Biology 72 (2007), no. 4, 539-546.

(networks, electrical circuits...)



Linear case

Diffusion equation on lattices



Underlying structures

Our motivation
¢ (non)linear diffusion on lattices,
o different time structures, convergence.
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Linear diffusion equations on lattices

We consider a class of partial dynamic equations with discrete space
and arbitrary (continuous, discrete or mixed) time:

Ut (x,t) = au(x +1,t) + bu(x,t) + cu(x —1,t), x€Z, tcT
o T is atime scale (arbitrary closed subset of R)

e a,bceR
e UA(x,t)is the A-derivative of u with respect to t

@ A. Slavik, P. Stehlik

Explicit solutions to dynamic diffusion-type equations and their time integrals.
Applied Mathematics and Computations 234(2014), 486-505.



Existence and uniqueness for IVPs (1)

In general, initial-value problems do not have a unique forward
solution (T = R); we get uniqueness by restricting ourselves to the
class of bounded solutions.

=30



Existence and uniqueness for IVPs (2)

Bounded backward solutions need not exist or be unique; additional
assumption on the time scale graininess is necessary.

Theorem

Consider an interval [Ty, Tz]r C T and a point ty € [Ty, To]r. Let
U0 € £>(2). Assume that ju(t) < ey for every t € [T, to)r.
Then

uA(x,t) = au(x +1,t) + bu(x,t) + cu(x — 1,t), X€Z, tcZ

has a unique bounded solution onZ x [Ty, To|r satisfying
u(x, to) = ul for every x € 7.



Explicit solutions — examples

Using generating functions we can derive, e.g.:

e T=R: N
u(x, t) = e’ (2ty/ac) <\/§>

t
_ t j t—2j—X Aj+X
u(x,z‘)_jE0 (j,t2jx,j+x)al(b+1) c

o T ={H,, n€ No}, where Hp =0 and H, = >"_; +:

|—2j—X Af+X
u(x, Hyp) = |ZZ n/)(/ Py X/+X>a’(b+n) c

I=|x| j=0



Sum-preserving RHS

We consider the problem

utt(x,t) = au(x +1,1) + bu(x, t) + cu(x — 1,1).

Theorem

Letu:7Z x [Ty, To]r — R be a loc.bounded solution and
a+ b+ c = 0. Assume that:

e Foracertainty € [Ty, To]r, the sum ., |u(x, to)| is finite.
o 1(t) < rzrrarye forevery t € [Th, to)r.
Theny ., u(x,t) =3 ., u(x,lo) forevery t € [Ty, To]r.



Counterexample

The condition (1)
a=c=1,b=-2

1 . .
< e cannot be omitted. Consider,

UA(x,t) = u(x +1,t) —2u(x, ) + u(x — 1,t), x€Z,teiZ,
u(x,0) =0.

u(x, =1/4) = (1)



Stochastic processes

If u(t) < —1/b then for forward solutions

e sign is preserved,
e space sums are preserved,

Thus, we talk about dynamic stochastic processes.

@ Stehlik P., Volek J.

Transport equation on semidiscrete domains and Poisson-Bernoulli processes.
Journal of Difference Equations and Applications. 2013, 19:3, 439—456.
@ M. Friesl, A. Slavik, P. Stehlik

Discrete-space partial dynamic equations on time scales and applications to stochastic processes.
Applied Mathematics Letters 37 (2014), 86-90.



Counting stochastic processes
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fi(x) = u(x, t) - probability of number of events (occurrences)
until time ¢,

9o(t) = u(0, t) - probability distribution of the time of the first
occurrence,

9x(t) = u(x — 1,) probability distributions that x events have
happened until time t,

moreover, u(0, t) - waiting time until the next occurrence.
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Counting stochastic processes
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Counting stochastic processes

| | fi(x) | Go(t) | 9x(t), x>0 |
7Z x R || Poisson dist. | exponential dist. | Erlang (Gamma) dist.
Z x pZ | binomial dist. | geometric dist. | negative binomial dist.

‘ tﬁ’”’” e

Simeon Denis Poisson Jacob Bernoulli

(1781-1840)

(1654-1705)



Example - Heterogeneous Bernoulli Process

pi - probability of success in i-th trial(in contrast to standard Bernoulli
process non-constant)

n—1
T = {Oap1ap1 +p27"'7zpfa"'}a
i=1

For illustration, let us consider 3 cases
1. Bernoulli case p; = % (dice rolling)
2. decreasing probability case p; = 17 (jumping over an obstacle)
3. increasing probability case p; = =1. (exam success)

i



Time integrals/sums

In general, time integrals are not preserved.
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We observe time integrals preservation only in very special cases -
transport equation (e.g. a=0and b = ¢)
We focus on the more general question:

Under which condition are the time integrals/sums finite?



