The Neumann problem for two-term fractional differential equations

Svatoslav Staněk, Czech Republic
e-mail: svatoslav.stanek@upol.cz

Czech-Georgian Workshop on Boundary value problems 2016 February 8-11, 2016. Brno

1. Formulation of problem

Let $T>0$ and $J=[0, T]$.
We consider the Neumann problem

$$
\begin{gather*}
{ }^{c} D^{\alpha} u(t)=a(t)^{c} D^{\beta} u(t)+f(t, u(t)), \tag{1}\\
u^{\prime}(0)=0, \quad u^{\prime}(T)=0, \tag{2}
\end{gather*}
$$

where $\alpha \in(1,2), \beta \in(\alpha-1, \alpha), a \in C(J), f \in C(J \times \mathbb{R}),{ }^{c} D$ denotes the Caputo fractional derivative.

We say that a function $u: J \rightarrow \mathbb{R}$ is a solution of the problem (1), (2) if $u,{ }^{c} D^{\alpha} u \in C(J), u$ satisfies (2) and (1) holds for $t \in J$.

Since any constant function u on J is a solution of the problem ${ }^{c} D^{\alpha} u=a(t)^{c} D^{\beta} u$, $u^{\prime}(0)=u^{\prime}(T)=0$, problem (1), (2) is at resonance.

In order to give a solution of problem (1), (2), we define a two-component integral operator $\mathcal{Q}: C(J) \times \mathbb{R} \times[0,1] \rightarrow C(J) \times \mathbb{R}$ and prove that if (x, c) is a fixed point of $\mathcal{Q}(\cdot, \cdot, 1)$, then x is a solution of (1), (2). The existence of a fixed point is proved by the Leray-Schauder degree method.

2. Fractional calculus

The Riemann-Liouville fractional integral $I^{\gamma} x$ of order $\gamma>0$ of a function $x: J \rightarrow \mathbb{R}$ is defined as

$$
I^{\gamma} x(t)=\int_{0}^{t} \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)} x(s) \mathrm{d} s
$$

where Γ is the Euler gamma function.

- $\left\|^{\gamma}\right\|^{\mu} x(t)=I^{\gamma+\mu} x(t)$ for $t \in J, x \in C(J), \gamma, \mu \in(0, \infty)$ - semigroup property
- $\boldsymbol{I}^{\gamma}: C(J) \rightarrow C^{n-1}(J)$ for $\gamma \in(n-1, n), n \in \mathbb{N}$

The Caputo fractional derivative ${ }^{c} D^{\gamma} x$ of order $\gamma>0, \gamma \notin \mathbb{N}$, of a function $x: J \rightarrow \mathbb{R}$ is given as

$$
{ }^{c} D^{\gamma} x(t)=\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \int_{0}^{t} \frac{(t-s)^{n-\gamma-1}}{\Gamma(n-\gamma)}\left(x(s)-\sum_{k=0}^{n-1} \frac{x^{(k)}(0)}{k!} s^{k}\right) \mathrm{d} s,
$$

where $n=[\gamma]+1$ and $[\gamma]$ means the integral part of γ.
${ }^{c} D^{\gamma} x(t)=x^{(\gamma)}(t)$ for $\gamma \in \mathbb{N}$.
In particular,

$$
{ }^{c} D^{\gamma} x(t)=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int_{0}^{t} \frac{(t-s)^{1-\gamma}}{\Gamma(2-\gamma)}\left(x(s)-x(0)-x^{\prime}(0) s\right) \mathrm{d} s, \quad \gamma \in(1,2),
$$

and if $x \in C^{2}(J)$, then

$$
{ }^{c} D^{\gamma} x(t)=\int_{0}^{t} \frac{(t-s)^{1-\gamma}}{\Gamma(2-\gamma)} x^{\prime \prime}(s) \mathrm{d} s=I^{2-\gamma} x^{\prime \prime}(t), \quad t \in J, \gamma \in(1,2) .
$$

- ${ }^{c} D^{\gamma} I^{\gamma} x(t)=x(t)$ for $t \in J, x \in C(J), \gamma>0$
- $r^{\gamma} D^{\gamma} x(t)=x(t)-x(0)-x^{\prime}(0) t$ for $t \in J, x,{ }^{c} D^{\gamma} x \in C(J), \gamma \in(1,2)$.

