Non-negative periodic solutions of second-order differential equations with sublinear nonlinearities

Alexander Lomtatidze, Jiří Šremr

Institute of Mathematics, Czech Academy of Sciences, Branch in Brno

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$u'' = p(t)u + q(t,u); \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

- $p \colon [0,\omega] \to \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear

(*)

$$u''=p(t)u+q(t,u); \quad u(0)=u(\omega), \,\, u'(0)=u'(\omega)$$

(*)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $p \colon [0, \omega] \to \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p: [0, \omega] \rightarrow \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p: [0, \omega] \rightarrow \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)

$$\begin{aligned} |q(t,x)| &\leq q_0(t,x) \quad \text{for a. e. } t \in [0,\omega] \text{ and all } x \geq x_0, \\ x_0 &> 0, \quad q_0 \colon [0,\omega] \times [x_0, +\infty[\to [0, +\infty[\text{ is a Carathéodory function}, \\ q_0(t,\cdot) \colon [x_0, +\infty[\to [0, +\infty[\text{ is non-decreasing for a. e. } t \in [0,\omega], \\ \lim_{x \to +\infty} \frac{1}{x} \int_0^{\omega} q_0(s,x) \mathrm{d}s = 0. \end{aligned} \right\}$$
(H1)

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p: [0, \omega] \rightarrow \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)

$$\begin{array}{l} q(t,x) \geq xg(t,x) \quad \text{for a. e. } t \in [0,\omega] \text{ and all } x \in]0,\delta], \\ \delta > 0, \quad g \colon [0,\omega] \times]0,\delta] \to \mathbb{R} \text{ is a locally Carathéodory function,} \\ g(t,\cdot) \colon]0,\delta] \to \mathbb{R} \text{ is non-increasing for a. e. } t \in [0,\omega], \end{array} \right\}$$

$$\left. \begin{array}{l} (H_2) \\ (H_2) \\ (H_3) \\ (H$$

(日) (日) (日) (日) (日) (日) (日) (日)

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p: [0, \omega] \rightarrow \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)

$$\left. \begin{array}{l} \text{for every } b > a > 0, \text{ there exists } h_{ab} \in L([0, \omega]) \text{ such that} \\ h_{ab}(t) \ge 0 \quad \text{for a. e. } t \in [0, \omega], \quad h_{ab} \not\equiv 0, \\ q(t, x) \ge h_{ab}(t) \quad \text{for a. e. } t \in [0, \omega] \text{ and all } x \in [a, b], \end{array} \right\}$$

$$\left. \begin{array}{l} (H_3) \\ (H_$$

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p: [0, \omega] \rightarrow \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)

$$\begin{array}{l} \text{For every } b > a > 0 \ \text{and } c > 0, \ \text{there exists } h_{abc} \in L([0,\omega]) \ \text{such that} \\ h_{abc}(t) \ge 0 \quad \text{for a. e. } t \in [0,\omega], \ h_{abc} \not\equiv 0, \\ \frac{q(t,x)}{x} - \frac{q(t,x+c)}{x+c} \ge h_{abc}(t) \quad \text{for a. e. } t \in [0,\omega] \ \text{and all } x \in [a,b]. \end{array} \right\}$$

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p: [0, \omega] \rightarrow \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)
- ▷ particular case:

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

p, *h* ∈ *L*([0, ω])
λ ∈]0, 1[

$$u'' = p(t)u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (*)

- $p \colon [0, \omega] \to \mathbb{R}$... Lebesgue integrable
- $q: [0, \omega] \times \mathbb{R} \to \mathbb{R} \dots$ Carathéodory + sublinear
- \triangleright solution = AC^1 function
- we are interested in the existence and uniqueness of non-trivial non-negative as well as positive solutions of (*)
- ▷ particular case:

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

p, *h* ∈ *L*([0, ω])
λ ∈]0, 1[

either
$$h \ge 0$$
 a.e. on $[0, \omega]$, or $h \le 0$ a.e. on $[0, \omega]$,

the coefficient p is not constant and can change its sign!!!

$$u'' = p(t)u + f(t); \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

• We say that $\left| \begin{array}{c} p \in \mathcal{V}^+(\omega) \end{array}
ight|$ if

$$egin{array}{lll} u\in AC^1([0,\omega]),\ u''(t)\geq p(t)u(t) & ext{for a. e. }t\in [0,\omega],\ u(0)=u(\omega), \ u'(0)=u'(\omega) \end{array}
ight\} \implies u(t)\geq 0 & ext{for }t\in [0,\omega]. \end{array}$$

