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Consider the differential equation

y (n) = α0p(t)
n−1∏
j=0

ϕj(y
(j)), (1)

where α0 ∈ {−1; 1}, p : [a, ω[−→]0,+∞[- is a continuous
function, ϕj : 4Yj

−→]0,+∞[ (j = 0, n − 1)- continuous regularly
varying at y (j) −→ Yj functions of orders σj , −∞ < a < ω ≤ +∞,
4Yj

- one-sided neighborhood Yj , Yj equals either 0, or ±∞.
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From definition of regularly varying function it follows that

ϕj

(
y (j)
)

=
∣∣∣y (j)

∣∣∣σj Lj (y (j)
)

(j = 0, n − 1),

where Lj : ∆Yj
−→]0,+∞[ (j = 0, n − 1) are continuous and

slowly varying at y j → Yj functions, i.a. such that conditions

lim
y(j)→Yj

y(j)∈∆Yj

Lj
(
λy (j)

)
Lj
(
y (j)
) = 1 (j = 0, n − 1)

are satisfied for each λ > 0.
For example, the following functions are slowly varying as y −→ Y0

(Y0 is either 0, or ±∞):

lnk |y |, lnm | ln |y || (k ,m ∈ R \ {0}),

e(| ln |y ||)α (0 < α < 1), e
ln |y|

ln |ln|y|| ,

they have a nonzero finite limit as y −→ Y0.
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At study of the equation (1) we will assume that the numbers defined by

νj =

{
1, if either Yj = +∞, or Yj = 0 and ∆Yj

− right neighborhood of 0,
−1, if either Yj = −∞, or Yj = 0 and ∆Yj

− left neighborhood of 0,

such that

νjνj+1 > 0 as Yj = ±∞ and νjνj+1 < 0 as Yj = 0 (j = 0, n − 2). (2)

These conditions are necessary for existence at the equation (1) solutions defined in the left
neighborhood ω, each of which satisfies to conditions

y (j)(t) ∈ ∆Yj
as t ∈ [t0, ω[ , lim

t↑ω
y (j)(t) = Yj (j = 0, n − 1). (3)
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Among set of all solutions of the equation (1) defined in the left neighborhood ω they
represent the greatest interest as each of the remaining has only one of representations

y(t) = π
k−1
ω (t)[ck−1 + o(1)] (k = 1, n) t ↑ ω, (4)

where ck−1 (k = 1, n) are real constants distinct from zero,

πω(t) =

{
t, if ω = +∞,

t − ω, if ω < +∞.

The problem on existence at the equation (1) solutions with representations (4) as a whole can
be solved with use of known results and research methods, for example, at ω = +∞ with use
of theorems of I.T.Kiguradze.
As to solutions with properties (3) for them a priori it is not had concrete asymptotic
representations. Therefore first of all there is a necessity of allocation from their set of a class
of solutions for which such representations can be established. One of such enough wide
classes has been introduced in my papers devoted generalized differential equation of type of
Emden-Fowler

y (n) = α0p(t)

n−1∏
j=0

|y (j)|σj .
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Definition 1.
Solution y of the equation (1) is called Pω(Y0, . . . ,Yn−1, λ0)- solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on an interval [t0, ω[⊂ [a, ω[, satisfies to conditions (3)
and such that

lim
t↑ω

[y (n−1)(t)]2

y (n−2)(t)y (n)(t)
= λ0.
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If y is a solution with properties (3) differential equation (1) and
functions ln |y (n−1)(t)| and ln |πω(t)| comparable an order 1 at
t ↑ ω it is easy to prove that the given solution is a
Pω(Y0, . . . ,Yn−1, λ0)-solution at some value λ0, depending on
value of a limit

lim
t↑ω

πω(t)y (n)(t)

y (n−1)(t)
.

