UNIVERSITY
 OF WEST BOHEMIA

p-Trigonometric and p-Hyperbolic Functions in Real and Complex Domain

Lukáš Kotrla

Supervisor: Petr Girg
Department of Mathematics and NTIS, University of West Bohemia

Czech-Georgian Workshop on Boundary Value Problems 2016
Brno, $10^{\text {th }}$ February 2016

For $p>1$, we define $\sin _{p}$ as the solution of initial value problem

$$
\left\{\begin{aligned}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-\lambda|u|^{p-2} u & =0, \\
u(0)=0, \quad u^{\prime}(0) & =1,
\end{aligned}\right.
$$

$$
\text { for } \lambda=p-1 \text {. }
$$

Function sin (i.e. $p=2$) is the solution of initial value problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}-\lambda u & =0, \\
u(0)=0, \quad u^{\prime}(0) & =1,
\end{aligned}\right.
$$

for $\lambda=1$.

For $p>1$, we define $\sin _{p}$ as the solution of initial value problem

$$
\left\{\begin{aligned}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-\lambda|u|^{p-2} u & =0, \\
u(0)=0, \quad u^{\prime}(0) & =1,
\end{aligned}\right.
$$

for $\lambda=p-1$.
Analogously we define $\sinh _{p}$ as the solution of initial value problem

$$
\left\{\begin{aligned}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\lambda|u|^{p-2} u & =0, \\
u(0)=0, \quad u^{\prime}(0) & =1,
\end{aligned}\right.
$$

$$
\text { for } \lambda=p-1 \text {. }
$$

Function sin (i.e. $p=2$) is the solution of initial value problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}-\lambda u & =0 \\
u(0)=0, \quad u^{\prime}(0) & =1
\end{aligned}\right.
$$

for $\lambda=1$.
Function sinh (i.e. $p=2$) is the solution of initial value problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}+\lambda u & =0 \\
u(0)=0, \quad u^{\prime}(0) & =1
\end{aligned}\right.
$$

for $\lambda=1$.

For $p>1$, we define $\sin _{p}$ as the solution of initial value problem

$$
\left\{\begin{aligned}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-\lambda|u|^{p-2} u & =0, \\
u(0)=0, \quad u^{\prime}(0) & =1,
\end{aligned}\right.
$$

for $\lambda=p-1$.
Analogously we define $\sinh _{p}$ as the solution of initial value problem

$$
\left\{\begin{aligned}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\lambda|u|^{p-2} u & =0 \\
u(0)=0, \quad u^{\prime}(0) & =1
\end{aligned}\right.
$$

for $\lambda=p-1$.
We also define

$$
\begin{aligned}
\pi_{p} \stackrel{\text { def }}{=} & 2 \sup \{s>0: \forall x \in(0, s): \\
& \left.\sin _{p}(x)>0 \wedge \sin _{p}^{\prime}(x)>0\right\}
\end{aligned}
$$

Function sin (i.e. $p=2$) is the solution of initial value problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}-\lambda u & =0, \\
u(0)=0, \quad u^{\prime}(0) & =1,
\end{aligned}\right.
$$

for $\lambda=1$.
Function sinh (i.e. $p=2$) is the solution of initial value problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}+\lambda u & =0 \\
u(0)=0, \quad u^{\prime}(0) & =1
\end{aligned}\right.
$$

for $\lambda=1$.

Function $\sin _{p}$:

- continuity
- $2 \pi_{p}$-periodicity
- oddness
- reflection $\sin _{p}(x)=\sin _{p}\left(\frac{\pi_{p}}{2}-x\right)$
- $\sin _{p}(0)=0$
- $\sin _{p}\left(\frac{\pi_{\rho}}{2}\right)=1$
- increasing on $\left(-\frac{\pi_{p}}{2}, \frac{\pi_{\rho}}{2}\right)$
- decreasing on $\left(\frac{\pi_{p}}{2}, \pi_{p}\right)$ and $\left(-\pi_{p},-\frac{\pi_{p}}{2}\right)$
- p-trigonometric identity $\left|\sin _{p}(x)\right|^{p}+\left|\sin _{p}^{\prime}(x)\right|^{p}=1$ on \mathbb{R}

Function $\sinh _{p}$:

- continuity
- oddness
- $\sinh _{p}(0)=0$
- increasing on \mathbb{R}
- p-hyperbolic identity $\left|\sinh _{p}^{\prime}(x)\right|^{p}-\left|\sinh _{p}(x)\right|^{p}=1$ on \mathbb{R}

Question

How to effectively compute $\sin _{p}$?

Question

How to effectively compute $\sin _{p}$?

Idea:
Using Maclaurin series.

