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1. Formulation of problem

Let T > 0 and J = [0,T ].

We consider the Neumann problem

cDαu(t) = a(t)cDβu(t) + f (t, u(t)), (1)

u′(0) = 0, u′(T ) = 0, (2)

where α ∈ (1, 2), β ∈ (α − 1, α), a ∈ C (J), f ∈ C (J × R), cD denotes the Caputo
fractional derivative.

We say that a function u : J → R is a solution of the problem (1), (2) if
u, cDαu ∈ C (J), u satisfies (2) and (1) holds for t ∈ J.

Since any constant function u on J is a solution of the problem cDαu = a(t)cDβu,
u′(0) = u′(T ) = 0, problem (1), (2) is at resonance.
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In order to give a solution of problem (1), (2), we define a two-component integral
operator Q : C (J)×R× [0, 1] → C (J)×R and prove that if (x , c) is a fixed point
of Q(·, ·, 1), then x is a solution of (1), (2). The existence of a fixed point is
proved by the Leray-Schauder degree method.
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2. Fractional calculus

The Riemann-Liouville fractional integral I γx of order γ > 0 of a function
x : J → R is defined as

I γx(t) =

∫
t

0

(t − s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function.

I γ Iµx(t) = I γ+µx(t) for t ∈ J, x ∈ C (J), γ, µ ∈ (0,∞) - semigroup property

I γ : C (J) → C n−1(J) for γ ∈ (n − 1, n), n ∈ N
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The Caputo fractional derivative cDγx of order γ > 0, γ 6∈ N, of a function
x : J → R is given as

cDγx(t) =
dn

dtn

∫
t

0

(t − s)n−γ−1

Γ(n − γ)

(

x(s) −
n−1∑

k=0

x (k)(0)

k!
sk

)

ds,

where n = [γ] + 1 and [γ] means the integral part of γ.
cDγx(t) = x (γ)(t) for γ ∈ N.

In particular,

cDγx(t) =
d2

dt2

∫
t

0

(t − s)1−γ

Γ(2 − γ)
(x(s) − x(0) − x ′(0)s)ds, γ ∈ (1, 2),

and if x ∈ C 2(J), then

cDγx(t) =

∫
t

0

(t − s)1−γ

Γ(2 − γ)
x ′′(s)ds = I 2−γx ′′(t), t ∈ J, γ ∈ (1, 2).

cDγ I γx(t) = x(t) for t ∈ J, x ∈ C (J), γ > 0

I γcDγx(t) = x(t) − x(0) − x ′(0)t for t ∈ J, x , cDγx ∈ C (J), γ ∈ (1, 2).
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We can write equation (1) as (α ∈ (1, 2), β ∈ (α − 1, α))

β ∈ (1, α)

d2

dt2

∫
t

0

(t − s)1−α

Γ(2 − α)
u(s)ds = a(t)

d2

dt2

∫
t

0

(t − s)1−β

Γ(2 − β)
u(s)ds + f (t, u(t))

β = 1

d2

dt2

∫
t

0

(t − s)1−α

Γ(2 − α)
u(s)ds = a(t)u′(t) + f (t, u(t))

β ∈ (α − 1, 1)

d2

dt2

∫
t

0

(t − s)1−α

Γ(2 − α)
u(s)ds = a(t)

d

dt

∫
t

0

(t − s)−β

Γ(1 − β)
u(s)ds + f (t, u(t))
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J.R. Graef, L. Kong, Q. Kong, M. Wang, Positive solutions of nonlocal

fractional boundary value problems, Discrete Contin. Dyn. Syst., supl. 2013,
283–290

The problem
−Dαu(t) + aDγu(t) = f (t, u(t)),

Dβu(t)|t=0 = 0, Dα−γu(t)|t=1 = au(1)

is discussed, vhere Dα is the Riemann-Liouville fractional derivative,
1 < γ < α ≤ 2, 0 ≤ β < α − γ, 0 ≤ a < Γ(α − γ + 1).

The existence of a positive solution is proved by using the Green function and
fixed point theory on cones.
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3. Preliminaries

Let Λ : C (J) → C (J) be defined by

Λx(t) = a(t)Iα−βx(t),

where a(t) is from (1), and let Λn, n ∈ N, be the n-th iteration of Λ, that is,

Λn = Λ ◦ Λ ◦ · · · ◦ Λ
︸ ︷︷ ︸

n

.

Let A : C (J) → C (J) be given as

Ax(t) =
∞∑

n=1

Λnx(t).

For γ > 0 let Eγ be the classical Mittag–Leffler function acting on R,

Eγ(z) =
∞∑

n=0

zn

Γ(nγ + 1)
.

|Ax(t)| ≤ ‖x‖
(
Eα−β

(
‖a‖tα−β

)
− 1

)
, t ∈ J, x ∈ C (J).
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LEMMA 1. Let r ∈ C (J) and c ∈ R. Then the fuction

u(t) = c + Iαr(t) + IαAr(t), t ∈ J,

is the unique solution of the initial fractional value problem

cDαu(t) = a(t)cDβu(t) + r(t),

u(0) = c , u′(0) = 0.