Alternatively - Green's function is positive, or antimaximum principle holds

• We say that $p \in \mathcal{V}^{-}(\omega)$ if $u \in AC^{1}([0, \omega]),$ $u''(t) \ge p(t)u(t)$ for a.e. $t \in [0, \omega],$ $u(0) = u(\omega), u'(0) = u'(\omega)$ $w(t) \le 0$ for $t \in [0, \omega].$

Alternatively - Green's function is negative, or maximum principle holds

$$u'' = p(t)u + f(t); \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

• We say that $\left| \ p \in \mathcal{V}_0(\omega)
ight|$ if the problem

$$u''=p(t)u; \quad u(0)=u(\omega), \,\, u'(0)=u'(\omega)$$

has a positive solution.

• We say that $p \in D_1(\omega)$ if for any $\alpha \in [0, \omega[$, the solution u of the problem the problem

$$u^{\prime\prime}=\widetilde{p}(t)u; \hspace{0.4cm} u(lpha)=0, \hspace{0.4cm} u^{\prime}(lpha)=1$$

has at most one zero on the interval $]\alpha, \alpha + \omega[$, where \tilde{p} is the ω -periodic extension of p to the whole real axis.

(日) (日) (日) (日) (日) (日) (日) (日)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

• $h(t) \geq 0$ for a.e. $t \in [0, \omega], \ h \not\equiv 0$

$$u^{\prime\prime} = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u^{\prime}(0) = u^{\prime}(\omega)$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $h(t) \geq 0$ for a.e. $t \in [0, \omega]$, $h \not\equiv 0$

$$y^{\prime\prime}=ay+b\sqrt[3]{y}$$

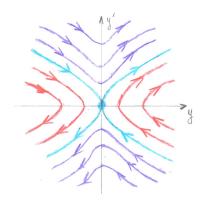
• b > 0

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

• $h(t) \geq 0$ for a.e. $t \in [0, \omega]$, $h \not\equiv 0$

$$y^{\prime\prime}=ay+b\sqrt[3]{y}$$

• b > 0, $a \ge 0$

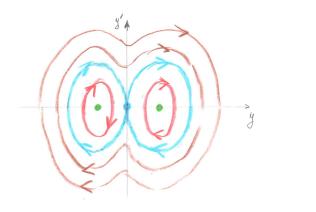


$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

• $h(t) \geq 0$ for a.e. $t \in [0, \omega], \ h \not\equiv 0$

$$y^{\prime\prime}=ay+b\sqrt[3]{y}$$

• b > 0, a < 0



$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Then:

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega) \,\, \left(1 + \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int$$

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

)

Then:

(1) $p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has only the trivial solution

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

(日) (日) (日) (日) (日) (日) (日) (日)

Then:

- (1) $p \in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \implies$ (1) has only the trivial solution
- (2) $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions $(\underset{\neq}{\geq} 0, \underset{\neq}{\leq} 0, \equiv 0)$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

Then:

(1) $p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has only the trivial solution (2) $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions $(\stackrel{\geq}{\neq} 0, \stackrel{\leq}{\neq} 0, \equiv 0)$

Example. Consider a particular case of (1) with

$$p(t):=-1, \quad h(t):=3(1-\sin t) \quad ext{for } t\in [0,2\pi], \qquad \lambda:=rac{1}{2} \ , \qquad \omega:=2\pi,$$

namely, the problem

$$u'' = -u + 3(1 - \sin t)\sqrt{|u|} \operatorname{sgn} u; \quad u(0) = u(2\pi), \ u'(0) = u'(2\pi).$$
 (2)

Then $p \in \mathcal{D}_1(\omega)$, $p \notin \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \cup \mathcal{V}^+(\omega)$, (A₁) holds, and problem (2) has a solution

$$u(t):=\left(1+\sin t
ight)^2$$
 for $t\in[0,2\pi]$.

