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Let −∞ < a < b < +∞,

R+ = [0,+∞[ , Rn+ =
{

(xi)
n
i=1 ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0

}
,

R0+ = ]0,+∞[ , Rn0+ =
{

(xi)
n
i=1 ∈ Rn : x1 > 0, . . . , xn > 0

}
,

and fi : [a, b]×Rn0+ → R (i = 1, . . . , n) and ϕi : R0+ → R0+ (i = 1, . . . , n) are continuous functions.
Consider the differential system

dui
dt

= fi(t, u1, . . . , un) (i = 1, . . . , n) (1)

with the boundary conditions

ui(a) = ϕi(ui(b)) (i = 1, . . . , n). (2)

A solution (ui)
n
i=1 : [a, b] → Rn0+ of the system (1) satisfying the boundary conditions (2) is

called a positive solution of the problem (1), (2).
The question on the existence of a positive solution of problems of the type (1), (2) has been

investigated earlier mainly only for regular differential systems, i.e., for the systems whose right
sides are continuous, or satisfy the local Carathéodory conditions on the set [a, b]× Rn+ (see [1, 2]
and the references therein).

Theorems below on the existence of a positive solution of the problem (1), (2) cover the cases
in which the system under consideration has singularities in phase variables, in particular, the case
where for arbitrary i and k ∈ {1, . . . , n} the equality

lim
xk→0

∣∣fi(t, x1, . . . , xn)
∣∣ = +∞ for xj > 0 (j = 1, . . . , n; j 6= k)

is fulfilled.
In Theorems 1 and 2 it is assumed, respectively, that the functions fi (i = 1, . . . , n) and ϕi

(i = 1, . . . , n) on the sets [a, b]× Rn0+ and R0+ satisfy the inequalities

σi
(
fi(t, x1, . . . , xn)− pi(t)xi

)
≥ qi(t, xi) (i = 1, . . . , n), (3)

qi(t, xi) ≤ σi
(
fi(t, x1, . . . , xn)− pi(t)xi

)
≤

≤
n∑
k=1

pik(t, x1 + · · ·+ xn)xk + q0(t, x1, . . . , xn) (i = 1, . . . , n), (4)

and
σi(ϕi(x)− αix) ≥ 0, σi(ϕi(x)− βix) ≤ β0 (i = 1, . . . , n). (5)

Here,
σi ∈ {−1, 1}, αi > 0, βi > 0, σi(βi − αi) ≥ 0 (i = 1, . . . , n), β0 ≥ 0,

pi : [a, b] → R (i = 1, . . . , n) are continuous functions, pik : [a, b] × R0+ → R+ and qi : [a, b] ×
R0+ → R+ (i, k = 1, . . . , n) are nonincreasing in the second argument continuous functions, and
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q0 : [a, b] × Rn0+ → R+ is a nonincreasing in the last n arguments continuous function. Moreover,
pi and qi (i = 1, . . . , n) satisfy the conditions

σi

(
βi exp

( b∫
a

pi(s) ds

)
− 1

)
< 0 (i = 1, . . . , n), (6)

max
{
qi(t, x) : a ≤ t ≤ b

}
> 0 for x > 0 (i = 1, . . . , n). (7)

Along with (1), (2) we consider the auxiliary problem

dui
dt

= (1− λ)
(
pi(t)ui + σiqi(t, ui)

)
+ λfi(t, u1, . . . , un) + σiε (i = 1, . . . , n), (8)

ui(a) = (1− λ)βiui(b) + λϕi(ui(b)) (i = 1, . . . , n), (9)

depending on the parameters λ > 0 and ε > 0.

Theorem 1 (Principle of a priori boundedness). Let the inequalities (3) be fulfilled and let
there exist positive constants ε0 and ρ such that for arbitrary λ ∈ [0, 1] and ε ∈ ]0, ε0] every positive
solution (ui)

n
i=1 of the problem (8), (9) admits the estimates

ui(t) < ρ (i = 1, . . . , n).

Then the problem (1), (2) has at least one positive solution.