}
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We will show how to get the integral representation

u(t) = c + Iαr(t) + IαAr(t), t ∈ J,

of IVP
cDαu = a(t)cDβu + r(t), u(0) = c , u′(0) = 0.

Suppose that u is a solution of cDαu = a(t)cDβu + r(t) satisfying u′(0) = 0.
Since cDβu = Iα−βcDαu, we have

cDαu = a(t)Iα−βcDαu + r(t).

Let z = cDαu. Then z = a(t)Iα−βz + r(t), that is,

z = Λz + r(t).

Then

z = Λ(Λz + r(t)) + r(t) = Λ2z + Λr(t) + r(t),

z = Λn+1z + r(t) + Λr(t) + · · ·Λnr(t) = Λn+1z + r(t) +
n∑

k=1

Λk r(t).
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Letting n → ∞ and supposing limn→∞ Λnz = 0, we arrive at

z = r(t) +
∞∑

k=1

Λk r(t) = r(t) + Ar(t)

Hence
cDαu = r(t) + Ar(t)

By applying Iα to the last equality and using u(0) = c , we get

u(t) = c + Iαr(t) + IαAr(t), t ∈ J
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4. Operators

Keeping in mind Lemma 1, let F : C (J) → C (J) be defined as

(Fx)(t) = Iαf (t, x(t)) + IαAf (t, x(t))

and let Q : C (J) × R × [0, 1] → C (J) × R,

Q(x , c , λ) =
(

c + λ(Fx)(t), c + Iα−1f (t, x(t))|t=T + Iα−1Af (t, x(t))|t=T

)

.

LEMMA 2. Q is a completely continuous operator and if (x , c) is a fixed point of

Q(·, ·, 1), then x is a solution of problem (1), (2) and c = x(0).
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We will work with the following conditions on the functions a and f in equation
(1):

(H1) a ∈ C (J) and a(t) ≥ 0 for t ∈ J.

(H2) f ∈ C (J × R) and there exists positive constant S such that

xf (t, x) > 0 for t ∈ J and |x | ≥ S .

(H3) There exist positive constants K and L such that

|f (t, x)| ≤ K + L|x | for (t, x) ∈ J × R.

LEMMA 3. Let (H1) − (H3) hold. Then there exists a positive constant W such

that the estimate

‖x‖ < W , |c | < W ,

is fulfilled for all fixed points (x , c) of the operator Q(·, ·, λ) with λ ∈ [0, 1].
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5. Existence and uniqueness

THEOREM 1. Let (H1) − (H3) hold. Then the Neumann problem (1), (2) has at

least one solution.

Proof. Let W > 0 be from Lemma 3 and Ω = {x ∈ C (J) : ‖x‖ ≤ W }. By the
Borsuk antipodal theorem and the homotopy property,

deg (I − Q(·, ·, 0),Ω, 0) 6= 0,

deg (I − Q(·, ·, 0),Ω, 0) = deg (I − Q(·, ·, 1),Ω, 0).

where I is the identical operator on C (J) × R. Hence

deg (I − Q(·, ·, 1),Ω, 0) 6= 0,

and therefore there exists a fixed point (u, c) ∈ Ω of the operator Q(·, ·, 1). By
Lemma 2, u is a solution of problem (1), (2).
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EXAMPLE 1. The fractional differential equation

cD19/10u = | sin t|cD18/10u + t cos u +
u2 arctan u

1 + |u|
(3)

satisfies conditions (H1) − (H3) for α = 19/10, β = 18/10, S = max{2T , 1},
K = T and L = π/2. Hence the Neumann problem (3), (2) has at least one
solution.
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THEOREM 2. Let (H1)− (H3) hold. Let f (t, x) be increasing in the variable x for

all t ∈ J, and for each M > 0 there exist LM > 0 such that

|f (t, x) − f (t, y)| ≤ LM |x − y | for t ∈ J, x , y ∈ [−M,M].

Then problem (1), (2) has a unique solution.

EXAMPLE 2. Let b ∈ C (J) and f (t, x) = b(t) + x3/(1 + x2) Then f satisfies
conditions (H2) and (H3) for S = 2max{1, ‖b‖}, K = ‖b‖ and L = 1. Besides,
f (t, ·) is increasing for all t ∈ J and

|f (t, x) − f (t, y)| ≤ 3|x − y |, t ∈ J, x , y ∈ R.

According to Theorem 2, for each a satisfying (H1) the problem

cDαu = a(t)cDβu + b(t) +
u3

1 + u2
,

u′(0) = 0, u′(T ) = 0







has a unique solution.
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