Question

How to effectively compute $\sin _{p}$?

Idea:
Using Maclaurin series.
Generalized Maclaurin series: $\sum_{i=0}^{+\infty} a_{i} \cdot x \cdot|x|^{i \cdot r}, r \geq 1$. For $\sin _{p}$, it converge on "small" neighborhood of 0 [Paredes, Uchiyama] (2003)

Question

How to effectively compute $\sin _{p}$?

Idea:
Using Maclaurin series.
Generalized Maclaurin series: $\sum_{i=0}^{+\infty} a_{i} \cdot x \cdot|x|^{i \cdot r}, r \geq 1$.
For $\sin _{p}$, it converge on "small" neighborhood of 0 [Paredes, Uchiyama] (2003)

Question

Find the convergence rate of Maclaurin series for $\sin _{p}$.

Differentiability of $\sin _{p}$:

- $p=2: \sin _{2} \in C^{\infty}(\mathbb{R})$
- $p \neq 2: \sin _{p} \notin C^{\infty}(\mathbb{R})$
- $p>1: \sin _{p} \in C^{\infty}\left(0, \frac{\pi_{p}}{2}\right)$
- $p=2(m+1), m \in \mathbb{N}: \sin _{2(m+1)} \in C^{\infty}\left(-\frac{\pi_{2(m+1)}}{2}, \frac{\pi_{2(m+1)}}{2}\right)$
- $p=\mathbb{R} \backslash\{2(m+1): m \in \mathbb{N}\}: \sin _{p} \in C^{\lceil p\rceil}\left(-\frac{\pi_{p}}{2}, \frac{\pi_{p}}{2}\right)$

Differentiability of $\sin _{p}$:

- $p=2: \sin _{2} \in C^{\infty}(\mathbb{R})$
- $p \neq 2: \sin _{p} \notin C^{\infty}(\mathbb{R})$
- $p>1: \sin _{p} \in C^{\infty}\left(0, \frac{\pi_{p}}{2}\right)$
- $p=2(m+1), m \in \mathbb{N}: \sin _{2(m+1)} \in C^{\infty}\left(-\frac{\pi_{2(m+1)}}{2}, \frac{\pi_{2(m+1)}}{2}\right)$
- $p=\mathbb{R} \backslash\{2(m+1): m \in \mathbb{N}\}: \sin _{p} \in C^{\lceil p\rceil}\left(-\frac{\pi_{\rho}}{2}, \frac{\pi_{\rho}}{2}\right)$

Maclaurin series for $p=2(m+1), m \in \mathbb{N}$:

$$
\sin _{p}(x)=\sum_{n=0}^{+\infty} \frac{\sin _{p}^{(n p+1)}(0)}{(n p+1)!} x^{n p+1}, \quad x \in\left(-\frac{\pi_{p}}{2}, \frac{\pi_{p}}{2}\right)
$$

Differentiability of $\sin _{p}$:

- $p=2: \sin _{2} \in C^{\infty}(\mathbb{R})$
- $p \neq 2: \sin _{p} \notin C^{\infty}(\mathbb{R})$
- $p>1: \sin _{p} \in C^{\infty}\left(0, \frac{\pi_{p}}{2}\right)$
- $p=2(m+1), m \in \mathbb{N}: \sin _{2(m+1)} \in C^{\infty}\left(-\frac{\pi_{2(m+1)}}{2}, \frac{\pi_{2(m+1)}}{2}\right)$
- $p=\mathbb{R} \backslash\{2(m+1): m \in \mathbb{N}\}: \sin _{p} \in C^{\lceil p\rceil}\left(-\frac{\pi_{p}}{2}, \frac{\pi_{p}}{2}\right)$

Maclaurin series for $p=2(m+1), m \in \mathbb{N}$:

$$
\sin _{p}(x)=\sum_{n=0}^{+\infty} \frac{\sin _{p}^{(n p+1)}(0)}{(n p+1)!} x^{n p+1}, \quad x \in\left(-\frac{\pi_{p}}{2}, \frac{\pi_{p}}{2}\right)
$$

Generalized Maclaurin series for $p=2 m+1, m \in \mathbb{N}$:

$$
\sin _{p}(x)=\sum_{n=0}^{+\infty} \frac{\lim _{x \rightarrow 0+} \sin _{p}^{n p+1}(x)}{(n p+1)!} x|x|^{n p}, \quad x \in\left(-\frac{\pi_{p}}{2}, \frac{\pi_{p}}{2}\right) .
$$