By X = (xik)
n
i,k=1 we denote the n× n matrix with components xik ∈ R (i, k = 1, . . . , n), and

by r(X) we denote the spectral radius of the matrix X. For any continuous function p : [a, b]→ R
and positive number β satisfying the conditions

∆(p, β) = 1− β exp

( b∫
a

p(s) ds

)
6= 0,

we put

g(p, β)(t, s) =



1

∆(p, β)
exp

( t∫
s

p(τ) dτ

)
for a ≤ s ≤ t ≤ b,

β

∆(p, β)
exp

( b∫
a

p(τ) dτ +

t∫
s

p(τ) dτ

)
for a ≤ t < s ≤ b

and

w(p, β)(t) =
1

∆(p, β)

[
(1− β) exp

( t∫
a

p(s) ds

)
+ β exp

( b∫
a

p(s) ds

)
− 1

]
.

Theorem 2. Let there exist continuous functions `i : [a, b] → R0+ (i = 1, . . . , n) such that along
with (4) the inequality

lim
x→+∞

r(H(x)) < 1 (10)

be fulfilled, where H(x) = (hik(x))ni,k=1 and

hik(x) = max

{
1

`i(t)

b∫
a

∣∣g(pi, βi)(t, s)
∣∣pik(s, x)`k(s) ds : a ≤ t ≤ b

}
(i, k = 1, . . . , n).

Then the problem (1), (2) has at least one positive solution.
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This theorem can be proved on the basis of Theorem 1 and Theorem 3.1 of [3].
Now we pass to the case, where

|pi(ti)| = max
{
|pi(s)| : a ≤ s ≤ b

}
> 0, pi(t)pi(ti) ≥ 0 for a ≤ t ≤ b (i = 1, . . . , n) (11)

and the inequalities (4) have the form

qi(t, xi) ≤ σi
(
fi(t, x1, . . . , xn)− pi(t)xi

)
≤

≤ |pi(t)|
n∑
k=1

hik(x1 + · · ·+ xn)

|w(pk, βk)(t)|
xk + q0(t, x1, . . . , xn) (i = 1, . . . , n), (12)

where hik : R0+ → R0+ (i, k = 1, . . . , n) are continuous nonincreasing functions, and σi, qi (i =
1, . . . , n) and q0 are the numbers and functions satisfying the above conditions.

From Theorem 2 it follows the following corollary.

Corollary 1. If along with (11) and (12) the inequality (10) is fulfilled, where H(x) = (hik(x))ni,k=1,

then the problem (1), (2) has at least one positive solution.

As an example, we consider the problems

dui
dt

= σi

( n∑
k=1

pikuk + f0i(t, u1, . . . , un)
)

(i = 1, . . . , n), (13)

ui(a) = ui(b) (i = 1, . . . , n), (14)

and

dui
dt

= σi

( n∑
k=1

|1− βk|hik
(1− βk)(t− a) + βk(b− a)

uk + f0i(t, u1, . . . , un)

)
(i = 1, . . . , n), (15)

ui(a) = βiui(b) (i = 1, . . . , n), (16)

where σi ∈ {−1, 1} (i = 1, . . . , n), pik (i, k = 1, . . . , n) and βi (i = 1, . . . , n) are the constants
satisfying the inequalities

pii < 0, pik ≥ 0 (i 6= k; i, k = 1, . . . , n), (17)

βi > 0, σi(βi − 1) < 0 (i = 1, . . . , n), (18)

hik (i, k = 1, . . . , n) are nonnegative constants and f0i : [a, b] × Rn0+ → R+ (i = 1, . . . , n) are
continuous functions. Moreover, on the set [a, b]× Rn0+ the inequalities

qi(t, xi) ≤ f0i(t, x1, . . . , xn) ≤ q0(t, x1, . . . , xn) (i = 1, . . . , n)

are fulfilled, where q0 : [a, b] × Rn0+ → R+ is a nonincreasing in the last n arguments continuous
function and qi : [a, b] × R0+ → R+ (i = 1, . . . , n) are nonincreasing in the second argument
continuous functions satisfying the conditions (7).

Corollary 2. For the existence of at least one positive solution of the problem (13), (14) it is
necessary and sufficient that real parts of the eigenvalues of the matrix (pik)

n
i,k=1 be negative.

