Non-negative periodic solutions to second-order differential equations with sublinear nonlinearities

Jiří Šremr
Brno, Czech Republic
e-mail: sremr@ipm.cz

We will present efficient conditions for the existence and uniqueness of a non-trivial non-negative ω-periodic solution to the equation

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+q(t, u) \tag{1}
\end{equation*}
$$

with a sublinear nonlinearity q. A particular case of (1) will be discussed in detail, namely,

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+h(t)|u|^{\lambda} \operatorname{sgn} u, \tag{2}
\end{equation*}
$$

where $\lambda \in] 0,1[$. The results obtained will be compared with the facts which can be derived for equation (2) in the autonomous case, i.e., if the coefficients p and h are constants.