The idea of proving the order of differentiability

- induction
- from $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ and $\sin _{p}^{\prime \prime}(x)=-\sin _{p}^{p-1}(x) \cos _{p}^{2-p}(x)$ follows $\forall n \in \mathbb{N}: \sin _{\rho}^{(n)}(x)=\sum_{k=0}^{2^{n-2}-1} a_{k, n} \sin _{p}^{q_{k, n}}(x) \cos _{p}^{1-q_{k, n}}(x)$ on ($\left.0, \frac{\pi_{\rho}}{2}\right)$
- we use oddness or evenness to extension on $\left(-\frac{\pi_{\rho}}{2}, \frac{\pi_{p}}{2}\right) \backslash\{0\}$
- we show that $\forall p \in \mathbb{N}, p>1, \forall k, n \in \mathbb{N}: q_{k, n} \geq 0$
- from one-side limits at 0 follows continuity or discontinuity of n-th derivative of function $\sin _{p}$

Open problem (Convergence for $p>1$ not integer)

Consider $p>1, p \notin \mathbb{N}$. Prove (or find a counterexample) that the generalized Maclaurin series corresponding to $\sin _{p}$ converges on $\left(-\frac{\pi_{\rho}}{2}, \frac{\pi_{\rho}}{2}\right)$ towards the values of $\sin _{p}$.

Open problem (Endpoints of the interval)

Consider $p>1, p \in \mathbb{N}$. Prove (or find a counterexample) that the generalized Maclaurin series of $\sin _{p}$ converge at $-\frac{\pi_{p}}{2}$ and/or $\frac{\pi_{p}}{2}$.

Definitions via differential equations in complex domain:
Function $\sin (z)$:
Function $\sinh (z)$:
$\left\{\begin{aligned} u^{\prime \prime}+u & =0, \quad z \in \mathbb{C}, \\ u(0) & =0, \\ u^{\prime}(0) & =1 .\end{aligned} \quad\left\{\begin{array}{r}u^{\prime \prime}-u=0, \quad z \in \mathbb{C}, \\ u(0)=0, \\ u^{\prime}(0)=1 .\end{array}\right.\right.$
Well known identity:

$$
\sin (z)=-i \sinh (i z)
$$

Definitions via differential equations in complex domain:
Function $\sin (z)$:
Function $\sinh (z)$:
$\left\{\begin{aligned} u^{\prime \prime}+u & =0, \quad z \in \mathbb{C}, \\ u(0) & =0, \\ u^{\prime}(0) & =1 .\end{aligned} \quad\left\{\begin{aligned} u^{\prime \prime}-u & =0, \quad z \in \mathbb{C}, \\ u(0) & =0, \\ u^{\prime}(0) & =1 .\end{aligned}\right.\right.$
Well known identity:

$$
\sin (z)=-i \sinh (i z)
$$

Question

Does there exist an analogous identity in the case $p=2(m+1), m \in \mathbb{N}$?

Remark (Complex argument for p even)

For $p=2(m+1)$, the function $\sin _{p}$ can be extend to the absolutely convergent Maclaurin series. Due to this fact we can naturally extend the range of definition of $\sin _{p}$ to the complex open disc

$$
B_{p}=\left\{z \in \mathbb{C}:|z|<\frac{\pi_{p}}{2}\right\} .
$$

Definitions via differential equations in complex domain:

- Function $\sin _{p}(z)$:

$$
\left\{\begin{aligned}
\left(u^{\prime}\right)^{p-2} u^{\prime \prime}+u^{p-1} & =0, \quad z \in B_{p} \\
u(0) & =0 \\
u^{\prime}(0) & =1
\end{aligned}\right.
$$

- Function $\sinh _{p}(z)$:

$$
\left\{\begin{aligned}
\left(u^{\prime}\right)^{p-2} u^{\prime \prime}-u^{p-1} & =0, \quad z \in D_{p} \\
u(0) & =0 \\
u^{\prime}(0) & =1
\end{aligned}\right.
$$

- Let consider initial value problem for $p>2$ even

$$
\left\{\begin{array}{ccc}
-\left(u^{\prime}\right)^{p-2} u^{\prime \prime}-u^{p-1} & =0, \\
u(0) & =0, \\
u^{\prime}(0) & =1,
\end{array}\right.
$$

in sense of differential equation in complex domain.

- It is equivalent to the first order system

$$
\left\{\begin{align*}
u^{\prime} & =v, \tag{1}\\
v^{\prime} & =-u^{p-1} / v^{p-2} \\
u(0) & =0 \\
v(0) & =1
\end{align*}\right.
$$

- Main idea - show that the first order system (1) have local solution given by Maclaurin series and that this series must be the same one as the Maclaurin series for $\sin _{p}(x)$ is.