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A_1)

Then:

p ∈ V⁻(ω) ∪ V₀(ω) ⇒ (1) has only the trivial solution
 p ∉ V⁻(ω) ∪ V₀(ω) ⇒ (1) has at least 3 sign-constant solutions ([≥]_₹0, [≤]_₹0, ≡ 0)
 (2a) p ∈ V⁺(ω) ⇒ (1) has exactly 3 solutions (> 0, < 0, ≡ 0)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

Then:

(1) $p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has only the trivial solution (2) $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions $(\stackrel{>}{\neq} 0, \stackrel{\leq}{\neq} 0, \equiv 0)$ (2a) $p \in \mathcal{V}^{+}(\omega) \Rightarrow$ (1) has exactly 3 solutions (> 0, < 0, $\equiv 0$) (2b) $p \in \mathcal{D}_{1}(\omega) \setminus [\mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \cup \mathcal{V}^{+}(\omega)] \Rightarrow$ (1) has at least 3 sign-constant solutions and no sign-changing solutions

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

Then:

(1)
$$p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$$
 (1) has only the trivial solution
(2) $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions $(\stackrel{\geq}{\neq} 0, \stackrel{\leq}{\neq} 0, \equiv 0)$
(2a) $p \in \mathcal{V}^{+}(\omega) \Rightarrow$ (1) has exactly 3 solutions (> 0, < 0, $\equiv 0$)
(2b) $p \in \mathcal{D}_{1}(\omega) \setminus [\mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \cup \mathcal{V}^{+}(\omega)] \Rightarrow$ (1) has at least 3 sign-constant
solutions and no sign-changing solutions
(2c) $p \notin \mathcal{D}_{1}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

Then:

(1)
$$p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$$
 (1) has only the trivial solution
(2) $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions $(\stackrel{\geq}{\neq} 0, \stackrel{\leq}{\neq} 0, \equiv 0)$
(2a) $p \in \mathcal{V}^{+}(\omega) \Rightarrow$ (1) has exactly 3 solutions (> 0, < 0, $\equiv 0$)
(2b) $p \in \mathcal{D}_{1}(\omega) \setminus [\mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \cup \mathcal{V}^{+}(\omega)] \Rightarrow$ (1) has at least 3 sign-constant
solutions and no sign-changing solutions
(2c) $p \notin \mathcal{D}_{1}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions

Remark: Assertions (1) and (2a) remain true even if (A_1) is relaxed to

$$h(t) \ge 0$$
 for a.e. $t \in [0, \omega], \quad h \not\equiv 0.$ (A₂)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

$$h(t) > 0$$
 for a.e. $t \in [0, \omega]$. (A₁)

Then:

(1)
$$p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$$
 (1) has only the trivial solution
(2) $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions $(\stackrel{>}{\neq} 0, \stackrel{\leq}{\neq} 0, \equiv 0)$
(2a) $p \in \mathcal{V}^{+}(\omega) \Rightarrow$ (1) has exactly 3 solutions (> 0, < 0, $\equiv 0$)
(2b) $p \in \mathcal{D}_{1}(\omega) \setminus [\mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \cup \mathcal{V}^{+}(\omega)] \Rightarrow$ (1) has at least 3 sign-constant
solutions and no sign-changing solutions

(2c) $p \notin \mathcal{D}_1(\omega) \Rightarrow$ (1) has at least 3 sign-constant solutions

Remark: Assertions (1) and (2a) remain true even if (A_1) is relaxed to

$$h(t) \geq 0$$
 for a.e. $t \in [0, \omega],$ $h \not\equiv 0.$ (A_2)

Open questions:

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \cup \mathcal{V}^{+}(\omega) \implies (1)$ has a positive solution?
- $p \notin \mathcal{D}_1(\omega) \implies (1)$ has a sign-changing solution?

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

(1)

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\triangleright \ p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies (1) \text{ has at least one non-trivial non-negative solution}$ • $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies \exists \ell \in L([0, \omega]), \text{ such that } \ell \geq 0 \text{ and } p + \ell \in \operatorname{Int} \mathcal{V}^{+}(\omega)$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega) \,\, \Big| \,\,$$

 $rac{>} p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow$ (1) has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow \exists \ell \in L([0, \omega]), \text{ such that } \ell \geq 0 \text{ and } p + \ell \in \operatorname{Int} \mathcal{V}^{+}(\omega)$
 - \Rightarrow \exists an arbitrarily large positive lower function α of problem (1)

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

 $ightarrow p
ot\in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + rac{h}{r^{1-\lambda}} \in \mathcal{V}^-(\omega)$