We can write equation (1) as $(\alpha \in(1,2), \beta \in(\alpha-1, \alpha))$

$$
\begin{aligned}
& \beta \in(1, \alpha) \\
& \beta=1 \\
& \quad \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \int_{0}^{t} \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} u(s) \mathrm{d} s=a(t) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int_{0}^{t} \frac{(t-s)^{1-\beta}}{\Gamma(2-\beta)} u(s) \mathrm{d} s+f(t, u(t)) \\
& \quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int_{0}^{t} \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} u(s) \mathrm{d} s=a(t) u^{\prime}(t)+f(t, u(t)) \\
& \beta \in(\alpha-1,1) \\
& \quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int_{0}^{t} \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} u(s) \mathrm{d} s=a(t) \frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{t} \frac{(t-s)^{-\beta}}{\Gamma(1-\beta)} u(s) \mathrm{d} s+f(t, u(t))
\end{aligned}
$$

圊 J.R. Graef, L. Kong, Q. Kong, M. Wang, Positive solutions of nonlocal fractional boundary value problems, Discrete Contin. Dyn. Syst., supl. 2013, 283-290

The problem

$$
\begin{gathered}
-D^{\alpha} u(t)+a D^{\gamma} u(t)=f(t, u(t)), \\
\left.D^{\beta} u(t)\right|_{t=0}=0,\left.\quad D^{\alpha-\gamma} u(t)\right|_{t=1}=a u(1)
\end{gathered}
$$

is discussed, vhere D^{α} is the Riemann-Liouville fractional derivative, $1<\gamma<\alpha \leq 2,0 \leq \beta<\alpha-\gamma, 0 \leq a<\Gamma(\alpha-\gamma+1)$.

The existence of a positive solution is proved by using the Green function and fixed point theory on cones.

3. Preliminaries

Let $\wedge: C(J) \rightarrow C(J)$ be defined by

$$
\Lambda x(t)=a(t) I^{\alpha-\beta} x(t)
$$

where $a(t)$ is from (1), and let $\Lambda^{n}, n \in \mathbb{N}$, be the n-th iteration of Λ, that is,

$$
\Lambda^{n}=\underbrace{\Lambda \circ \Lambda \circ \cdots \circ \Lambda}_{n} .
$$

Let $\mathcal{A}: C(J) \rightarrow C(J)$ be given as

$$
\mathcal{A} x(t)=\sum_{n=1}^{\infty} \Lambda^{n} x(t)
$$

For $\gamma>0$ let E_{γ} be the classical Mittag-Leffler function acting on \mathbb{R},

$$
\begin{gathered}
E_{\gamma}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(n \gamma+1)} . \\
|\mathcal{A} x(t)| \leq\|x\|\left(E_{\alpha-\beta}\left(\|a\| t^{\alpha-\beta}\right)-1\right), \quad t \in J, x \in C(J) .
\end{gathered}
$$

LEMMA 1. Let $r \in C(J)$ and $c \in \mathbb{R}$. Then the fuction

$$
u(t)=c+I^{\alpha} r(t)+I^{\alpha} \mathcal{A} r(t), \quad t \in J
$$

is the unique solution of the initial fractional value problem

$$
\left.\begin{array}{c}
{ }^{c} D^{\alpha} u(t)=a(t)^{c} D^{\beta} u(t)+r(t) \\
u(0)=c, \quad u^{\prime}(0)=0 .
\end{array}\right\}
$$

We will show how to get the integral representation

$$
u(t)=c+I^{\alpha} r(t)+I^{\alpha} \mathcal{A} r(t), \quad t \in J
$$

of IVP

$$
{ }^{c} D^{\alpha} u=a(t)^{c} D^{\beta} u+r(t), \quad u(0)=c, \quad u^{\prime}(0)=0 .
$$

Suppose that u is a solution of ${ }^{c} D^{\alpha} u=a(t)^{c} D^{\beta} u+r(t)$ satisfying $u^{\prime}(0)=0$. Since ${ }^{c} D^{\beta} u=I^{\alpha-\beta c} D^{\alpha} u$, we have

$$
{ }^{c} D^{\alpha} u=a(t) I^{\alpha-\beta c} D^{\alpha} u+r(t) .
$$

Let $z={ }^{c} D^{\alpha} u$. Then $z=a(t) I^{\alpha-\beta} z+r(t)$, that is,

$$
z=\Lambda z+r(t)
$$

Then

$$
\begin{aligned}
& z=\Lambda(\Lambda z+r(t))+r(t)=\Lambda^{2} z+\Lambda r(t)+r(t) \\
& z=\Lambda^{n+1} z+r(t)+\Lambda r(t)+\cdots \Lambda^{n} r(t)=\Lambda^{n+1} z+r(t)+\sum_{k=1}^{n} \Lambda^{k} r(t)
\end{aligned}
$$

Letting $n \rightarrow \infty$ and supposing $\lim _{n \rightarrow \infty} \Lambda^{n} z=0$, we arrive at

$$
z=r(t)+\sum_{k=1}^{\infty} \Lambda^{k} r(t)=r(t)+\mathcal{A r}(t)
$$

Hence

$$
{ }^{c} D^{\alpha} u=r(t)+\mathcal{A r}(t)
$$

By applying I^{α} to the last equality and using $u(0)=c$, we get

$$
u(t)=c+I^{\alpha} r(t)+I^{\alpha} \mathcal{A} r(t), \quad t \in J
$$

4. Operators

Keeping in mind Lemma 1 , let $\mathcal{F}: C(J) \rightarrow C(J)$ be defined as

$$
(\mathcal{F} x)(t)=I^{\alpha} f(t, x(t))+I^{\alpha} \mathcal{A} f(t, x(t))
$$

and let $\mathcal{Q}: C(J) \times \mathbb{R} \times[0,1] \rightarrow C(J) \times \mathbb{R}$,

$$
\mathcal{Q}(x, c, \lambda)=\left(c+\lambda(\mathcal{F} x)(t), c+\left.I^{\alpha-1} f(t, x(t))\right|_{t=T}+\left.I^{\alpha-1} \mathcal{A} f(t, x(t))\right|_{t=T}\right) .
$$

