On the Existence of Vanishing at Infinity Solutions to a Second Order Differential Equation with Hyperbolic Nonlinearity
 Astashova I. V.
 Lomonosov Moscow State University, Plekhanov Russian University of Economics, FMESI ast@diffiety.ac.ru

For the differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)=p(x) y(x)^{-\lambda} \tag{1}
\end{equation*}
$$

where $\lambda>0$, and p is a positive continuous on $(-\infty ;+\infty)$ function satisfying

$$
\begin{equation*}
\int_{x_{0}}^{\infty} x p(x) d x<\infty \tag{2}
\end{equation*}
$$

sufficient conditions age given for the existence of vanishing at infinity positive solutions to equation (1).

Theorem 1. Suppose q is a \mathcal{C}^{2} function tending to 0 as $x \rightarrow \infty$, and for any $\beta>0$ the function q^{β} has a monotone derivative. Then equation (1) with $\lambda>0$ and $p=q^{\prime \prime}$ has a solution tending to 0 as $x \rightarrow \infty$.

Theorem 1 contains a partial solution to the problem set by I.T. Kiguradze.