If coefficient p the equations (1) is regularly varying function at
t ↑ ω it is possible to show that each regularly varying solution with
properties (3) these equations is a Pω(Y0, . . . ,Yn−1, λ0)-solution at
some value λ0.
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Pω(Y0, . . . ,Yn−1, λ0)- solutions possess different asymptotic
properties as t ↑ ω depending on values λ0, namely,
when λ0 ∈ R \

{
0, 1

2 , . . . ,
n−2
n−1 , 1

}
– principal case,

when λ0 ∈
{

0, 1
2 , . . . ,

n−2
n−1 , 1,±∞

}
- special (worst) cases.

In the present report for the equation (1) will be presented at each
of possible values λ0 the established results on existence and
asymptotic behaviour of Pω(Y0, . . . ,Yn−1, λ0)- solutions.
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Principal case: λ0 ∈ R \
{
0, 1

2 , . . . ,
n−2
n−1 , 1

}
.

a0i = (n − i)λ0 − (n − i − 1) (i = 1, . . . , n) при λ0 ∈ R,

γ0 = 1−
n−1∑
j=0

σj , µn =
n−2∑
j=0

σj(n−j−1), C =
n−2∏
j=0

∣∣∣∣∣∣∣∣∣
(λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣∣∣∣∣∣
σj

,

Jn(t) =

t∫
An

p(τ)|πω(τ)|µn dτ,

where an integration limit An gets out equal a if at this value the
integral aspires to +∞ as t ↑ ω, and equal ω if at such value of a
limit of integration the integral aspires to zero as t ↑ ω.
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y (k−1)(t) ∼ [(λ0 − 1)πω(t)]n−k

n−1∏
i=k

a0i

y (n−1)(t) (k = 1, . . . , n − 1)
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Theorem 1.
Let λ0 ∈ R \

{
0, 1

2
, . . . , n−2

n−1
, 1
}

and γ0 6= 0. Then for existence of Pω(Y0, . . . ,Yn−1, λ0)-
solutions of equation (1) it is necessary and if algebraic equation

n−1∑
j=0

σj

n−1∏
i=j+1

a0 i

j∏
i=1

( a0 i + ρ ) = ( 1 + ρ )
n−1∏
i=1

( a0 i + ρ ) (5)

does not have roots with zero real part, is sufficiently that inequality (2), inequalities

ν0jν0j+1a0j+1(λ0 − 1)πω(t) > 0 (j = 0, n − 2), α0νn−1γ0Jn(t) > 0 at t ∈]a, ω[

and condition

lim
t↑ω

πω(t)J ′n(t)

Jn(t)
=

γ0

λ0 − 1

are satisfied.
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Moreover, for each such solution as t ↑ ω following asymptotic representations are valid

y (j)(t) =
[(λ0 − 1)πω(t)]n−j−1

n−1∏
i=j+1

a0i

y (n−1)(t)[1 + o(1)] (j = 0, 1, . . . , n − 2),

∣∣∣y (n−1)(t)
∣∣∣γ0

n−1∏
j=0

Lj

 [(λ0−1)πω(t)]n−j−1

n−1∏
i=j+1

a0i

y (n−1)(t)


= α0νn−1γ0CJn(t)[1 + o(1)],

where Lj

(
y (j)
)

= |y (j)|−σjϕsj

(
y (j)
)

(j = 0, n − 1). Furthermore, there exists an
m-parameter family of such solutions if , among the roots of equation (5), there are m
roots (with regard of multiplicities) with the real part having the same sign as the
function (1− λ0)πω(t).
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Remark 1.