Time integrals/sums

Difficult to analyze.
We use explicit solutions:

oS k
_ k k—2l—x l+x
U(X’t)Z<Z<I,k—2l—x,/+x>ab Mt o). x €7

k=0 \/=0

u(x, t) = eI, (2tv/ac) <\/§>

t
_ ' 1 t—2j—X Af+X
u(x, t) ;Q,t 2]—X/+x) (b+1) c

T =R:



Exact integrals

Theorem
Let u be the unique locally bounded solution with a,c > 0, a # ¢, and
at+b+c=0.

e Ifc > a, then

. ()
/ u(x,t)At:{C—a ifx <0,
0

=5 ifx>0.

e Ifc < a, then

o0 1 ifx <0,
/ u(x,t) At = ?ECX gxs
0 2 if x > 0.



Exact integrals/sums - illustration

Surprisingly
o time integrals are constant in one direction,
¢ the values are independent of the underlying time scales.

Zfio u(w,t) Z{’io u(w, ) Z?io u(z,1)

All time sums are infinite

-5-4-3-2-10 1 2 3 4 5 -5-4-3-2-101 2 3 4 5 -5-4-3-2-10 1 2 3 4 5

a<c a=c a>c



Going nonlinear

Reaction-diffusion equation



Reaction-diffusion equation

uA(x, 1) = au(x+1, )+bu(x, t)+ou(x—1,)+f(u(x,t),x,1), xe€Z, teT

o naturally, no explicit solutions,
e qualitative questions

e existence,

e uniqueness,

e continuous dependence,

e maximum principles.



Assumptions on the reaction function

Ut (x, 1) = au(x +1,1) + bu(x, t) + cu(x — 1, 1) + f(u(x, 1), x, 1),

Assumptionson f: R x Z x [ty, T]r — R:

(HI) f is bounded on each set B x Z x [y, T|t, where BC R is
bounded.

(H2) f is Lipschitz-continuous in the first variable on each set
B x Z x [ty, Tr, where B C R is bounded.

(H3) For each bounded set B ¢ R and each choice of ¢ > 0 and
t € [y, T]r, there exists a § > 0 such that if
se(t—4t+9d)N|[t, T]r, then|f(u,x,t) — f(u, x,s)| < e for all
ue B, xelZ.



Abstract formulation

Studying the abstract problem in ¢°°;
U (1) = o(U(t), 1),

with U : [to, fp + 0]r — ¢°°(Z) and & : (>°(Z) x [lp, T]r — ¢°>°(Z) being
given by

¢({Ux}xez7 t) = {aux+1 + buy + cux_1 + f(Ux, X, t)}XEZu

we get
e Uniqueness,
o Local existence (bounded time interval),
e Continuous dependence on initial condition,
e Continuous dependence on the underlying time scale.



Weak Maximum principle

Additional assumptions on f:
(H4) a, b,ceR aresuchthata,c>0,b<0,anda+b+c=0.
(H5) b<0andpy < —1/b.

(H6) There existr, R € R such thatr < m < M < R, and one of the
following statements holds:

e 71y = 0 and f(R,i(, t) <0< f(r,x,t) for all x €L, te [to, T]r.
o 7ip > 0 and “%7’”% — )< Hu,x, ) < 1’;7““’@?— u) for all
T g
uelr,Rl, x€Z,te b, T]r.



Illustration - key assumption on f

u



Weak Maximum Principle

Theorem (weak maximum principle)

Assume that (H1)-(H6) hold. If u : Z x [ty, T]r — R is a bounded
solution of RDE, then

r<u(x,t)y<R forall xeZ, telb,T]r.



Corollary - global existence and continuous dependence

Theorem (global existence)

If u® € ¢>°(Z) and (H1)—(H6) hold, then RDE has a unique bounded
solution u : Z x [ty, Tt — R.

Moreover, the solution depends continuously on u® in the following
sense: For every ¢ > 0, there exists a > 0 such that if v° € (>=(Z),
r<v?<Rforallx € Z, and ||u® — V0|, < &, then the unique
bounded solution v : Z x [ty, T|t — R of RDE corresponding to the
initial condition v° satisfies |u(x, t) — v(x,t)| < ¢ forall x € Z,

te [lb7 T]T.



Lattice Nagumo equation

ut = kAPu(x —1,t) + Au (1 — 7)),
u(x, ) =ul, xcZ

h

no bounds

2 (k +A)
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