Corollary 3. For the existence of at least one positive solution of the problem (15), (16) it is
necessary and sufficient that the matrix H = (hik)

n
i,k=1 satisfy the inequality

r(H) < 1. (19)
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Remark 1. In the conditions of Corollaries 2 and 3 the functions f0i (i = 1, . . . , n) may have
singularities of arbitrary order in the least n arguments. For example, in (13) and (15) we may
assume that

f0i(t, x1, . . . , xn) =

n∑
k=1

qik(t)x
−µik
k (i = 1, . . . , n),

where µik (i, k = 1, . . . , n) are positive constants and qik : [a, b] → R0+ (i, k = 1, . . . , n) are
continuous functions.

The uniqueness of a positive solution of the problem (1), (2) can be proved only in the case where
each function fi has the singularity in the i-th phase variable only. More precisely, we consider the
case when the system (1) has the following form

dui
dt

= pi(t)ui + σi
(
f0i(t, u1, . . . , un) + qi(t, ui)

)
(i = 1, . . . , n). (20)

Here σi ∈ {−1, 1} (i = 1, . . . , n), pi : [a, b] → R and f0i : [a, b] × Rn+ → R+ (i = 1, . . . , n) are
continuous functions, and qi : [a, b] × R0+ → R+ (i = 1, . . . , n) are nonincreasing in the second
argument continuous functions. Moreover, pi and qi (i = 1, . . . , n) satisfy the conditions (6) and
(7).

Theorem 3. Let on the sets [a, b]× Rn+ and R+ the conditions

σi
(
f0i(t, x1, . . . , xn)− f0i(t, y1, . . . , yn)

)
sgn(xi − yi) ≤

n∑
k=1

pik(t)|xk − yk| (i = 1, . . . , n)

and

σi(ϕi(x)− αix) ≥ 0, σi

[
(ϕi(x)− ϕi(y)) sgn(x− y)− βi|x− y|

]
≤ 0 (i = 1, . . . , n)

holds, where pik : [a, b]→ R+ (i, k = 1, . . . , n) are continuous functions. Let, moreover, there exist
continuous functions `i : [a, b] → R0+ (i = 1, . . . , n) such that the matrix H = (hik)

n
i,k=1 with the

components

hik = max

{
1

`i(t)

b∫
a

∣∣g(pi, βi)(t, s)
∣∣pik(s)`k(s) ds : a ≤ t ≤ b

}
(i, k = 1, . . . , n)

satisfies the inequality (19). Then the problem (20), (2) has a unique positive solution.

The particular cases of (20) are the differential systems

dui
dt

= σi

( n∑
k=1

pikuk + qi(t, ui)

)
(i = 1, . . . , n) (21)

and
dui
dt

= σi

( n∑
k=1

|1− βk|hik
(1− βk)(t− a) + βk(b− a)

uk + qi(t, ui)

)
(i = 1, . . . , n), (22)

where pik and βi (i, k = 1, . . . , n) are the constants satisfying the inequalities (17) and (18), and
hik (i, k = 1, . . . , n) are nonnegative constants.

Theorem 3 results in the following corollaries.

Corollary 4. For the existence of a unique positive solution of the problem (21), (14) it is necessary
and sufficient that real parts of eigenvalues of the matrix (pik)

n
i,k=1 be negative.
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Corollary 5. For the existence of a unique positive solution of the problem (22), (16) it is necessary
and sufficient that the matrix H = (hik)

n
i,k=1 satisfy the inequality (19).

Remark 2. In the conditions of Theorem 3 and its corollaries, the functions qi (i = 1, . . . , n) may
have singularities of arbitrary order in the second argument. For example, in (20), (21) and (22)
we may assume that

qi(t, x) = qi1(t)x
−µi1 + qi2(t) exp(x−µi2) (i = 1, . . . , n),

where µi1 > 0, µi2 > 0 (i = 1, . . . , n), and qik : [a, b] → R+ (i = 1, . . . , n; k = 1, 2) are continuous
functions such that

max
{
qi1(t) + qi2(t) : a ≤ t ≤ b

}
> 0 (i = 1, . . . , n).
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