Oscillatory Solutions of Higher Order Sublinear Differential Equations

Ivan Kiguradze ${ }^{1}$, Tariel Kiguradze ${ }^{2}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia E-mail: kig@rmi.ge
${ }^{2}$ Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida, USA
E-mail: tkigurad@fit.edu

We have investigated the problem on existence of oscillatory solutions of the differential equation

$$
\begin{equation*}
u^{(n)}=f(t, u) \tag{1}
\end{equation*}
$$

where $n \geq 2$, and $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on the set $\mathbb{R}_{+} \times \mathbb{R}$ satisfying either of the following two inequalities

$$
\begin{equation*}
f(t, x) x \leq 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t, x) x \geq 0 \tag{3}
\end{equation*}
$$

A solution u of equation (1) defined on some interval $\left[a,+\infty\left[\subset \mathbb{R}_{+}\right.\right.$is said to be proper, if it does not identically equal to zero in any neighborhood of $+\infty$.

A proper solution $u:[a,+\infty[\rightarrow \mathbb{R}$ is said to be oscillatory, if it changes its sign in any neighborhood of $+\infty$, and is called Kneser solution, if

$$
(-1)^{i} u^{(i)}(t) u(t) \geq 0 \text { for } t \geq 0(i=1, \ldots, n-1)
$$

Definition 1. A continuous function $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ belongs to the set \mathbf{U}_{0} if equation (1) for any $t_{0} \geq 0$ has only a trivial solution satisfying the initial conditions

$$
u^{(i-1)}\left(t_{0}\right)=0(i=1, \ldots, n)
$$

Definition 2. A continuous function $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ belongs to the set \mathbf{M} if there exist numbers $a>0$ and $\lambda \in\left[0,1\left[\right.\right.$ such that for an arbitrarily fixed $t \in \mathbb{R}_{+}$the function $x \rightarrow|f(t, x)| \operatorname{sign}(x)$ is nondecreasing in the interval $[-a, a]$, and the function $x \rightarrow|x|^{-\lambda}|f(t, x)| \operatorname{sign}(x)$ is nonincreasing in the intervals $]-\infty, a]$ and $[a,+\infty[$.

The oscillation theorems proved by us deal with the case where equation (1) is sublinear, more precisely, when

$$
\begin{equation*}
f \in \mathbf{M} \tag{4}
\end{equation*}
$$

Theorem 1. Let n be even and conditions (2) and (4) hold. Then all proper solutions of equation (1) are oscillatory if and only if

$$
\begin{equation*}
\int_{0}^{+\infty} t^{n-1}|f(t, x)| d t=+\infty, \quad \int_{0}^{+\infty}\left|f\left(t, x t^{n-1}\right)\right| d t=+\infty \text { for } x \neq 0 \tag{5}
\end{equation*}
$$

Theorem 2. Let n be odd and conditions (2) and (4) hold. Then every proper solution of equation (1) is either oscillatory or Kneser solution if and only if

$$
\begin{equation*}
\int_{0}^{+\infty}\left|f\left(t, x t^{n-1}\right)\right| d t=+\infty \text { for } x \neq 0 \tag{6}
\end{equation*}
$$

For equation (1), consider the initial conditions

$$
\begin{equation*}
u^{(i-1)}(0)=c_{i} \quad(i=1, \ldots, n) \tag{7}
\end{equation*}
$$

where c_{1}, \ldots, c_{n} are arbitrary real numbers.
Theorems 1 and 2 imply
Corollary 1. Let n be even (odd) and let along with (2) and (5) (along with (2) and (6)) the conditions

$$
\begin{equation*}
f \in \mathbf{M} \cap \mathbf{U}_{0} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left|c_{i}\right|>0 \quad\left(c_{1}=0, \quad \sum_{i=2}^{n}\left|c_{i}\right|>0\right) \tag{9}
\end{equation*}
$$

hold. Then every solution of problem (1), (7) is oscillatory.
Let m be an integer part of the number $\frac{n}{2}$. Consider equation (1) with the boundary conditions

$$
\begin{equation*}
u^{(i-1)}(0)=c_{i} \quad(i=1, \ldots, m), \quad \liminf _{t \rightarrow+\infty}\left|u^{(m)}(t)\right|=0 \tag{10}
\end{equation*}
$$

Theorem 3. Let $n=2 m$, m be even, and let along with (2) and (8) the conditions

$$
\int_{0}^{+\infty} t^{n-1}|f(t, x)| d t=+\infty, \quad \int_{0}^{+\infty} t^{m}\left|f\left(t, x t^{m-1}\right)\right| d t=+\infty \quad \text { for } x \neq 0
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m}\left|c_{i}\right|>0 \tag{11}
\end{equation*}
$$

hold. Then problem (1), (10) is solvable and its every solution is oscillatory.
Theorem 4. Let $n=2 m+1, m>1$ be odd, and let along with (2) and (8) the conditions

$$
\int_{0}^{+\infty} t^{m+1}\left|f\left(t, x t^{m-1}\right)\right| d t=+\infty
$$

and

$$
\begin{equation*}
c_{1}=0, \quad \sum_{i=2}^{m}\left|c_{i}\right|>0 \tag{12}
\end{equation*}
$$

hold. Then problem (1), (10) is solvable and its every solution is oscillatory.
Assume

$$
\ell_{1}(x)=\ln (1+|x|) \operatorname{sign}(x), \quad \ell_{i+1}(x)=\ln \left(1+\left|\ell_{i}(x)\right|\right) \operatorname{sign}(x) \quad(i=1,2, \ldots)
$$

and consider the differential equation

$$
\begin{equation*}
u^{(n)}=p(t)(1+|u|)^{\mu} \ell_{k}(u) \tag{13}
\end{equation*}
$$

where k is some natural number, $\mu<1$, and $\left.\left.p: \mathbb{R}_{+} \rightarrow\right]-\infty, 0\right]$ is a continuous function.

Theorems 1-4 yield
Corollary 2. Let n be even (odd). Then every proper solution of equation (13) is oscillatory (either oscillatory, or Kneser solution) if and only if

$$
\begin{equation*}
\int_{0}^{+\infty}(1+t)^{\mu(n-1)} \ell_{k}(t) p(t) d t=-\infty \tag{14}
\end{equation*}
$$

Moreover, if conditions (9) and (14) hold, then the solution of problem (13), (7) is oscillatory.
Corollary 3. Let $n=2 m$, m be even, and let along the equality

$$
\int_{0}^{+\infty}(1+t)^{m+\mu(m-1)} \ell_{k}(t) p(t) d t=-\infty
$$

condition (11) hold. Then problem (13), (10) is solvable and its every solution is oscillatory.
Corollary 4. Let $n=2 m+1, m>1$ be odd, and let along the equality

$$
\int_{0}^{+\infty}(1+t)^{1+m+\mu(m-1)} \ell_{k}(t) p(t) d t=-\infty
$$

condition (12) holds. Then problem (13), (10) is solvable and its every solution is oscillatory.
The results of the type of Theorems 1-4 have been established also in the case where the function f satisfies inequality (3).