The algebraic equation (5) obviously has no roots with a zero real
part, if

n−2∑
j=0

|σj | < |σn−1 − 1|

.
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Under certain additional assumptions the asymptotic
representations in the theorem 1 can be written down in an explicit
form.
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Definition 2
We call the slowly varying as z → Z0 function L : ∆Z0 →]0,+∞[, where Z0 is either 0, or
±∞, ∆Z0 is one-sided neighborhood of Z0, satisfies the Condition S0, if representation

L
(
νe [1+o(1)] ln |z|

)
= L(z)[1 + o(1)] при z → Z0 (z ∈ ∆Z0 ),

where ν = sign z , takes place.
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Theorem 2.
Let the conditions of theorem 1 be satisfied and the functions Lj (j = 0, n − 1) satisfy
Condition S0. Then each Pω(Y0, . . . ,Yn−1, λ0)- solution of differential equation (1)
admits the following asymptotic representations as t ↑ ω

y (j)(t) ∼ νn−1[(λ0 − 1)πω(t)]n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣∣γ0CJn(t)
n−1∏
i=0

Li

(
νi |πω(t)|

a0i+1
λ0−1

)∣∣∣∣∣
1
γ0

(j = 0, n − 1).
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Special cases: λ0 = 1 and λ0 = ±∞.

γ0 = 1−
n−1∑
j=0

σj , µn =
n−2∑
j=0

σj(n − j − 1),

J0(t) =

t∫
A0

p(s) ds, J00(t) =

t∫
A00

J0(s) ds,

J̃n(t) =

t∫
An

p(s)|πω(s)|µn
n−2∏
j=0

Lj
(
νj |πω(s)|n−j−1

)
ds.
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y (k−1)(t) ∼ [πω(t)]n−k

(n − k)!
y (n−1)(t) (k = 1, . . . , n − 1),

y (n)(t) = o

(
y (n−1)(t)

πω(t)

)
;

y ′(t)

y(t)
∼ y ′′(t)

y ′(t)
∼ · · · ∼ y (n)(t)

y (n−1)(t)
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Theorem 3.
Let γ0 6= 0. Then for existence of Pω(Y0, . . . ,Yn−1, 1)- solutions of equation (1) it is
necessary and if algebraic equation

(1 + ρ)n =
n−1∑
j=0

σj(1 + ρ)j (6)

does not have roots with zero real part, is sufficiently that inequality (2), inequalities

α0νn−1γ0J0(t) > 0, νjνn−1 (γ0J0(t))n−j−1 > 0 (j = 0, n − 2) при t ∈]a, ω[

and conditions

lim
t↑ω

p(t)J00(t)

J2
0 (t)

= 1, νj lim
t↑ω
|J0(t)|

1
γ0 = Yj (j = 0, n − 1).

are satisfied.
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Moreover, for each such solution as t ↑ ω following asymptotic representations are valid

y (j)(t) =

(
γ0J00(t)

J0(t)

)n−j−1

y (n−1)(t)[1 + o(1)] (j = 0, n − 2),

|y (n−1)(t)|γ0

n−1∏
j=0

Lj

((
γ0J00(t)
J0(t)

)n−j−1

y (n−1)(t)

) = α0νn−1γ0J0(t)

∣∣∣∣γ0J00(t)

J00(t)

∣∣∣∣µn

[1 + o(1)].

Furthermore, there exists an m-parameter family of such solutions if , among the roots of
equation (6), there are m roots (with regard of multiplicities) which the real part have a
sign opposite to a sign α0νn−1.

V.M. Evtukhov ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING NONLINEARITIES



Remark 2.

The algebraic equation (6) obviously has no roots with a zero real
part, if

n−2∑
j=0

|σj | < |σn−1 − 1|

.
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Theorem 4.
Let the conditions of theorem 3 be satisfied and the functions Lj (j = 0, n − 1) satisfy
Condition S0. Then each Pω(Y0, . . . ,Yn−1, 1)- solution of differential equation (1) admits
the following asymptotic representations as t ↑ ω

y (j)(t) ∼ νn−1

(
γ0J0(t)

p(t)

)n−j−1
∣∣∣∣∣γ0J0(t)

∣∣∣∣γ0J0(t)

p(t)