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)\,\,\Big|$$

 $hightarrow p
ot\in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \;\;\Rightarrow\;\;$ (1) has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)\,\,\Big|$$

 $hightarrow p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x-\delta]_+$ for $x \in \mathbb{R}$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega) \,\, \Big| \,\,$$

 $hinspace p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x-\delta]_+$ for $x \in \mathbb{R}$
- auxiliary problem

$$u'' = (p(t) + \ell(t))u + h(t)|\chi(u)|^{\lambda} \operatorname{sgn} \chi(u) - \ell(t)\chi(u); \quad \mathsf{PBC}$$
 (3)

$$u'' = p(t)u + h(t)|u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u'(0) = u'(\omega) \, \, igg|$$

 $hinspace p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x \delta]_+$ for $x \in \mathbb{R}$
- auxiliary problem

$$u'' = (p(t) + \ell(t))u + h(t)|\chi(u)|^{\lambda} \operatorname{sgn} \chi(u) - \ell(t)\chi(u); \quad \mathsf{PBC}$$
 (3)

• (α, β) is a couple of reverse-ordered lower and upper functions of (3)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega) \,\, \Big| \,\,$$

 $hightarrow p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x \delta]_+$ for $x \in \mathbb{R}$
- auxiliary problem

$$u'' = (p(t) + \ell(t))u + h(t)|\chi(u)|^{\lambda} \operatorname{sgn} \chi(u) - \ell(t)\chi(u);$$
 PBC (3)

- (α, β) is a couple of reverse-ordered lower and upper functions of (3)
- (3) has a solution u such that

$$0 < \beta(t_u) \le u(t_u) \le \alpha(t_u)$$
 for some $t_u \in [0, \omega]$ (4)

$$u'' = p(t)u + h(t)|u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u'(0) = u'(\omega) \, \, igg| \, .$$

 $hinspace p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \operatorname{Int} \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x \delta]_+$ for $x \in \mathbb{R}$
- auxiliary problem

$$u'' = (p(t) + \ell(t))u + h(t)|\chi(u)|^{\lambda} \operatorname{sgn} \chi(u) - \ell(t)\chi(u); \quad \mathsf{PBC}$$
 (3)

- (α, β) is a couple of reverse-ordered lower and upper functions of (3)
- (3) has a solution u such that

$$0 < \beta(t_u) \le u(t_u) \le \alpha(t_u)$$
 for some $t_u \in [0, \omega]$ (4)

• $p + \ell \in \operatorname{Int} \mathcal{V}^+(\omega) \; \Rightarrow \; u(t) \geq 0 \; ext{for} \; t \in [0, \omega]$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega) \,\, \Big| \,\,$$

 $hinspace p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x \delta]_+$ for $x \in \mathbb{R}$
- auxiliary problem

$$u'' = (p(t) + \ell(t))u + h(t)|\chi(u)|^{\lambda} \operatorname{sgn} \chi(u) - \ell(t)\chi(u); \quad \mathsf{PBC}$$
 (3)

- (α, β) is a couple of reverse-ordered lower and upper functions of (3)
- (3) has a solution u such that

$$0 < eta(t_u) \le u(t_u) \le lpha(t_u)$$
 for some $t_u \in [0, \omega]$ (4)

- $p + \ell \in \operatorname{Int} \mathcal{V}^+(\omega) \quad \Rightarrow \quad u(t) \geq 0 \, \, ext{for} \, t \in [0, \omega]$
- (5) \Rightarrow $u \not\equiv 0$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega) \,\, \Big| \,\,$$

 $hightarrow p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

- $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \Rightarrow \exists \ell \in L([0, \omega])$, such that $\ell \geq 0$ and $p + \ell \in \text{Int } \mathcal{V}^{+}(\omega)$ $\Rightarrow \exists$ an arbitrarily large positive lower function α of problem (1)
- $\exists r > 0$ such that $p + \frac{h}{r^{1-\lambda}} \in \mathcal{V}^{-}(\omega) \implies \exists$ an arbitrarily small positive upper function β of problem (1)
- $\delta > 0$ large enough, cutting function $\chi(x) := [x]_+ [x \delta]_+$ for $x \in \mathbb{R}$
- auxiliary problem

$$u'' = (p(t) + \ell(t))u + h(t)|\chi(u)|^{\lambda} \operatorname{sgn} \chi(u) - \ell(t)\chi(u); \quad \mathsf{PBC}$$
 (3)

