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u
00 = p(t)u+ q(t; u); u(0) = u(!); u0(0) = u

0(!) (�)

p : [0; !]! R . . . Lebesgue integrable

q : [0; !]� R! R . . . Carathéodory + sublinear

B solution = AC
1 function

B we are interested in the existence and uniqueness of non-trivial non-negative as well
as positive solutions of (�)

jq(t; x)j � q0(t; x) for a. e. t 2 [0; !] and all x � x0;

x0 > 0; q0 : [0; !]� [x0;+1[! [0;+1[ is a Carathéodory function;

q0(t; �) : [x0;+1[! [0;+1[ is non-decreasing for a. e. t 2 [0; !];

lim
x!+1

1

x

Z
!

0

q0(s; x)ds = 0:

9>>>>>=
>>>>>;

(H1)
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as positive solutions of (�)

q(t; x) � xg(t; x) for a. e. t 2 [0; !] and all x 2 ]0; �];
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g(t; �) : ]0; �]! R is non-increasing for a. e. t 2 [0; !];
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1 function
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as positive solutions of (�)
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1 function
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0(!)

We say that p 2 V+(!) if

u 2 AC
1([0; !]);

u
00(t) � p(t)u(t) for a. e. t 2 [0; !];

u(0) = u(!); u0(0) = u
0(!)

9=
; =) u(t) � 0 for t 2 [0; !]:

Alternatively – Green’s function is positive, or antimaximum principle holds

We say that p 2 V�(!) if

u 2 AC
1([0; !]);

u
00(t) � p(t)u(t) for a. e. t 2 [0; !];

u(0) = u(!); u0(0) = u
0(!)

9=
; =) u(t) � 0 for t 2 [0; !]:

Alternatively – Green’s function is negative, or maximum principle holds
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00 = p(t)u+ f(t); u(0) = u(!); u0(0) = u

0(!)

We say that p 2 V0(!) if the problem

u
00 = p(t)u; u(0) = u(!); u0(0) = u

0(!)

has a positive solution.

We say that p 2 D1(!) if for any � 2 [0; ![ , the solution u of the problem the

problem
u
00 = ep(t)u; u(�) = 0; u0(�) = 1

has at most one zero on the interval ]�;�+ ![ , where ep is the !-periodic extension
of p to the whole real axis.
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00 = p(t)u+ h(t)juj� sgnu; u(0) = u(!); u0(0) = u

0(!) (1)

Theorem. Let � 2 ]0; 1[ and

h(t) > 0 for a. e. t 2 [0; !]: (A1)

Then:

(1) p 2 V�(!) [ V0(!) ) (1) has only the trivial solution

(2) p 62 V�(!) [ V0(!) ) (1) has at least 3 sign-constant solutions (�6� 0, �
6� 0, � 0)

Example. Consider a particular case of (1) with

p(t) := �1; h(t) := 3(1� sin t) for t 2 [0; 2�]; � :=
1

2
; ! := 2�;

namely, the problem

u
00 = �u+ 3(1� sin t)

p
juj sgnu; u(0) = u(2�); u0(0) = u

0(2�): (2)

Then p 2 D1(!), p 62 V�(!) [ V0(!) [ V+(!), (A1) holds, and problem (2) has
a solution

u(t) := (1 + sin t)2 for t 2 [0; 2�]:
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B p 62 V�(!) [ V0(!) ) (1) has at least one non-trivial non-negative solution

p 62 V�(!) [ V0(!) ) 9` 2 L([0; !]), such that ` � 0 and p+ ` 2 IntV+(!)
) 9 an arbitrarily large positive lower function � of problem (1)

9r > 0 such that p+ h

r1��
2 V�(!) ) 9 an arbitrarily small positive upper

function � of problem (1)

� > 0 large enough, cutting function �(x) := [x]+ � [x� �]+ for x 2 R
auxiliary problem

u
00 = (p(t) + `(t))u+ h(t)j�(u)j� sgn�(u)� `(t)�(u); PBC (3)

(�; �) is a couple of reverse-ordered lower and upper functions of (3)

(3) has a solution u such that

0 < �(tu) � u(tu) � �(tu) for some tu 2 [0; !] (4)

p+ ` 2 IntV+(!) ) u(t) � 0 for t 2 [0; !]

(5) ) u 6� 0

u(t) � � for t 2 [0; !] ) �(u) � u ) u is a non-trivial non-negative solution
of (1)
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