∣∣∣∣µn n−1∏
j=0

Lj

(
νj |J0(t)|

1
γ0

)∣∣∣∣∣
1
γ0

(j = 0, n − 1).
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Theorem 5.
Let γ0 6= 0 and the functions Lj (j = 0, n − 2) satisfy Condition S0. Then for existence of
Pω(Y0, . . . ,Yn−1,±∞)- solutions of equation (1) it is necessary and sufficiently that
inequality (2), inequalities

νjνn−1π
n−j−1
ω (t) > 0 (j = 0, n − 2), α0νn−1γ0J̃n(t) > 0

and conditions

νj lim
t↑ω
|πω(t)|n−j−1 = Yj (j = 0, n − 2), νn−1 lim

t↑ω
|J̃n(t)|

1
γ0 = Yn−1,

lim
t↑ω

πω(t)J̃ ′n(t)

J̃n(t)
= 0.

are satisfied.
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Moreover, for each such solution as t ↑ ω following asymptotic representations are valid

y (j−1)(t) ∼ [πω(t)]n−j

(n − j)!
y (n−1)(t)[1 + o(1)] (j = 1, . . . , n − 1),

|y (n−1)(t)|γ0

Ln−1(y (n−1)(t))
= α0νn−1γ0

n−2∏
j=0

∣∣∣∣ 1

(n − j − 1)!

∣∣∣∣σj J̃n(t)[1 + o(1)].

Furthermore, if ω = +∞ there is n-parametrical (n-1-parametrical) family of such
solutions in a case, when J̃n(t) > 0 (J̃n(t) < 0) at t ∈ [a0, ω[; if ω < +∞ and J̃n(t) > 0
at t ∈ [a0, ω[ there is a one-parametrical family of such solutions.
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Theorem 6.
Let the conditions of theorem 5 be satisfied and the function Ln−1 satisfy Condition S0.
Then each Pω(Y0, . . . ,Yn−1,±∞)- solution of differential equation (1) admits the
following asymptotic representations as t ↑ ω

y (j−1)(t) ∼ νn−1[πω(t)]n−j

(n − j)!

∣∣∣∣∣γs
n−2∏
j=0

∣∣∣∣ 1

(n − j − 1)!

∣∣∣∣σsj J̃sn(t)Lsn−1

(
νn−1|J̃sn(t)|

1
γs

)∣∣∣∣∣
1
γs

(j = 1, n).
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Special cases: λ0 =
n−i−1
n−i (i = 1, n − 1).

µi = n − i − 1 +
i−2∑
j=0

σj(i − j − 1)−
n−1∑
j=i+1

σj(j − i) (i = 1, n),

γ0 = 1−
n−1∑
j=0

σj , γi = 1−
n−1∑
j=i

σj (i = 1, n − 1),

Ci =
1

(n − i)!

i−1∏
j=0

[(i − j − 1)!]−σj
n−1∏
j=i+1

[(j − i)!]σj (i = 1, n − 1),

Ji (t) =

t∫
Ai

p(s)|πω(s)|µi
n−1∏
j=0

j 6=i−1

Lj
(
νj |πω(s)|i−j−1

)
ds (i = 1, n),

Jii (t) =

t∫
Aii

|Ji (s)|
1
γi ds (i = 1, n).
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y (k−1)(t) ∼ [πω(t)]i−k

(i − k)!
y (i−1)(t) (k = 1, . . . , i − 1),

y (i)(t) = o

(
y (i−1)(t)

πω(t)

)
,

y (k)(t) ∼ (−1)k−i
(k − i)!