- (α, β) is a couple of reverse-ordered lower and upper functions of (3)
- (3) has a solution u such that

$$0 < eta(t_u) \le u(t_u) \le lpha(t_u)$$
 for some $t_u \in [0, \omega]$ (4)

- $\bullet \ p+\ell \in \operatorname{Int} \mathcal{V}^+(\omega) \ \ \Rightarrow \ \ u(t) \geq 0 \ \text{for} \ t \in [0,\omega]$
- (5) \Rightarrow $u \not\equiv 0$
- $u(t) \le \delta$ for $t \in [0, \omega] \Rightarrow \chi(u) \equiv u \Rightarrow u$ is a non-trivial non-negative solution of (1)

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

 $arproptop p
ot\in \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \ \Rightarrow \ (1)$ has at least one non-trivial non-negative solution

 $\vartriangleright p \in {\mathcal D}_1(\omega) \text{ and } u \text{ is a solution of } (1) \hspace{0.1 cm} \Rightarrow \hspace{0.1 cm}$

either $u(t) \geq 0$ for $t \in [0, \omega]$, or $u(t) \leq 0$ for $t \in [0, \omega]$

(1)

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

 $ightarrow p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \implies$ (1) has at least one non-trivial non-negative solution $ightarrow p \in \mathcal{D}_{1}(\omega)$ and u is a solution of (1) \Rightarrow either $u(t) \ge 0$ for $t \in [0, \omega]$, or $u(t) \le 0$ for $t \in [0, \omega]$

 $dash p \in \mathcal{V}^+(\omega)$ and u is a solution of (1) \Rightarrow either u(t) > 0 for $t \in [0, \omega]$, or $u(t) \le 0$ for $t \in [0, \omega]$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

• $h(t) \leq 0$ for a.e. $t \in [0, \omega], \ h \not\equiv 0$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

• $h(t) \leq 0$ for a.e. $t \in [0, \omega], \ h \not\equiv 0$

$$y^{\prime\prime}=ay+b\sqrt[3]{y}$$

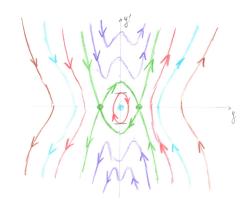
● *b* < 0

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

• $h(t) \leq 0$ for a.e. $t \in [0, \omega], \ h \not\equiv 0$

$$y^{\prime\prime}=ay+b\sqrt[3]{y}$$

• b < 0, a > 0



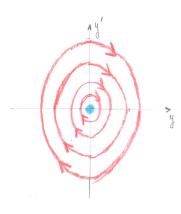
(1)

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

• $h(t) \leq 0$ for a.e. $t \in [0, \omega]$, $h \not\equiv 0$

$$y^{\prime\prime}=ay+b\sqrt[3]{y}$$

• b < 0, $a \le 0$



(1)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

Theorem. Let $\lambda \in]0, 1[$ and

$$h(t) \leq 0$$
 for a.e. $t \in [0, \omega], \qquad h \not\equiv 0.$ (A₃)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Then:

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

Theorem. Let $\lambda \in]0,1[$ and

$$h(t) \leq 0$$
 for a.e. $t \in [0, \omega], \qquad h \not\equiv 0.$ (A₃)

Then:

(1) $p \in \mathcal{V}^{-}(\omega) \Rightarrow$ (1) has exactly 3 solutions (> 0, < 0, \equiv 0)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

Theorem. Let $\lambda \in]0,1[$ and

$$h(t) \leq 0$$
 for a.e. $t \in [0, \omega], \qquad h \not\equiv 0.$ (A₃)

Then:

(1) $p \in \mathcal{V}^{-}(\omega) \implies$ (1) has exactly 3 solutions (> 0, < 0, \equiv 0) (2) $p \notin \mathcal{V}^{-}(\omega) \implies$ (1) has no positive solutions

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

Theorem. Let $\lambda \in]0, 1[$ and

$$h(t) \leq 0$$
 for a.e. $t \in [0, \omega], \qquad h \not\equiv 0.$ (A₃)

Then:

(1) $p \in \mathcal{V}^{-}(\omega) \implies$ (1) has exactly 3 solutions (> 0, < 0, \equiv 0) (2) $p \notin \mathcal{V}^{-}(\omega) \implies$ (1) has no positive solutions