LEMMA 2. \mathcal{Q} is a completely continuous operator and if (x, c) is a fixed point of $\mathcal{Q}(\cdot, \cdot, 1)$, then x is a solution of problem (1), (2) and $c=x(0)$.

We will work with the following conditions on the functions a and f in equation (1):
$\left(H_{1}\right) a \in C(J)$ and $a(t) \geq 0$ for $t \in J$.
$\left(H_{2}\right) f \in C(J \times \mathbb{R})$ and there exists positive constant S such that

$$
x f(t, x)>0 \quad \text { for } t \in J \text { and }|x| \geq S
$$

$\left(H_{3}\right)$ There exist positive constants K and L such that

$$
|f(t, x)| \leq K+L|x| \quad \text { for }(t, x) \in J \times \mathbb{R}
$$

LEMMA 3. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then there exists a positive constant W such that the estimate

$$
\|x\|<W, \quad|c|<W
$$

is fulfilled for all fixed points (x, c) of the operator $\mathcal{Q}(\cdot, \cdot, \lambda)$ with $\lambda \in[0,1]$.

5. Existence and uniqueness

THEOREM 1. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then the Neumann problem (1), (2) has at least one solution.

Proof. Let $W>0$ be from Lemma 3 and $\Omega=\{x \in C(J):\|x\| \leq W\}$. By the Borsuk antipodal theorem and the homotopy property,

$$
\begin{gathered}
\operatorname{deg}(\mathcal{I}-\mathcal{Q}(\cdot, \cdot, 0), \Omega, 0) \neq 0 \\
\operatorname{deg}(\mathcal{I}-\mathcal{Q}(\cdot, \cdot, 0), \Omega, 0)=\operatorname{deg}(\mathcal{I}-\mathcal{Q}(\cdot, \cdot, 1), \Omega, 0)
\end{gathered}
$$

where \mathcal{I} is the identical operator on $C(J) \times \mathbb{R}$. Hence

$$
\operatorname{deg}(\mathcal{I}-\mathcal{Q}(\cdot, \cdot, 1), \Omega, 0) \neq 0
$$

and therefore there exists a fixed point $(u, c) \in \Omega$ of the operator $\mathcal{Q}(\cdot, \cdot, 1)$. By Lemma $2, u$ is a solution of problem (1), (2).

EXAMPLE 1. The fractional differential equation

$$
\begin{equation*}
{ }^{c} D^{19 / 10} u=|\sin t|^{c} D^{18 / 10} u+t \cos u+\frac{u^{2} \arctan u}{1+|u|} \tag{3}
\end{equation*}
$$

satisfies conditions $\left(H_{1}\right)-\left(H_{3}\right)$ for $\alpha=19 / 10, \beta=18 / 10, S=\max \{2 T, 1\}$, $K=T$ and $L=\pi / 2$. Hence the Neumann problem (3), (2) has at least one solution.

THEOREM 2. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Let $f(t, x)$ be increasing in the variable x for all $t \in J$, and for each $M>0$ there exist $L_{M}>0$ such that

$$
|f(t, x)-f(t, y)| \leq L_{M}|x-y| \quad \text { for } t \in J, x, y \in[-M, M]
$$

Then problem (1), (2) has a unique solution.
EXAMPLE 2. Let $b \in C(J)$ and $f(t, x)=b(t)+x^{3} /\left(1+x^{2}\right)$ Then f satisfies conditions $\left(H_{2}\right)$ and $\left(H_{3}\right)$ for $S=2 \max \{1,\|b\|\}, K=\|b\|$ and $L=1$. Besides, $f(t, \cdot)$ is increasing for all $t \in J$ and

$$
|f(t, x)-f(t, y)| \leq 3|x-y|, \quad t \in J, x, y \in \mathbb{R}
$$

According to Theorem 2, for each a satisfying $\left(H_{1}\right)$ the problem

$$
\left.\begin{array}{c}
{ }^{c} D^{\alpha} u=a(t)^{c} D^{\beta} u+b(t)+\frac{u^{3}}{1+u^{2}}, \\
u^{\prime}(0)=0, \quad u^{\prime}(T)=0
\end{array}\right\}
$$

has a unique solution.
(T) A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, The Netherlands, 2006.
R. Diethelm, The Analysis of Fractional Differential Equations, Lectures Notes in Mathematics, Springer Berlin Heidelberg 2010.