Theorem

Let $p=4 I+2, I \in \mathbb{N}$. Then

$$
\sin _{p}(z)=-\mathrm{i} \sinh _{p}(\mathrm{i} z)
$$

for all $z \in B_{p}$. Moreover,

$$
\sinh _{p}(z)=\sum_{k=0}^{\infty}(-1)^{k} \frac{\sin ^{(k p+1)}(0)}{(k p+1)!} z^{k p+1}
$$

Theorem

Let $p=4 I, I \in \mathbb{N}$. Then

$$
\sin _{p}(z)=-\mathrm{i} \sin _{p}(\mathrm{i} z)
$$

for all $z \in B_{p}$.

Theorem

Let $p=4 I, I \in \mathbb{N}$. Then

$$
\sin _{p}(z)=-\mathrm{i} \sin _{p}(\mathrm{i} z)
$$

for all $z \in B_{p}$.

Theorem

Let $p=4 I, I \in \mathbb{N}$. Then

$$
\sinh _{p}(z)=-\mathrm{i} \sinh _{p}(\mathrm{iz})
$$

for all $z \in D_{p}$.

Definition of $\sin _{p}(z)$ for $p>1$ odd in complex domain by Lindqvist:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left(w^{\prime}\right)^{p-1}+(p-1) w^{p-1}=0, \quad w(0)=0, \quad w^{\prime}(0)=1 . \tag{2}
\end{equation*}
$$

Definition of $\sin _{p}(z)$ for $p>1$ odd in complex domain by Lindqvist:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left(w^{\prime}\right)^{p-1}+(p-1) w^{p-1}=0, \quad w(0)=0, \quad w^{\prime}(0)=1 . \tag{2}
\end{equation*}
$$

Question

Is the solution of (2) restricted to \mathbb{R} equal to function $\sin _{p}(x)$?

Definition of $\sin _{p}(z)$ for $p>1$ odd in complex domain by Lindqvist:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left(w^{\prime}\right)^{p-1}+(p-1) w^{p-1}=0, \quad w(0)=0, \quad w^{\prime}(0)=1 . \tag{2}
\end{equation*}
$$

Question

Is the solution of (2) restricted to \mathbb{R} equal to function $\sin _{p}(x)$?
The same approach as in the case p even reveals that solution of (2) is equal to generalized Maclaurin series of function $\sin _{p}(x)$ only for $x \in\left(0, \pi_{p} / 2\right)$.

Definition of $\sin _{p}(z)$ for $p>1$ odd in complex domain by Lindqvist:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left(w^{\prime}\right)^{p-1}+(p-1) w^{p-1}=0, \quad w(0)=0, \quad w^{\prime}(0)=1 . \tag{2}
\end{equation*}
$$

Question

Is the solution of (2) restricted to \mathbb{R} equal to function $\sin _{p}(x)$?
The same approach as in the case p even reveals that solution of (2) is equal to generalized Maclaurin series of function $\sin _{p}(x)$ only for $x \in\left(0, \pi_{p} / 2\right)$.

Theorem

Let $p>1$ is odd. Then the unique solution $u(z)$ of the complex initial value problem (2) differs from the real function $\sin _{p}(x)$ for any $z=x \in\left(-\pi_{p} / 2,0\right)$.

Comparison:

- restriction of complex $\sin _{3}(z)$ to real domain(long dashed curve)
- real function $\sin _{3}(x)$ (short dashed curve)

Comparison:

- restriction of complex $\sin _{3}(z)$ to real domain(solid curve)
- real function $\sin _{3}(x)$ (short dashed curve)
- real function $\sinh _{3}(x)$ (long dashed curve)

Comparison:

- restriction of complex $\sinh _{3}(z)$ to real domain(solid curve)
- real function $\sin _{3}(x)$ (short dashed curve)
- real function $\sinh _{3}(x)$ (long dashed curve).

References：
Elbert，Á．：A half－linear second order differential equation．
Qualitative theory of differential equations，Vol．I，II（Szeged，1979）， pp． 153 Colloq．Math．Soc．János Bolyai，30，North－Holland， Amsterdam－New York， 1981.
围 Lindqvist，P．：NOTE ON A NONLINEAR EIGENVALUE PROBLEM， Rocky Mountains Journal of Mathematics，23，no． 1 （1993），pp． 281－288．
固 Paredes，L．I．；Uchiyama，K．：Analytic Singularities of Solutions to Certain Nonlinear Ordinary Differential Equations Associated with p－Laplacian．Tokyo J．Math．26，no． 1 （2003），pp．229－240．
围 Peetre，J．：The differential equation $y^{\prime p}-y^{p}= \pm(p>0)$ ．Ricerche Mat． 23 （1994），pp．91－128．