[πω(t)]k−i
y (i)(t) (k = i + 1, . . . , n).

i = n − 1

lim
t↑ω

πω(t)y (n)(t)

y (n−1)(t)
.
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Theorem 7.
Let i ∈ {1, . . . , n− 1}, γ0γi 6= 0 and functions Lj at all j ∈ {0, . . . , n− 1} \ {i − 1} satisfy
to a condition S0. Then for existence at the equation (1) Pω

(
Y0, . . . ,Yn−1,

n−i−1
n−i

)
-

solutions (at i = n − 1 for which exists finit or equal ±∞ a limit lim
t↑ω

πω(t)y (n)(t)

y (n−1)(t)
) is

necessary, and if the algebraic equation

n−1∑
j=i+1

σj

(j − i)!

j−i∏
m=1

(m − ρ) + σi =
1

(n − i)!

n−i∏
m=1

(m − ρ) (7)

does not have roots with zero real part, is sufficiently that inequality (2), inequalities

νjνj−1(i − j)πω(t) > 0 at all j ∈ {1, . . . , n − 1} \ {i}, νiνi−1γ0γiJii (t) > 0,

νiα0(−1)n−i−1πn−i−1
ω (t)γiJi (t) > 0

and conditions

νj−1 lim
t↑ω
|πω(t)|i−j = Yj−1 при всех j ∈ {1, . . . , n} \ {i}, νi−1 lim

t↑ω
|Jii (t)|

γi
γ0 = Yi−1,

lim
t↑ω

πω(t)J ′i (t)

Ji (t)
= −γi , lim

t↑ω

πω(t)J ′ii (t)

Jii (t)
= 0.

are satisfied.
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Moreover, for each such solution as t ↑ ω following asymptotic representations are valid

y (j−1)(t) =
[πω(t)]i−j

(i − j)!
y (i−1)(t)[1 + o(1)] (j = 1, . . . , i − 1),

y (j)(t) = (−1)j−i (j − i)!

[πω(t)]j−i
· γiJ

′
ii (t)

γ0Jii (t)
y (i−1)(t)[1 + o(1)] (j = i , . . . , n − 1),

|y (i−1)(t)|γ0

Li−1(y (i−1)(t))
= |γiCi |

∣∣∣∣γ0

γi
Jii (t)

∣∣∣∣γi [1 + o(1)] при t ↑ ω.

Furthermore, such solutions in a case, when ω = +∞ exists i + l-parameter (i − 1 + l-
parameter) family if νiνi−1γ0γi > 0 (νiνi−1γ0γi < 0) and in a case when ω < +∞ exist
an r + 1-parameter (r - parameter) family if νiνi−1γ0γi > 0 (νiνi−1γ0γi < 0), where l (r)-
number of roots of an equation (7) with a negative (positive) real part.
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Remark 3.

The algebraic equation (7) obviously has no roots with a zero real
part, if

n−2∑
j=i

|σj | < |1− σn−1|.
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Тheorem 8.
Let the conditions of theorem 7 be satisfied and the function Li−1 satisfy Condition S0.
Then each Pω

(
Y0, . . . ,Yn−1,

n−i−1
n−i

)
- solution of differential equation (1) admits the

following asymptotic representations as t ↑ ω

y (j−1)(t) ∼ νi−1[πω(t)]i−j

(i − j)!

∣∣∣γiCiLi−1

(
νi−1|Jii (t)|

γi
γ0

)∣∣∣ 1
γ0

∣∣∣∣γ0

γi
Jii (t)

∣∣∣∣
γi
γ0

(j = 1, i),

y (j)(t) ∼ (−1)j−i νi−1(j − i)!

[πω(t)]j−i
· γiJ

′
ii (t)

γ0Jii (t)

∣∣∣γiCiLi−1

(
νi−1|Jii (t)|

γi
γ0

)∣∣∣ 1
γ0

∣∣∣∣γ0

γi
Jii (t)

∣∣∣∣
γi
γ0

(j = i , n − 1).

V.M. Evtukhov ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING NONLINEARITIES



1 Seneta E. Regularly Varying Functions, Berlin: Springer-Verlag, 1976. Translated under
the title Pravilno menyayushchiesya funktsii, Moscow: Nauka, 1985.

2 Bingham N.H., Goldie C.M., Teugels J.L. Regular variation. Encyclopedia of
mathematics and its applications. Cambridge university press. Cambridge. - 1987. -
494p.
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