Open questions:

- $p \notin \mathcal{V}^{-}(\omega) \implies (1)$ has a non-trivial non-negative solution?
- $p \notin \mathcal{V}^{-}(\omega) \implies (1)$ has a sign-changing solution?

$$u^{\prime\prime} = p(t) u + h(t) |u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u^{\prime}(0) = u^{\prime}(\omega) \, \, igg|$$

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at least one positive solution

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)\,\,\Big|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\triangleright \ p \in \mathcal{V}^{-}(\omega) \ \Rightarrow \ (1) \text{ has at least one positive solution}$ • $p \in \mathcal{V}^{-}(\omega) \ \Rightarrow \ \exists r > 0 \text{ such that } p - \frac{h}{r^{1-\lambda}} \in \operatorname{Int} \mathcal{V}^{+}(\omega)$

$$u^{\prime\prime}=p(t)u+h(t)|u|^{\lambda}\,\mathrm{sgn}\,u;\quad u(0)=u(\omega),\,\,u^{\prime}(0)=u^{\prime}(\omega)$$

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at least one positive solution

• $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists r > 0$ such that $p - \frac{h}{r^{1-\lambda}} \in \text{Int } \mathcal{V}^{+}(\omega) \Rightarrow \exists$ an arbitrarily small positive lower function α of problem (1)

$$u^{\prime\prime} = p(t)u + h(t)|u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u^{\prime}(0) = u^{\prime}(\omega) \, \, igg| \, \,$$

$\triangleright p \in \mathcal{V}^{-}(\omega) \Rightarrow (1)$ has at least one positive solution

- $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists r > 0$ such that $p \frac{h}{r^{1-\lambda}} \in \operatorname{Int} \mathcal{V}^{+}(\omega) \Rightarrow \exists$ an arbitrarily small positive lower function α of problem (1)
- $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists$ an arbitrarily large positive upper function β of problem (1)

$$u^{\prime\prime} = p(t)u + h(t)|u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u^{\prime}(0) = u^{\prime}(\omega) \, \, \Big| \,$$

$\triangleright p \in \mathcal{V}^{-}(\omega) \Rightarrow (1)$ has at least one positive solution

- $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists r > 0$ such that $p \frac{h}{r^{1-\lambda}} \in \text{Int } \mathcal{V}^{+}(\omega) \Rightarrow \exists$ an arbitrarily small positive lower function α of problem (1)
- $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists$ an arbitrarily large positive upper function β of problem (1)
- (α, β) is a couple of well-ordered lower and upper functions of (1)

$$u^{\prime\prime} = p(t) u + h(t) |u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u^{\prime}(0) = u^{\prime}(\omega) \, igg|$$

$\triangleright p \in \mathcal{V}^{-}(\omega) \Rightarrow (1)$ has at least one positive solution

- $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists r > 0$ such that $p \frac{h}{r^{1-\lambda}} \in \operatorname{Int} \mathcal{V}^{+}(\omega) \Rightarrow \exists$ an arbitrarily small positive lower function α of problem (1)
- $p \in \mathcal{V}^{-}(\omega) \Rightarrow \exists$ an arbitrarily large positive upper function β of problem (1)
- (α, β) is a couple of well-ordered lower and upper functions of (1)
- (1) has a solution u such that

$$0 < lpha(t) \le u(t) \le eta(t)$$
 for $t \in [0, \omega]$ (5)

$$u^{\prime\prime} = p(t)u + h(t)|u|^{\lambda} \, {
m sgn} \, u; \quad u(0) = u(\omega), \, \, u^{\prime}(0) = u^{\prime}(\omega)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at least one positive solution

 $arpropto p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\;$ (1) has at most one positive solution

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

• assume the contrary: (1) has two distinct positive solutions

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^{-}(\omega) \Rightarrow (1)$ has solutions u, v such that

 $0 < u(t) \leq v(t) \quad ext{for } t \in [0, \omega], \qquad u
ot \equiv v$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \Rightarrow (1)$ has solutions u, v such that

$$0 < u(t) \le v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(1) Assume that

$$u(t) < v(t)$$
 for $t \in [0, \omega]$.

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \Rightarrow (1)$ has solutions u, v such that

$$0 < u(t) \leq v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(1) Assume that

$$u(t) < v(t)$$
 for $t \in [0, \omega]$.

• u, v are positive periodic solutions, respectively, to equations

$$egin{aligned} &z'' = ig(p(t) + h(t) v^{\lambda-1}(t) ig) z + h(t) ig[u^{\lambda-1}(t) - v^{\lambda-1}(t) ig] u(t) \ &z'' = ig(p(t) + h(t) v^{\lambda-1}(t) ig) z \end{aligned}$$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \Rightarrow (1)$ has solutions u, v such that

$$0 < u(t) \leq v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(1) Assume that

$$u(t) < v(t)$$
 for $t \in [0, \omega]$.

• u, v are positive periodic solutions, respectively, to equations

$$egin{aligned} &z'' = ig(p(t) + h(t) v^{\lambda-1}(t) ig) z + h(t) ig[u^{\lambda-1}(t) - v^{\lambda-1}(t) ig] u(t) \ &z'' = ig(p(t) + h(t) v^{\lambda-1}(t) ig) z \end{aligned}$$

• the third Fredholm's theorem \Rightarrow

$$0 = \int_0^{\omega} h(s) \left[u^{\lambda-1}(s) - v^{\lambda-1}(s) \right] u(s) v(s) \mathrm{d}s \le Const. \int_0^{\omega} h(s) \mathrm{d}s < 0$$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \;\;\Rightarrow\;\; (1)$ has solutions u, v such that

$$0 < u(t) \le v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(2) Assume that

$$u(t_*)=v(t_*) ext{ for some } t_*\in [0,\omega].$$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \;\;\Rightarrow\;\; (1)$ has solutions u, v such that

$$0 < u(t) \leq v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(2) Assume that

$$u(t_*)=v(t_*)$$
 for some $t_*\in [0,\omega].$

• w(t) := u(t) - v(t) is a solution of the problem

$$w^{\prime\prime}=p(t)w+h(t)\left[u^{\lambda}(t)-v^{\lambda}(t)
ight]$$

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \;\;\Rightarrow\;\; (1)$ has solutions u, v such that

$$0 < u(t) \leq v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(2) Assume that

$$u(t_*)=v(t_*) \quad ext{for some } t_*\in [0,\omega].$$

• w(t) := u(t) - v(t) is a solution of the problem

$$w^{\prime\prime}=p(t)w+h(t)ig[u^{\lambda}(t)-v^{\lambda}(t)ig]$$

• if $h(\cdot)[u^{\lambda}(\cdot) - v^{\lambda}(\cdot)] \equiv 0$, then $p \in \mathcal{V}^{-}(\omega) \Rightarrow w \equiv 0$ - contradiction

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \; p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\; (1)$ has at least one positive solution

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at most one positive solution

- assume the contrary: (1) has two distinct positive solutions
- $p \in \mathcal{V}^-(\omega) \;\;\Rightarrow\;\; (1)$ has solutions u, v such that

$$0 < u(t) \leq v(t)$$
 for $t \in [0, \omega], \qquad u
ot\equiv v$

(2) Assume that

$$u(t_*)=v(t_*) \quad ext{for some } t_*\in [0,\omega].$$

• w(t) := u(t) - v(t) is a solution of the problem

$$w^{\prime\prime}=p(t)w+h(t)\left[u^{\lambda}(t)-v^{\lambda}(t)
ight]$$

• if $h(\cdot) \left[u^{\lambda}(\cdot) - v^{\lambda}(\cdot) \right] \equiv 0$, then $p \in \mathcal{V}^{-}(\omega) \implies w \equiv 0$ - contradiction

• if $h(\cdot) \left[u^{\lambda}(\cdot) - v^{\lambda}(\cdot) \right] \not\equiv 0$, then $p \in \mathcal{V}^{-}(\omega) \Rightarrow w(t) < 0$ on $t[0, \omega]$ – contradiction

うしん 同一人間を入所する (四) (コ)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u; \quad u(0) = u(\omega), \,\, u'(0) = u'(\omega)$$

 $arphi \ p \in \mathcal{V}^-(\omega) \ \Rightarrow \ (1)$ has at least one positive solution

 $arpropto p \in \mathcal{V}^-(\omega) \;\; \Rightarrow \;\;$ (1) has at most one positive solution

arproperto (1) has a positive solution $\Rightarrow p \in \mathcal{V}^-(\omega)$

